180
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Pharmacophore models for GABAA modulators: implications in CNS drug discovery

, MSc PhD (Scientist-EII) & , BPharm MTech (CSIR-Senior Research Fellow)
Pages 441-460 | Published online: 22 Apr 2010

Bibliography

  • Korpi ER, Grunder G, Luddens H. Drug interactions at GABAA receptors. Prog Neurobiol 2002;67(2):113-59
  • Thomsen C, Ebert B. Modulators of the GABA receptor. Novel therapeutic prospects. Glutamate and GABA receptors and transporters. Structure, function and pharmacology. Taylor & Francis, New York; 2002. p. 407-427
  • Connolly CN, Wafford KA. The Cys-loop superfamily of ligand-gated ion channels: the impact of receptor structure on function. Biochem Soc Trans 2004;32(Pt3):529-34
  • Mehta AK, Ticku MK. An update on GABAA receptors. Brain Res Brain Res Rev 1999;29(2-3):196-217
  • Ostermeier C, Michel H. Crystallization of membrane proteins. Curr Opin Struct Biol 1997;7(5):697-701
  • Ernst M, Bruckner S, Boresch S, Sieghart W. Comparative models of GABAA receptor extracellular and transmembrane domains: important insights in pharmacology and function. Mol Pharmacol 2005;68(5):1291-300
  • O'Mara M, Cromer B, Parker M, Chung SH. Homology model of the GABAA receptor examined using brownian dynamics. Biophys J 2005;88(5):3286-99
  • Campagna-Slater V, Weaver DF. Molecular modelling of the GABAA ion channel protein. J Mol Graph Model 2007;25(5):721-30
  • Vijayan RS, Bera I, Prabu M, Combinatorial library enumeration and lead hopping using comparative interaction fingerprint analysis and classical 2D QSAR methods for seeking novel GABA(A) alpha(3) modulators. J Chem Inf Model 2009;49(11):2498-511
  • Krogsgaard-Larsen P, Frølund B, Liljefors T. Specific GABA (A) agonists and partial agonists. Chem Rec 2002;2(6):419-30
  • Clayton T, Chen JL, Ernst M, An updated unified pharmacophore model of the benzodiazepine binding site on gamma-aminobutyric acid(a) receptors: correlation with comparative models. Curr Med Chem 2007;14(26):2755-75
  • Mori A, Kosaka M. Incorporation of gamma-aminobutyric acid (GABA) in the brain and internal organs of mice. Psychiatry Clin Neurosci 1961;15:92-7
  • Krogsgaard-Larsen P, Johnston GA, Curtis DR, Structure and biological activity of a series of conformationally restricted analogues of GABA. J Neurochem 1975;25(6):803-9
  • Curtins DR, Watkins JC. The excitation and depression of spinal neurones by structurally related amino acids. J Neurochem 1960;6:117-41
  • McGeer EG, McGeer PL, McLennan H. The inhibitory action of 3-hydroxytyramine, gamma-aminobutyric acid(GABA) and some other compounds towards the crayfish stretch receptor neuron. J Neurochem 1961;8(1):36-49
  • Lorenzini ML, Bruno-Blanch L, Estiú GL. Structural and electronic factors associated with the activity in the GABA-A system. J Mol Struct: THEOCHEM 1998;454(1):1-16
  • Man RD, Johnston GAR. Synthetic analogs for the study of GABA as a neurotransmitter. Med Res Rev 1983;3(2):91-118
  • Luzzi S, Maggi CA, Spagnesi S, 5-Aminovaleric acid interactions with GABAA and GABAB receptors in guinea-pig ileum. J Auton Pharmacol 1985;5(1):65-9
  • Galli A, Zilletti L, Scotton M, Inhibition of Na+-independent [3H] GABA binding to synaptic membranes of rat brain by beta-substituted GABA derivatives. J Neurochem 1979;32(3):1123-5
  • Curtis DR, Watkins JC. The pharmacology of amino acids related to gamma-aminobutyric acid. Pharmacol Rev 1965;17(4):347-91
  • Curtis DR, Watkins JC. The excitation and depression of spinal neurones by structurally related amino acids. J Neurochem 1960;6:117-41
  • Krogsgaard-Larsen P, Jacobsen P, Falch E. The GABA receptors, In: Enna SJ, editor, Humana, New Jersey; 1983. p. 149
  • Galzigna L, Manani G, Garbin L, Different action of two hydrophobic 4-aminobutyric acid derivatives on the whole animal and on isolated tissues. Agressologie 1981;22(5):219-24
  • Wermuth CG, Biziere K. Pyridazyl-GABA derivatives: a new class of synthetic GABAA antagonists. Trends Pharm Sci 1986;7:721-4
  • Johnston GAR, Kerr DIB, Ong J. In: Rand MJ, Raper C, editors, Pharmacology. Elsevier, Amsterdam; 1987. p. 121
  • Allan RD, Dickenson HW, Hiern BP, Isothiouronium compounds as gamma-aminobutyric acid agonists. Br J Pharmacol 1986;88(2):379-87
  • Chilton WS, Ott J. Toxic metabolites of Amanita pantherina, A. cothurnata, A. muscaria and other Amanita species. Lloydia 1976;39(2-3):150-7
  • Krogsgaard-Larsen P, Hjeds H, Curtis DR, Glycine antagonists structurally related to muscimol, THIP, or isoguvacine. J Neurochem 1982;39(5):1319-24
  • Krogsgaard-Larsen P, Hjeds H, Curtis DR, Dihydromuscimol, thiomuscimol and related heterocyclic compounds as GABA analogues. J Neurochem 1979;32:1717-24
  • Frey M, Jager V. Synthesis of N-substituted muscimol derivatives including N-glycylmuscimol. Synthesis 1985(12);1100-1104
  • Aprison MH, Lipkowitz KB. Muscimol and N,N-dimethylmuscimol: from a GABA agonist to a glycine antagonist. J Neurosci Res 1992;31(1):166-74
  • Krogsgaard-Larsen P, Johnston GA, Lodge D, Curtis DR. A new class of GABA agonist. Nature 1977;268(5615):53-5
  • Kjaer M, Nielsen H. The analgesic effect of the GABA-agonist THIP in patients with chronic pain of malignant origin. A phase-1-2 study. Br J Clin Pharmacol 1983;16(5):477-85
  • Vaught JL, Pelley K, Costa LG, A comparison of the antinociceptive responses to the GABA-receptor agonists THIP and baclofen. Neuropharmacology 1985;24(3):211-6
  • Falch E, Jacobsen P, Krogsgaard-Larsen P, Curtis DR. GABA-mimetic activity and effects on diazepam binding of aminosulphonic acids structurally related to piperidine-4-sulphonic acid. J Neurochem 1985;44(1):68-75
  • Krogsgaard-Larsen P, Mikkelsen H, Jacobsen P, 4,5,6,7-Tetrahydroisothiazolo[5,4-c]pyridin-3-ol and related analogues of THIP. Synthesis and biological activity. J Med Chem 1983;26(6):895-900
  • Frølund B, Kristiansen U, Brehm L, Partial GABAA receptor agonists. Synthesis and in vitro pharmacology of a series of nonannulated analogs of 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol. J Med Chem 1995;38(17):3287-96
  • Frølund B, Jørgensen AT, Tagmose L, Novel class of potent 4-arylalkyl substituted 3-isoxazolol GABAA antagonists: synthesis, pharmacology, and molecular modeling. J Med Chem 2002;45(12):2454-68
  • Krogsgaard-Larsen P, Fround B, Jrogensen SF, Schousboe A. GABAA receptor agonists, partial agonists, and antagonists. Design and therapeutic prospects. J Med Chem 1994;37(16):2489-505
  • Krehan D, Storustovu SI, Liljefors T, Potent 4-arylalkyl-substituted 3-isothiazolol GABA(A) competitive/noncompetitive antagonists: synthesis and pharmacology. J Med Chem 2006;49(4):1388-96
  • Newell JG, Czajkowski C. The GABAA receptor alpha 1 subunit Pro174-Asp191 segment is involved in GABA binding and channel gating. J Biol Chem 2003;278(15):13166-72
  • Boileau AJ, Newell JG, Czajkowski C. GABA(A) receptor beta 2 Tyr97 and Leu99 line the GABA-binding site. Insights into mechanisms of agonist and antagonist actions. J Biol Chem 2002;277(4):2931-7
  • Mercado J, Czajkowski C. Charged residues in the alpha1 and beta2 pre-M1 regions involved in GABAA receptor activation. J Neurosci 2006;26(7):2031-40
  • Wagner DA, Czajkowski C. Structure and dynamics of the GABA binding pocket: a narrowing cleft that constricts during activation. J Neurosci 2001;21(1):67-74
  • Westh-Hansen SE, Witt MR, Dekermendjian K, Arginine residue 120 of the human GABAA receptor alpha 1, subunit is essential for GABA binding and chloride ion current gating. NeuroReport 1999;10(11):2417-21
  • Wagner DA, Czajkowski C, Jone MV. An arginine involved in GABA binding and unbinding but not gating of the GABAA receptor. J Neurosci 2004;24(11):2733-41
  • Korpi ER, Gründer G, Lüddens H. Drug interactions at GABAA receptors. Prog Neurobiol 2002;67(2):113-59
  • Choh DW, Farb DH, Fischbach GD. Chlordiazepoxide selectively augments GABA action in spinal cord cell cultures. Nature 1977;269(5626):342-4
  • Randall LO, Schallek W, Heuse GA, The psychosedative properties of methaminodiazepoxide. J Pharmacol Exp Ther 1960;129:163-71
  • Squires RF, Brastrup C. Benzodiazepine receptors in rat brain. Nature 1977;266(5604):732-4
  • Sieghart W, Ernst M. Heterogeneity of GABAA receptors: revived interest in the development of subtype-selective drugs. Curr Med Chem Cent Nervous Syst Agents 2005;5(3):217-42
  • Crippen GM. Distance geometry analysis of the benzodiazepine binding site. Mol Pharmacol 1981;22(1):11-9
  • Codding PW, Muir AKS. Molecular structure of Ro 15-1788 and a model for the binding of benzodiazepine receptor ligands. Mol Pharmacol 1985;28(2):178-84
  • Tebib S, Bourguignon JJ, Wermuth CG. The active analog approach applied to the pharmacophore identification of benzodiazepine receptor ligands. J Comput Aided Mol Des 1987;1(2):153-70
  • Fryer RI. Ligand interactions at the benzodiazepine receptor. In: Emmett J, editor, Comprehensive medicinal chemistry. Pergamon Press, Oxford, UK; 1989. p. 539-66
  • Borea PA, Gilli G, Bertolasi V, Ferretti V. Stereochemical features controlling binding and intrinsic activity properties of benzodiazepine-receptor ligands. Mol Pharmacol 1987;31(4):334-44
  • Allen MS, Tan YC, Trudell ML, Synthetic and computer-assisted analyses of the pharmacophore for the benzodiazepine receptor inverse agonist site. J Med Chem 1990;33(9):2343-57
  • Zhang W, Koehler KF, Zhang P, Cook JM. Development of a comprehensive pharmacophore model for the benzodiazepine receptor. Drug Des Discov 1995;12(3):193-248
  • Zhang W, Diaz-Arauzo H, Allen MS, Chemical and computer assisted development of the inclusive pharmacophore of benzodiazepine receptors. In: Choudhary MI, editor, Studies in medicinal chemistry. Harwood Academic Publisher, Amsterdam, 1996
  • Wisden W, Laurie DJ, Monyer H, Seeburg PH. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci 1992;12(3):1040-62
  • Wong G, Skolnick P. High affinity ligands for ‘diazepam-insensitive’ benzodiazepine receptors. Eur J Pharmacol 1992;225(1):63-8
  • Wong G, Koehler KF, Skolnick P, Synthetic and computer-assisted analysis of the structural requirements for selective, high-affinity ligand binding to diazepam-insensitive benzodiazepine receptors. J Med Chem 1993;36(13):1820-30
  • He X, Huang Q, Ma C, Pharmacophore/receptor models for GABA(A)/BzR alpha2beta3gamma2, alpha3beta3gamma2 and alpha4beta3gamma2 recombinant subtypes. Included volume analysis and comparison to alpha1beta3gamma2, alpha5beta3gamma2, and alpha6beta3gamma2 subtypes. Drug Des Discov 2000;17(2):131-71
  • Dekermendjian K, Kahnberg P, Witt MR, Structure-activity relationships and molecular modeling analysis of flavonoids binding to the benzodiazepine site of the rat brain GABAA receptor complex. J Med Chem 1999;42(21):4343-50
  • Kahnberg P, Lager E, Rosenberg C, Refinement and evaluation of a pharmacophore model for flavone derivatives binding to the benzodiazepine site of the GABAA receptor. J Med Chem 2002;45(19):4188-201
  • Lager E, Andersson P, Nilsson J, 4-Quinolone derivatives: high-affinity ligands at the benzodiazepine site of brain GABAA receptors. Synthesis, pharmacology, and pharmacophore modeling. J Med Chem 2006;49(8):2526-33
  • Huang X, Liu T, Gu J, 3D-QSAR model of flavonoids binding at benzodiazepine site in GABAA receptors. J Med Chem 2001;44(12):1883-91
  • Hong X, Hopfinger AJ. 3D-pharmacophores of flavonoid binding at the benzodiazepine GABAA receptor site using 4D-QSAR analysis. J Chem Inf Comput Sci 2003;43(1):324-36
  • Duchowicz PR, Vitale MG, Castro EA, QSAR modeling of the interaction of flavonoids with GABA(A) receptor. Eur J Med Chem 2008;43(8):1593-602
  • Goodarzi M, Duchowicz PR, Wu CH, New hybrid genetic based support vector regression as QSAR approach for analyzing flavonoids-GABA (A) complexes. J Chem Inf Model 2009;49(6):1475-85
  • Harris DL, Loew G. Development and assessment of a 3D pharmacophore for ligand recognition of BDZR/GABAA receptors initiating the anxiolytic response. Bioorg Med Chem 2000;8(11):2527-38
  • Harris D, Clayton T, Cook J, Selective influence on contextual memory: physiochemical properties associated with selectivity of benzodiazepine ligands at GABAA receptors containing the alpha5 subunit. J Med Chem 2008;51(13):3788-803
  • Löw K, Crestani F, Keist R, Molecular and neuronal substrate for the selective attenuation of anxiety. Science 2000;290(5489):131-4
  • Kralic JE, Korpi ER, O'Buckley TK, Molecular and pharmacological characterization of GABA(A) receptor alpha1 subunit knockout mice. J Pharmacol Exp Ther 2002;302(3):1037-45
  • Crestani F, Assandri R, Tauber M, Contribution of the alpha1-GABAA receptor subtype to the pharmacological actions of benzodiazepine site inverse agonists. Neuropharmacology 2002;43(4):679-84
  • Rudolph U, Crestani F, Benke D, Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Nature 1999;401(6755):796-800
  • Goodacre SC, Street LJ, Hallett DJ, Imidazo [1,2-a] pyrimidines as functionally selective and orally bioavailable GABA(A) alpha2/alpha3 binding site agonists for the treatment of anxiety disorders. J Med Chem 2006;49(1):35-8
  • Russell MG, Carling RW, Atack JR, Discovery of functionally selective 7,8,9,10-tetrahydro-7,10-ethano-1,2,4-triazolo[3,4-a]phthalazines as GABAA receptor agonists at the alpha 3 subunit. J Med Chem 2005;48(5):1367-83
  • Carling RW, Moore KW, Street LJ, 3-Phenyl-6-(2-pyridyl)methyloxy-1,2,4-triazolo[3,4-a]phthalazines and analogues: high-affinity gamma-aminobutyric acid-A benzodiazepine receptor ligands with alpha 2, alpha 3, and alpha 5-subtype binding selectivity over alpha 1. J Med Chem 2004;47(7):1807-22
  • Carling RW, Madin A, Guiblin A, 7-(1,1-Dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3-b] pyridazine: a functionally selective gammaaminobutyricacid(A) (GABA(A)) alpha2/alpha3-subtype selective agonist that exhibits potent anxiolytic activity but is not sedating in animal models. J Med Chem 2005;48(23):7089-92
  • Russell MG, Carling RW, Street LJ, Discovery of imidazo[1,2-b][1,2,4]triazines as GABA(A) alpha2/3 subtype selective agonists for the treatment of anxiety. J Med Chem 2006;49(4):1235-8
  • Goodacre SC, Hallett DJ, Carling RW, Imidazo[1,2-a]pyrazin-8-ones, imidazo[ 1,2-d][1,2,4]triazin-8-ones and imidazo[2,1-f][1,2,4]triazin-8-ones as a2/a3 subtype selective GABAA agonists for the treatment of anxiety. Bioorg Med Chem Lett 2006;16(6):1582-5
  • Goodacre SC, Street LJ, Hallett DJ, Atack, Imidazo[1,2-a]pyrimidines as functionally selective and orally bioavailable GABA(A)alpha2/alpha3 binding site agonists for the treatment of anxiety disorders. J Med Chem 2006;49(1):35-8
  • Huang Q, He X, Ma C, Pharmacophore/receptor models for GABA(A)/BzR subtypes(alpha1beta3gamma2, alpha5beta3gamma2, and alpha6beta3gamma2) via a comprehensive ligand-mapping approach. J Med Chem 2000;43(1):71-95
  • Huang Q, Liu R, Zhang P, Predictive models for GABAA/benzodiazepine receptor subtypes: studies of quantitative structure-activity relationships for imidazobenzodiazepines at five recombinant GABAA/benzodiazepine receptor subtypes [alphaxbeta3gamma2 (x = 1 – 3, 5, and 6)] via comparative molecular field analysis. J Med Chem 1998;41(21):4130-42
  • Lu A, Zhou J. Pseudoreceptor models and 3D-QSAR for imidazobenzodiazepines at GABA A/BzR subtypes alpha x beta3gamma2 [x = 1 – 3, 5, and 6] via flexible atom receptor model. J Chem Inf Comput Sci 2004;44(3):1130-6
  • Vijayan RS, Ghoshal N. Structural basis for ligand recognition at the benzodiazepine binding site of GABAA alpha 3 receptor, and pharmacophore-based virtual screening approach. J Mol Graph Model 2008;27(3):286-98
  • Kahnberg P, Howard MH, Liljefors T, The use of a pharmacophore model for identification of novel ligands for the benzodiazepine binding site of the GABAA receptor. J Mol Graph Model 2004;23(3):253-61
  • Cox ED, Diaz-Arauzo H, Huang Q, Synthesis and evaluation of analogues of the partial agonist 6-(propyloxy)-4-(methoxymethyl)- beta-carboline-3-carboxylic acid ethyl ester (6-PBC) and the full agonist 6-(benzyloxy)-4-(methoxymethyl)- beta-carboline-3-carboxylic acid ethyl ester (Zk 93423) at wild type and recombinant GABAA receptors. J Med Chem 1998;41(14):2537-52
  • Valant C, Gregory KJ, Hall NE, A novel mechanism of G protein-coupled receptor functional selectivity. Muscarinic partial agonist McN-A-343 as a bitopic orthosteric/allosteric ligand. J Biol Chem 2008;283(43):29312-21

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.