162
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Optical systems for single cell analyses

, PhD, , MSc, , MSc & , PhD Docent
Pages 1323-1344 | Published online: 22 Oct 2008

Bibliography

  • Longo D, Hasty J. Dynamics of single-cell gene expression. Mol Syst Biol 2006;2(64):1-10
  • Di Carlo D, Lee LP. Dynamic single-cell analysis for quantitative biology. Anal Chem 2006;78(23):7918-25
  • Brehm-Stecher BF, Johnson EA. Single-cell microbiology: tools, technologies, and applications. Microbiol Mol Biol Rev 2004;68(3):538-59
  • Weibel DB, Diluzio WR, Whitesides GM. Microfabrication meets microbiology. Nat Rev Microbiol 2007;5(3):209-18
  • El-Ali J, Sorger PK, Jensen KF. Cells on chips. Nature 2006;442(7101):403-11
  • Craighead H. Future lab-on-a-chip technologies for interrogating individual molecules. Nature 2006;442(7101):387-93
  • Perlman ZE, Slack MD, Feng Y, et al. Multidimensional drug profiling by automated microscopy. Science 2004;306(5699):1194-8
  • Shav-Tal Y, Singer RH, Darzacq X. Imaging gene expression in single living cells. Nat Rev Mol Cell Biol 2004;5(10):855-62
  • Johann RM. Cell trapping in microfluidic chips. Anal Bioanal Chem 2006;385(3):408-12
  • Miyawaki A, Sawano A, Kogure T. Lighting up cells: labelling proteins with fluorophores. Nat Cell Biol 2003;(Suppl):S1-7
  • Shaner NC, Steinbach PA, Tsien RY. A guide to choosing fluorescent proteins. Nat Methods 2005;2(12):905-9
  • Lavis LD, Raines RT. Bright ideas for chemical biology. ACS Chem Biol 2008;3(3):142-55
  • Butcher EC. Can cell systems biology rescue drug discovery? Nat Rev Drug Discov 2005;4(6):461-7
  • Butcher EC, Berg EL, Kunkel EJ. Systems biology in drug discovery. Nat Biotechnol 2004;22(10):1253-9
  • Newman JRS, Ghaemmaghami S, Ihmels J, et al. Single-cell proteomic analysis of S-cerevisiae reveals the architecture of biological noise. Nature 2006;441(7095):840-6
  • Ansel J, Bottin H, Rodriguez-Beltran C, et al. Cell-to-cell Stochastic variation in gene expression is a complex genetic trait. PLoS Genet 2008;4(4):1-10
  • Darzynkiewicz Z, Bedner E, Li X, et al. Laser-scanning cytometry: A new instrumentation with many applications. Exp Cell Res 1999;249(1):1-12
  • Di Carlo D, Wu LY, Lee LP. Dynamic single cell culture array. Lab Chip 2006;6(11):1445-9
  • Biran I, Walt DR. Optical Imaging fiber-based single live cell arrays: A high-density cell assay platform. Anal Chem 2002;74(13):3046-54
  • Whitaker RD, Walt DR. Multianalyte single-cell analysis with multiple cell lines using a fiber-optic array. Anal Chem 2007;79(23):9045-53
  • Svahn HA, van den Berg A. Single cells or large populations? Lab Chip 2007;7(5):544-6
  • Bigger J. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet 1944;244(6320):497
  • Balaban NQ, Merrin J, Chait R, et al. Bacterial persistence as a phenotypic switch. Science 2004;305(5690):1622-5
  • Gefen O, Gabay C, Mumcuclglu M, et al. Single-cell protein induction dynamics reveals a period of vulnerability to antibiotics in persister bacteria. Proc Natl Acad Sci USA 2008;105(16):6145-9
  • Ozbudak EM, Thattai M, Kurtser I, et al. Regulation of noise in the expression of a single gene. Nat Genet 2002;31(1):69-73
  • Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a single cell. Science 2002;297(5584):1183-6
  • Rosenfeld N, Young JW, Alon U, et al. Gene regulation at the single-cell level. Science 2005;307(5717):1962-5
  • Golding I, Paulsson J, Zawilski SM, Cox EC. Real-time kinetics of gene activity in individual bacteria. Cell 2005;123(6):1025-36
  • Maamar H, Raj A, Dubnau D. Noise in gene expression determines cell fate in Bacillus subtilis. Science 2007;317(5837):526-9
  • Süel GM, Kulkarni RP, Dworkin J, et al. Tunability and noise dependence in differentiation dynamics. Science 2007;315(5819):1716-9
  • Mettetal JT, Muzzey D, Pedraza JM, et al. Predicting stochastic gene expression dynamics in single cells. Proc Natl Acad Sci USA 2006;103(19):7304-9
  • Blake WJ, Kaern M, Cantor CR, Collins JJ. Noise in eukaryotic gene expression. Nature 2003;422(6932):633-7
  • Raser JM, O'Shea EK. Control of stochasticity in eukaryotic gene expression. Science 2004;304(5678):1811-4
  • Colman-Lerner A, Gordon A, Serra E, et al. Regulated cell-to-cell variation in a cell-fate decision system. Nature 2005;437(7059):699-706
  • Volfson D, Marciniak J, Blake WJ, et al. Origins of extrinsic variability in eukaryotic gene expression. Nature 2006;439(7078):861-4
  • Dunlop J, Bowlby M, Peri R, et al. High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat Rev Drug Discov 2008;7(4):358-68
  • Hondai A, Komatsu H, Kato D, et al. Newly developed chemical probes and nano-devices for cellular analysis. Anal Sci 2008;24(1):55-66
  • Huang WH, Ai F, Wang ZL, Cheng JK. Recent advances in single-cell analysis using capillary electrophoresis and microfluidic devices. J Chromatogr B 2008;866(1-2):104-22
  • Schulte A, Schuhmann W. Single-cell microelectrochemistry. Angew Chem Int Ed 2007;46(46):8760-77
  • Bao N, Wang J, Lu C. Recent advances in electric analysis of cells in microfluidic systems. Anal Bioanal Chem 2008;391(3):933-42
  • Giuliano KA, DeBiasio RL, Dunlay RT, et al. High-content screening: A new approach to easing key bottlenecks in the drug discovery process. J Biomol Screen 1997;2(4):249-59
  • Dove A. Drug screening - Beyond the bottleneck. Nat Biotechnol 1999;17(9):859-63
  • Fernandes PB. Technological advances in high-throughput screening. Curr Opin Chem Biol 1998;2(5):597-603
  • Sundberg SA. High-throughput and ultra-high-throughput screening: solution- and cell-based approaches. Curr Opin Biotechnol 2000;11(1):47-53
  • Gomez-Hens A, Aguilar-Caballos MP. Modern analytical approaches to high-throughput drug discovery. Trac -Trends Anal Chem 2007;26(3):171-82
  • Starkuviene V, Pepperkok R. The potential of high-content high-throughput microscopy in drug discovery. Br J Pharmacol 2007;152(1):62-71
  • Taylor DL, Woo ES, Giuliano KA. Real-time molecular and cellular analysis: the new frontier of drug discovery. Curr Opin Biotechnol 2001;12(1):75-81
  • Bullen A. Microscopic imaging techniques for drug discovery. Nat Rev Drug Discov 2008;7(1):54-67
  • Ye NN, Qin JH, Shi WW, et al. Cell-based high content screening using an integrated microfluidic device. Lab Chip 2007;7(12):1696-704
  • Kang L, Chung BG, Langer R, Khademhosseini A. Microfluidics for drug discovery and development: from target selection to product lifecycle management. Drug Discov Today 2008;13(1-2):1-13
  • Dittrich PS, Manz A. Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 2006;5(3):210-18
  • Minsky M. Inventor Microscopy Apparatus. USA 1961; US3013467
  • Conchello JA, Lichtman JW. Optical sectioning microscopy. Nat Methods 2005;2(12):920-31
  • Invitrogen. The handbook; a guide to fluorescent probes and labeling technologies. Invitrogen, Mol Probes 2005
  • Lu JZ, Rosenzweig Z. Nanoscale fluorescent sensors for intracellular analysis. Fresenius J Anal Chem 2000;366(6-7):569-75
  • Song LL, Hennink EJ, Young IT, Tanke HJ. Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys J 1995;68(6):2588-600
  • Panchuk-Voloshina N, Haugland RP, Bishop-Stewart J, et al. Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem 1999;47(9):1179-88
  • Chan WCW, Maxwell DJ, Gao XH, et al. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 2002;13(1):40-6
  • Alivisatos AP, Gu WW, Larabell C. Quantum dots as cellular probes. Annu Rev Biomed Eng 2005;7:55-76
  • Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005;307(5709):538-44
  • Thurn KT, Brown EMB, Wu A, et al. Nanoparticles for applications in cellular Imaging. Nanoscale Res Lett 2007;2(9):430-41
  • Chan WCW, Nie SM. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998;281(5385):2016-8
  • Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science 1998;281(5385):2013-6
  • Derfus AM, Chan WCW, Bhatia SN. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater 2004;16(12):961-6
  • Jaiswal JK, Mattoussi H, Mauro JM, Simon SM. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 2003;21(1):47-51
  • Bates M, Huang B, Dempsey GT, Zhuang XW. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 2007;317(5845):1749-53
  • Medda R, Jakobs S, Hell SW, Bewersdorf J. 4Pi microscopy of quantum dot-labeled cellular structures. J Struct Biol 2006;156(3):517-23
  • Medintz IL, Clapp AR, Mattoussi H, et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater 2003;2(9):630-8
  • Jaiswal JK, Simon SM. Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol 2004;14(9):497-504
  • Howarth M, Liu W, Puthenveetil S, et al. Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat Methods 2008;5(5):397-9
  • Prasher DC, Eckenrode VK, Ward WW, et al. Primary Structure Of The Aequorea-Victoria Green-Fluorescent Protein. Gene 1992;111(2):229-33
  • Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene-expression. Science 1994;263(5148):802-5
  • Zimmer M. Green fluorescent protein (GFP): Applications, structure, and related photophysical behavior. Chem Rev 2002;102(3):759-81
  • Muller-Taubenberger A, Anderson KI. Recent advances using green and red fluorescent protein variants. Appl Microbiol Biotechnol 2007;77(1):1-12
  • Livet J, Weissman TA, Kang H, et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 2007;450(7166):56-62
  • Pappas D, Burrows SM, Reif RD. Exploring biomolecular interactions by single-molecule fluorescence. Trac -Trends Anal Chem 2007;26(9):884-94
  • Schmidt T, Schutz GJ, Baumgartner W, et al. Imaging of single molecule diffusion. Proc Natl Acad Sci USA 1996;93(7):2926-9
  • Lu HP, Xun LY, Xie XS. Single-molecule enzymatic dynamics. Science 1998;282(5395):1877-82
  • Kues T, Peters R, Kubitscheck U. Visualization and tracking of single protein molecules in the cell nucleus. Biophys J 2001;80(6):2954-67
  • Cai L, Friedman N, Xie XS. Stochastic protein expression in individual cells at the single molecule level. Nature 2006;440(7082):358-62
  • Rost FWD. Fluorescence Microscopy. Cambridge: University Press, 1995
  • Yu J, Xiao J, Ren XJ, et al. Probing gene expression in live cells, one protein molecule at a time. Science 2006;311(5767):1600-3
  • Elf J, Li GW, Xie XS. Probing transcription factor dynamics at the single-molecule level in a living cell. Science 2007;316(5828):1191-4
  • Byassee TA, Chan WCW, Nie SM. Probing single molecules in single living cells. Anal Chem 2000;72(22):5606-11
  • Forster T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys-Berlin 1948;2(1-2):55-75
  • Stryer L, Haugland RP. Energy transfer - a spectroscopic ruler. Proc Natl Acad Sci USA 1967;58(2):719-26
  • Jares-Erijman EA, Jovin TM. FRET imaging. Nat Biotechnol 2003;21(11):1387-95
  • van Engelenburg SB, Palmer AE. Fluorescent biosensors of protein function. Curr Opin Chem Biol 2008;12(1):60-5
  • Piljic A, Schultz C. Simultaneous recording of multiple cellular events by FRET. ACS Chem Biol 2008;3(3):156-60
  • Galperin E, Verkhusha V, Sorkin A. Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells. Nat Methods 2004;1(3):209-17
  • Hu CD, Chinenov Y, Kerppola TK. Visualization of interactions among bZip and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 2002;9(4):789-98
  • Hu CD, Kerppola TK. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 2003;21(5):539-45
  • Grant DM, McGinty J, McGhee EJ, et al. High speed optically sectioned fluorescence lifetime imaging permits study of live cell signaling events. Opt Express 2007;15(24):15656-73
  • Collins TJ, Berridge MJ, Lipp P, Bootman MD. Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J 2002;21(7):1616-27
  • Politz JC. Use of caged fluorochromes to track macromolecular movement in living cells. Trends Cell Biol 1999;9(7):284-7
  • Patterson GH, Lippincott-Schwartz J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 2002;297(5588):1873-7
  • Post JN, Lidke KA, Rieger B, Arndt-Jovin DJ. One- and two-photon photoactivation of a paGFP-fusion protein in live Drosophila embryos. FEBS Lett 2005;579(2):325-30
  • Wiesmeijer K, Krouwels IM, Tanke HJ, Dirks RW. Chromatin movement visualized with photoactivable GFP-labeled histone H4. Differentiation 2008;76(1):83-90
  • Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated-emission – stimulated-emission-depletion fluorescence microscopy. Opt Lett 1994;19(11):780-2
  • Westphal V, Rizzoli SO, Lauterbach MA, et al. eo-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 2008;320(5873):246-9
  • Bewersdorf J, Egner A, Hell SW. 4Pi Microscopy. In: Pawley JB, editor, Handbook of Biological Confocal Microscopy. Third edition. New York: Springer Science+Business Media, LLC; 2006
  • Hell S, Stelzer EHK. Fundamental improvement of resolution with a 4pi-confocal fluorescence microscope using 2-photon Excitation. Opt Commun 1992;93(5-6):277-82
  • Egner A, Jakobs S, Hell SW. Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc Natl Acad Sci USA 2002;99(6):3370-5
  • Egner A, Verrier S, Goroshkov A, et al. 4Pi-microscopy of the Golgi apparatus in live mammalian cells. J Struct Biol 2004;147(1):70-6
  • Yildiz A, Forkey JN, McKinney SA, et al. Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science 2003;300(5628):2061-5
  • Kural C, Kim H, Syed S, et al. Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement? Science 2005;308(5727):1469-72
  • Enderlein J, Toprak E, Selvin PR. Polarization effect on position accuracy of fluorophore localization. Opt Express 2006;14(18):8111-20
  • Betzig E, Patterson GH, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006;313(5793):1642-5
  • Shroff H, Galbraith CG, Galbraith JA, Betzig E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 2008;5(5):417-23
  • Stephens DJ, Allan VJ. Light microscopy techniques for live cell Imaging. Science 2003;300(5616):82-6
  • Day RN. Imaging protein behavior inside the living cell. Mol Cell Endocrinol 2005;230(1-2):1-6
  • Goksor M, Enger J, Hanstorp D. Optical manipulation in combination with multiphoton microscopy for single-cell studies. Appl Opt 2004;43(25):4831-7
  • Toomre T, Pawley JB. Disk-scanning confocal microscopy. In: Pawley JB, editor, Handbook of Biological Confocal Microscopy. Third edition. New York: Springer Science+Business Media, LLC; 2006
  • Paar C, Paster W, Stockinger H, et al. High throughput FRET screening of the plasma membrane based on TIRFM. Cytom Part A 2008;73A(5):442-50
  • Majoul I, Jia Y, Duden R. Practical Fluorescence Resonance Energy Transfer or Molecular Nanobioscopy of Living Cells. In: Pawley JB, editior, Handbook of Biological Confocal Microscopy. Third edition. New York: Springer Science+Business Media, LLC; 2006
  • Gerritsen HC, Draaijer A, van den Heuvel DJ, Agronskaia AV. Fluorescence lifetime imaging in scanning microscopy. In: Pawley JB, editor, Handbook of Biological Confocal Microscopy. Third edition. New York: Springer Science + Business Media, LLC; 2006
  • Dyba M, Hell SW. Focal spots of size lambda/23 open up far-field florescence microscopy at 33 nm axial resolution. Phys Rev Lett 2002;88(16)
  • Yildiz A, Selvin PR. Fluorescence imaging with one nanometer accuracy: application to molecular motors. Acc Chem Res 2005;38(7):574-82
  • Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 1986;11(5):288-90
  • Ashkin A, Dziedzic JM. Optical trapping and manipulation of viruses and bacteria. Science 1987;235(4795):1517-20
  • Kurachi M, Hoshi M, Tashiro H. Buckling of a single microtubule by optical trapping forces - direct measurement of microtubule rigidity. Cell Motil Cytoskeleton 1995;30(3):221-8
  • Svoboda K, Mitra PP, Block SM. Fluctuation Analysis Of Motor Protein Movement And Single Enzyme-Kinetics. Proc Natl Acad Sci USA 1994;91(25):11782-6
  • Schnitzer MJ, Visscher K, Block SM. Force production by single kinesin motors. Nat Cell Biol 2000;2(10):718-23
  • Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, et al. Direct observation of base-pair stepping by RNA polymerase. Nature 2005;438(7067):460-5
  • Tolic-Norrelykke IM, Sacconi L, Thon G, Pavone FS. Positioning and elongation of the fission yeast spindle by microtubule-based pushing. Curr Biol 2004;14(13):1181-6
  • Tolic-Norrelykke IM, Sacconi L, Stringari C, et al. Nuclear and division-plane positioning revealed by optical micromanipulation. Curr Biol 2005;15(13):1212-6
  • Harada Y, Asakura T. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt Commun 1996;124(5-6):529-41
  • Ashkin A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J 1992;61(2):569-82
  • Gauthier RC, Wallace S. Optical levitation of spheres - analytical development and numerical computations of the force equations. J Opt Soc Am B Opt Phys 1995;12(9):1680-6
  • Svoboda K, Schmidt CF, Schnapp BJ, Block SM. Direct observation of kinesin stepping by optical trapping interferometry. Nature 1993;365(6448):721-7
  • Asbury CL, Fehr AN, Block SM. Kinesin moves by an asymmetric hand-over-hand mechanism. Science 2003;302(5653):2130-4
  • Wen JD, Lancaster L, Hodges C, et al. Following translation by single ribosomes one codon at a time. Nature 2008;452(7187):598-603
  • Reicherter M, Haist T, Wagemann EU, Tiziani HJ. Optical particle trapping with computer-generated holograms written on a liquid-crystal display. Opt Lett 1999;24(9):608-10
  • Akselrod GM, Timp W, Mirsaidov U, et al. Laser-guided assembly of heterotypic three-dimensional living cell microarrays. Biophys J 2006;91(9):3465-73
  • Ashkin A, Dziedzic JM, Yamane T. Optical trapping and manipulation of single cells using infrared-laser beams. Nature 1987;330(6150):769-71
  • Ashkin A, Dziedzic JM. Optical trapping and manipulation of single living cells using infrared-laser beams. Ber Bunsenges Phys Chem 1989;93(3):254-60
  • Leitz G, Fallman E, Tuck S, Axner O. Stress response in Caenorhabditis elegans caused by optical tweezers: Wavelength, power, and time dependence. Biophys J 2002;82(4):2224-31
  • Tchakotine S. Die Mikroskopische Strahlenstichmethode, eine Zelloperationsmethode. Biol Zbl 1912;32:623-30
  • Hoffmann F. Laser microbeams for the manipulation of plant cells and subcellular structures. Plant Sci 1996;113(1):1-11
  • Aist JR, Liang H, Berns MW. Astral And Spindle Forces In Ptk2 Cells During Anaphase-B - A Laser Microbeam Study. J Cell Sci 1993;104:1207-16
  • Schutze K, Posl H, Lahr G. Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine. Cell Mol Biol 1998;44(5):735-46
  • Rattner JB, Berns MW. Light and electron-microscopy of laser microirradiated chromosomes. J Cell Biol 1974;62(2):526-33
  • Liang H, Wright WH, Rieder CL, et al. Directed movement of chromosome arms and fragments in mitotic newt lung-cells using optical scissors and optical tweezers. Exp Cell Res 1994;213(1):308-12
  • Wiegand R, Weber G, Zimmermann K, et al. Laser-induced fusion of mammalian-cells and plant-protoplasts. J Cell Sci 1987;88:145-9
  • Steubing RW, Cheng S, Wright WH, et al. Laser-induced cell-fusion in combination with optical tweezers - the laser cell-fusion trap. Cytometry 1991;12(6):505-10
  • Berns MW. Laser applications in biomedicine. J Laser Appl 1988;34-9
  • Senz R, Muller G. Laser In Medicine. Ber Bunsenges Phys Chem 1989;93(3):269-77
  • Berns MW, Tadir Y, Eldanasouri I, et al. Sperm motility studied with optical tweezers. Mol Biol Cell 1992;3:A9-A
  • Tadir Y, Wright WH, Vafa O, et al. Micromanipulation of sperm by a laser generated optical trap. Fertil Steril 1989;52(5):870-3
  • Tadir Y, Steiner RA, Berns MW. Lasers in medically assisted reproduction. Arch Gynecol Obstet 1993;254(1-4):433-7
  • Schutze K, Clementsengewald A, Ashkin A. Zona drilling and sperm insertion with combined laser microbeam and optical tweezers. Fertil Steril 1994;61(4):783-6
  • Greulich KO, Leitz G. Light as microsensor and micromanipulator: laser microbeams and optical tweezers. Exp Tech Phys 1994;40(1):1-14
  • Greulich KO, Pilarczyk G. Laser tweezers and optical microsurgery in cellular and molecular biology. Working principles and selected applications. Cell Mol Biol 1998;44(5):701-10
  • Goksor M, Diez A, Enger J, et al. Analysis of molecular diffusion in ftsK cell-division mutants using laser surgery. EMBO Rep 2003;4(9):867-71
  • Whitesides GM. The origins and the future of microfluidics. Nature 2006;442(7101):368-73
  • Sia SK, Whitesides GM. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 2003;24(21):3563-76
  • McDonald JC, Duffy DC, Anderson JR, et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 2000;21(1):27-40
  • Squires TM, Quake SR. Microfluidics: Fluid physics at the nanoliter scale. Rev Mod Phys 2005;77(3):977-1026
  • Purcell EM. Life At Low Reynolds-Number. Am J Phys 1977;45(1):3-11
  • Pennathur S. Flow control in microfluidics: are the workhorse flows adequate? Lab Chip 2008;8(3):383-7
  • Unger MA, Chou HP, Thorsen T, et al. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 2000;288(5463):113-6
  • Kim JY, Park H, Kwon KH, et al. A cell culturing system that integrates the cell loading function on a single platform and evaluation of the pulsatile pumping effect on cells. Biomed Microdevices 2008;10(1):11-20
  • Yobas L, Tang KC, Yong SE, Ong EKZ. A disposable planar peristaltic pump for lab-on-a-chip. Lab Chip 2008;8(5):660-2
  • Wang ZH, Kim MC, Marquez M, Thorsen T. High-density microfluidic arrays for cell cytotoxicity analysis. Lab Chip 2007;7(6):740-5
  • Di Carlo D, Aghdam N, Lee LP. Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal Chem 2006;78(14):4925-30
  • Baudoin R, Corlu A, Griscom L, et al. Trends in the development of microfluidic cell biochips for in vitro hepatotoxicity. Toxicol in Vitro 2007;21(4):535-44
  • Zhang MY, Lee PJ, Hung PJ, et al. Microfluidic environment for high density hepatocyte culture. Biomed Microdevices 2008;10(1):117-21
  • Viravaidya K, Shuler ML. Incorporation of 3T3-L1 cells to mimic bioaccumulation in a microscale cell culture analog device for toxicity studies. Biotechnol Prog 2004;20(2):590-7
  • Pihl J, Sinclair J, Sahlin E, et al. Microfluidic gradient-generating device for pharmacological profiling. Anal Chem 2005;77(13):3897-903
  • Lin F, Butcher EC. T cell chemotaxis in a simple microfluidic device. Lab Chip 2006;6(11):1462-9
  • Chen CS, Mrksich M, Huang S, et al. Geometric control of cell life and death. Science 1997;276(5317):1425-8
  • Leclerc E, David B, Griscom L, et al. Study of osteoblastic cells in a microfluidic environment. Biomaterials 2006;27(4):586-95
  • Lucchetta EM, Lee JH, Fu LA, et al. Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 2005;434(7037):1134-8
  • Eriksson E, Enger J, Nordlander B, et al. A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes. Lab Chip 2007;7(1):71-6
  • Takayama S, Ostuni E, LeDuc P, et al. Selective chemical treatment of cellular microdomains using multiple laminar streams. Chem Biol 2003;10(2):123-30
  • Horrobin DF. Modern biomedical research: an internally self-consistent universe with little contact with medical reality? Nat Rev Drug Discov 2003;2(2):151-4
  • Lindstrom S, Larsson R, Svahn HA. Towards high-throughput single cell/clone cultivation and analysis. Electrophoresis 2008;29(6):1219-27
  • Hong J. Microfluidic systems for high throughput screening. Biochip J 2008;2(1):12-26

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.