73
Views
10
CrossRef citations to date
0
Altmetric
Reviews

New biomarkers for lung cancer

, &
Pages 201-224 | Published online: 03 Apr 2010

Bibliography

  • Ghosal R, Kloer P, Lewis KE. A review of novel biological tools used in screening for the early detection of lung cancer. Postgrad Med J 2009;85:358-63
  • Ganti AK, Mulshine JL. Lung cancer screening. Oncologist 2006;11:481-7
  • Fong KM, Yang IA, Zimmerman PV, Cochrane systematic reviews of treatments for lung cancer. Respir Med 2005;99:1071-8
  • Mulshine JL, Sullivan D. Lung cancer screening. N Engl J Med 2005;352:2714-20
  • Wardwell NR, Massion P. Novel strategies for the early detection and prevention of lung cancer. Semin Oncol 2005;32:259-68
  • van Klaveren RJ, Oudkerk M, Prokop M, Management of lung nodules detected by volume CT scanning. N Engl J Med 2009;361:2221-9
  • Dalton WS, Friend SH. Cancer biomarkers: an invitation to the table. Science 2006;312:1165-8
  • Scott A, Salgia R. Biomarkers in lung cancer: from early detection to novel therapeutics and decision making. Biomark Med 2008;2:577-86
  • Okada M, Sakamoto T, Nishio W, Charcateristics and prognosis of patients after resection of non-small cell carcinoma measuring 2 cm or less in greatest dimension. Cancer 2003;98:535-41
  • Kawachi R, Nakazato Y, Takei H, Clinical significance of carcinoembryonic antigen level for clinical stage I non-small cell lung cancer: can preoperative carcinoembryonic antigen level predict pathological stage? Interact Cardiovasc Thorac Surg 2009;9:199-202
  • Blankenburg F, Hatz R, Nagel D, Preoperative CYFRA 21-1 and CEA as prognostic factors in patients with stage I non-small cell lung cancer: external validation of a prognostic score. Tumour Biol 2008;29:272-7
  • Tomita M, Shimizu T, Hara M, Serum carcinoembrionic antigen level in non-small-cell lung cancer patients with preoperative normal serum level. Gen Thorac Cardiovasc Surg 2009;57:303-6
  • Schneider J, Philipp M, Velcovsky HG, Pro-gastrin-releasing peptide (ProGRP), neuron specific enolase (NSE), carcinoembryonic antigen (CEA), and cytokeratin 19-fragments (CYFRA 21-1) in patients with lung cancer in comparison to other lung diseases. Anticancer Res 2003;23:885-93
  • Pavićević R, Bubanović G, Franjević A, CYFRA 21.1 in non-small cell lung cancer-standardisation and application during diagnosis. Coll Antropol 2008;32:485-98
  • Buccheri G, Torchio P, Ferrigno D. Clinical equivalence of two cytokeratin markers in mon-small cell lung cancer: a study of tissue polypeptide antigen, and cytokeratin 19 fragments. Chest 2003;124:622-32
  • Hillas G, Moschos C, Dimakou K, Carcinoembryonic antigen, neuron-specific enolase and cytokeratin fragment 19 (CYFRA 21-1) levels in induced sputum of lung cancer patients. Scand J Clin Lab Invest 2008;8:1-6
  • Barak V, Goike H, Panaretakis KW, Clinical utility of cytokeratins as tumour markers. Clin Biochem 2004;37:529-40
  • Greenberg AK, Lee MS. Biomarkers for lung cancer: clinical uses. Curr Opin Pulm Med 2007;13:249-55
  • Ferrigno D, Buccheri G, Giordano C. Neuron-specific enolase is an effective tumour marker in non-small cell lung cancer (NSCLC). Lung Cancer 2003;41:311-20
  • Molina R, Auge JM, Filella X, Pro-gastrin-releasing peptide (proGRP) in patients with benign, and malignant diseases: comparison with CEA, SCC, CYFRA 21-1, and NSE in patients with lung cancer. Anticancer Res 2005;25:1773-78
  • Oremek G, Kukshaite R, Sapoutzis N, The significance of TU M2-PK tumour marker for lung cancer diagnostics. Klin Med (Mosk) 2007;85:56-8
  • Schneider J, Neu K, Grimm H, Tumour M2-pyruvate kinase in lung cancer patients: immunohistochemical detection and disease monitoring. Anticancer Res 2002;22:311-8
  • Siemes C, Visser LE, Coebergh JW, C-reactive protein levels, variation in the C-reactive protein gene, and cancer risk: the Rotterdam Study. J Clin Oncol 2006;24:5216-22
  • Molina R, Filella X, Augé JM, Tumour markers (CEA, CA 125, CYFRA 21-1, SCC and NSE) in patients with non-small cell lung cancer as an aid in histological diagnosis and prognosis. Comparison with the main clinical and pathological prognostic factors. Tumour Biol 2003;24:209-18
  • Molina R, Augè JM, Bosch X, Usefulness of serum tumour markers including progastrin-releasing peptide. Tumour Biol 2009;30:121-9
  • European Group on Tumour Markers. Tumour markers in lung cancer: EGTM recommendations. Anticancer Res 1999;19:2817-9
  • Bekci TT, Senol T, Maden E. The efficacy of serum carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), carbohydrate antigen 19-9 (CA19-9), carbohydrate antigen 15-3 (CA15-3), alpha-fetoprotein (AFP) and human chorionic gonadotropin (hCG) levels in determining the malignancy of solitary pulmonary nodules. J Int Med Res 2009;37(2):438-45
  • Zhu CQ, Shih W, Tsao MS. Immunohistochemical markers of prognosis in non-small cell lung cancer: a review and proposal for a multiphase approach to marker evaluation. J Clin Pathol 2006;59:790-800
  • Sato M, Shames DS, Gazdar AF, A translational view of the molecular pathogenesis of lung cancer. J Thorac Oncol 2007;2:327-43
  • Yendamuri S, Vaporciyan AA, Zaidi T, 3p22.1 and 10q22.3 deletions detected by fluorescence in situ hybridization (FISH): a potential new tool for early detection of non-small cell lung cancer (NSCLC). J Thorac Oncol 2008;3:979-84
  • Zhu CQ, Pintilie M, John T, Understanding prognostic gene expression signatures in lung cancer. Clin Lung Cancer 2009;10:331-40
  • Potti A, Mukherjee S, Petersen R, A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer. N Engl J Med 2006;355:570-80
  • Hayes DN, Monti S, Parmigiani G, Gene expression profiling reveals reproducible human lung adenocarcinoma subtypes in multiple independent patient cohorts. J Clin Oncol 2006;24:5079-90
  • Garber ME, Troyanskaya OG, Schluens K, Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA 2001;98:13784-9
  • Bhattacharjee A, Richards WG, Staunton J, Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA 2001;98:13790-5
  • Spira A, Beane JE, Shah V, Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer. Nat Med 2007;13:361-6
  • Ramaswamy S, Ross KN, Lander ES, A molecular signature of metastasis in primary solid tumour. Nat Genet 2003;33:49-54
  • Hoang CD, D'Cunha J, Tawfic SH, Expression profiling of non-small cell lung carcinoma identifies metastatic genotypes based on lymphnode tumour burden. J Thorac Cardiovasc Surg 2004;127:1332-42
  • Beer DG, Kardia SL, Huang CC, Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 2002;8:816-24
  • Endoh H, Tomida S, Yatabe Y, Prognostic model of pulmonary adenocarcinoma by expression profiling of eight genes as determined by quantitative real-time reverse transcriptase polymerase chain reaction. J Clin Oncol 2004;22:811-9
  • Wigle DA, Jurisica I, Radulovich N, Molecular profiling of non-small-cell lung cancer and correlation with disease-free survival. Cancer Res 2002;62:3005-8
  • Jiang H, Deng Y, Chen HS, Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes. BMC Bioinformatics 2004;5:81
  • Parmigiani G, Garrett-Mayer ES, Anbazhagan R, A cross-study comparison of gene-expression studies for the molecular classification of lung cancer. Clin Cancer Res 2004;10:2922-7
  • Lu Y, Lemon W, Liu PY, A gene expression signature predicts survival of patients with stage I non-small cell lung cancer. PLoS Med 2006;3:e467
  • Chen HY, Yu SL, Chen CH, A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med 2007;356:11-20
  • Beane J, Spira A, Lenburg ME. Clinical impact of high-throughput gene expression studies in lung cancer. J Thorac Oncol 2009;4:109-18
  • Shi L, Reil LH, Jones WD, The MicroArray Quality Control (MAQC) project shows inter-and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 2006;24:1151-61
  • Meert AP, Martin B, Delmonte P, The role of EGF-R expression on patient survival in lung cancer: a systematic review with meta-analysis. Eur Respir J 2002;20:975-81
  • Suda K, Tomizawa K, Mitsudomi T. Biological and clinical significance of KRAS mutations in lung cancer: an oncogenic driver that contrasts with EGFR mutation. Cancer Metastasis Rev 2010;29(1):49-60
  • Gupta R, Dastane AM, McKenna R Jr, The predictive value of epidermal growth factor receptor tests in patients with pulmonary adenocarcinoma: review of current ‘best evidence’ with meta-analysis. Hum Pathol 2009;40:356-65
  • Hirsch FR, Varella-Garcia M, McCoy J, Increased epidermal growth factor receptor gene copy number detected by fluorescence in situ hybridization associates with increased sensitivity to gefitinib in patients with bronchioloalveolar carcinoma subtypes: a Southwest Oncology Group Study. J Clin Oncol 2005;23:6838-45
  • Mok TS, Wu YL, Thongprasert S, Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009;361:947-57
  • Nakamura H, Kawasaki N, Taguchi M, Association of HER-2 overexpression with prognosis in non-small cell lung carcinoma: a metanalysis. Cancer 2005;103:1865-73
  • Salgia R, Skarin AT. Molecular abnormalities in lung cancer. J Clin Oncol 1998;16:1207-17
  • Sugio K, Ishida T, Yokoyama H, Ras gene mutations as a prognostic marker in adenocarcinoma of the human lung without lymph node metastasis. Cancer Res 1992;52:2903-6
  • Slebos RJ, Kibbelaar RE, Dalesio O, K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N Engl J Med 1990;323:561-5
  • Graziano SL, Gamble GP, Newman NB, Prognostic significance of K-ras codon 12 mutations in patients with resected stage I and II non-small-cell lung cancer. J Clin Oncol 1999;17:668-75
  • Singh A, Greninger P, Rhodes D, A gene expression signature associated with ‘K-ras addiction’ reveals regulators of EMT and tumour cell survival. Cancer Cell 2009;15:489-500
  • Engelman JA, Chen L, Tan X, Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 2008;14:1351-6
  • Barbie DA, Tamayo P, Boehm JS, Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 2009;462:108-12
  • Tsa MS, Yang Y, Marcus A, Hepatocyte growth factor is predomintantly expressed by the carcinoma cells in non-small cell lung cancer. Hum Pathol 2001;3257-65
  • Tsao MS, Liu N, Chen JR, Differential expression of Met/Hepatocyte growth factor receptor in subtypes of non-small cell lung cancer. Lung Cancer 1998;20:1-16
  • Cheng TL, Chang MY, Huang SY, Overexpression of circulating c-met messenger RNA is significantly correlated with nodal stage and early recurrence in non-small cell lung cancer. Chest 2005;128:1453-60
  • Betticher DC, Heighway J, Hasleton PS, Prognostic significance of CCND1 (cyclin D1) overexpression in primary resected non-small cell lung cancer. Br J Cancer 1996;73:294-300
  • Ratschiller D, Heighway J, Gugger M, Cyclin D1 overexpression in bronchial epithelia of patients with lung cancer is associated with smoking and predicts survival. J Clin Oncol 2003;21:2085-93
  • Esposito V, Baldi A, De Luca A, Cell cycle related proteins as prognostic parameters in radically resected non-small cell lung cancer. J Clin Pathol 2005;58:734-9
  • Au NH, Cheang M, Huntsman DG, Evaluation of immunohistochemical markers in non-small cell lung cancer by unsupervised hierarchical clustering analysis: a tissue microarray study of 284 cases and 18 markers. J Pathol 2004;204:101-9
  • Nguyen VN, Mirejovsky P, Mirejovsky T, Expression of cyclin D1, Ki-67 amd PCNA in non-small cell lung cancer: prognostic significance and comparison with p53 and bcl-2. Acta Histochem 2000;102:323-38
  • Martin B, Paesmans M, Mascaux C, Ki-67 expression and patients survival in lung cancer: systematic review of the literature with meta-analysis. Br J Cancer 2004;91:2108-3025
  • Saji H, Nakamura H, Awut I, Significance of expression of TGF-b in pulmonary metastasis in non-small cell lung cancer tissues. Ann Thorac Cardiovasc Surg 2003;92:295-300
  • Shoji T, Tanaka F, Takata T, Clinical significance of p21 expression in non-small cell lung cancer. J Clin Oncol 2002;20:3865-71
  • Dworakowska D, Jassem E, Jassem J, Absense of prognostic significance of p21 (WAF1/CIP1) protein expression in non-small cell lung cancer. Acta oncol 2005;44:75-9
  • Tsukamoto S, Sugio K, Sakada T, Reduced expression of cell-cycle regulator p27(Kip1) correlates with a shortened survival in non-small cell lung cancer. Lung Cancer 2001;34:83-90
  • Esposito V, Baldi A, De Luca A, Prognostic role of the cicli-dependent kinase inhibitor p27 in non-small cell lung lung cancer. Cancer Res 1997;57:3381-85
  • Esposito V, Baldi A, Tonini G, Analysis of cell cycle regulator proteins in non-small cell lung cancer. J Clin Pathol 2004;57:58-63
  • Cheng YL, Lee SC, Harn HJ, Prognostic prediction of the immunohistochemical expression of p53 and p16 in resected non-small cell lung cancer. Eur J Cardiothoracic Surg 2003;23:221-8
  • Dosaka-Akita H, Hu SX, Fujino M, Altered retino blastoma protein expression in nonsmall cell lung cancer: its synergistic effects with altered ras and p53 protein status on prognosis. Cancer 1997;79:1329-37
  • Burke L, Flieder DB, Guinee DG, Prognostic implications of molecular and immunohistochemical profiles of the Rb and p53 cell cycle regulatory pathways in primary non-small cell lung carcinoma. Clin Cancer Res 2005;11:232-41
  • Chen JT, Chen YC, Chen CY, Loss of p16 and/or pRb protein expression in NSCLC. An immunohistochemical and prognostic study. Lung Cancer 2001;31:163-70
  • Hainaut P, Hernandez T, Robinson A, IARC database of p53 gene mutations in human tumours and cell lines: updated compilation, revised formats and new visualisation tools. Nucleic Acids Res 1998;26:205-13
  • Takahashi T, Nau MM, Chiba I, p53: a frequent target for genetic abnormalities in lung cancer. Science 1989;246:491-94
  • Bremnes RM, Sirera R, Camps C. Circulating tumour-derived DNA and RNA markers in blood: a tool for early detection, diagnostics, and follow-up? Lung Cancer 2005;49:1-12
  • Andriani F, Conte D, Mastrangelo T, Detecting lung cancer in plasma with the use of multiple genetic markers. Int J Cancer 2004;108:91-6
  • Ahrendt SA, Hu Y, Buta M, p53 mutations and survival in stage I non-small-cell lung cancer: results of a prospective study. J Natl Cancer Inst 2003;95:961-70
  • Dworakowska D, Jassem E, Jassem J, MDM2 gene amplification: a new independent factor of adverse prognosis in non-small cell lung cancer (NSCLC). Lung Cancer 2004;43:285-95
  • Martin B, Paesmans M, Berghmans T, Role of Bcl-2 as a prognostic factor for survival in lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer 2003;89:55-64
  • Groeger AM, Esposito V, De Luca A, Prognostic value of immunohistochemical expression of p53, bax, Bcl-2 and Bcl-XL in resected non-small cell lung cancers. Histopathology 2004;44:54-63
  • Hanaoka T, Nakayama J, Haniuda M, Immunohistochemical demonstration of apoptosis-regulated proteins, Bcl-2 and Bax, in resected non-small-cell lung cancers. Int J Clin Oncol 2002;7:152-58
  • Huang C, Liu D, Masuya D, Clinical application of biological markers for treatments of resectable non-small-cell lung cancer. Br J Cancer 2005;92:1231-39
  • Belinsky SA. Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer 2004;4:707-17
  • Tsou JA, Hagen JA, Carpenter CL, DNA methylation analysis: a powerful new tool for lung cancer diagnosis. Oncogene 2002;21:5450-61
  • Zochbauer-Muller S, Fong KM, Virmani AK, Aberrant promoter methylation of multiple genes in nonsmall cell lung cancers. Cancer Res 2001;61:249-55
  • Nuovo GJ, Plaia TW, Belinsky SA, In situ detection of the hypermethylation-induced inactivation of the p16 gene as an early event in oncogenesis. Proc Natl Acad Sci USA 1999;96:12754-9
  • Belinsky SA, Liechty KC, Gentry FD, Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Res 2006;66:3338-44
  • Han-Shui Hsu MD, Tsz-Pei Chen MS, Chein-Hui Hung MS, Characterization of a multiple epigenetic marker panel for lung cancer detection and risk assessment in plasma. Cancer 2007;110:2019-26
  • Kato A, Shimizu K, Shimoichi Y, Aberrant DNA methylation of E-cadherin and p16 genes in rat lung adenocarcinomas induced by N-nitrosobis(2-hydroxypropyl)amine. Mol Carcinog 2006;45:106-11
  • Yanagawa N, Tamura G, Oizumi H, Promoter hypermethylation of tumour suppressor and tumour-related genes in non-small cell lung cancers. Cancer Sci 2003;94:589-92
  • Brabender J, Usadel H, Metzger R, Quantitative O(6)-methylguanine DNA methyltransferase methylation analysis in curatively resected non-small cell lung cancer: associations with clinical outcome. Clin Cancer Res 2003;9:223-27
  • Field JK, Liloglou T, Warrak S, Methylation discriminators in NSCLC identified by a microarray based approach. Int J Oncol 2005;27:105-11
  • Brena RM, Morrison C, Liyanarachchi S, Aberrant DNA methylation of OLIG1, a novel prognostic factor in non-small cell lung cancer. PLoS Med 2007;4:e108
  • Ahrendt SA, Chow JT, Xu LH, Molecular detection of tumour cells in bronchoalveolar lavage fluid from patients with early stage lung cancer. J Natl Cancer Inst 1999;91:332-39
  • Wang QZ, Xu W, Habib N. Potential uses of microRNA in lung cancer diagnosis, prognosis and therapy. Curr Cancer Drug Target 2009;9:572-94
  • Calin GA, Sevignani C, Dumitru CD, Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci 2004;101:2999-3004
  • Volinia S, Calin GA, Liu CG, A microRNA expression signature of human solid tumours defines cancer gene targets. Proc Natl Acad Sci USA 2006;103:2257-61
  • Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006;6:857-66
  • Zhu S, Wu H, Wu F, MicroRNA- 21 targets tumour suppressor genes in invasion and metastasis. Cell Res 2008;18:350-9
  • Mitchell PS, Parkin RK, Kroh EM, Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008;105:10513-18
  • Peltier HJ, Latham GJ. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 2008;14:844-52
  • Izzotti A, Calin GA, Arri P, Downregulation of microRNA expression in the lungs of rat exposed to cigarette smoke. FASEB J 2009;23:806-12
  • Yanaihara N, Caplen N, Bowman E, Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006;9(3):189-98
  • Lebanony D, Benjamin H, Gilad S, Diagnostic assay based on has-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma. J Clin Oncol 2009;27:2030-7
  • Yu SL, Chen HY, Chang GC, MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 2008;13:48-57
  • Inamura K, Togashi Y, Nomura K, Let-7 MicroRNA expression is reduced in bronchioloalveolar carcinoma, a non-invasive carcinoma, and is not correlated with prognosis. Lung Cancer 2007;58:392-96
  • Johnson SM, Grosshans H, Shingara J, RAS is regulated by the let-7 MicroRNA family. Cell 2005;120:635-47
  • Takamizawa J, Konishi H, Yanagisawa K, Reduced expression of the let-7 MicroRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004;64:3753-6
  • Kuehbacher A, Urbich C, Zeiher AM, Role of dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res 2007;101:59-68
  • Tokumaru S, Suzuki M, Yamada H, Let-7 regulates DICER expression and constitutes a negative feedback loop. Carcinogenesis 2008;29:2073-7
  • Hayashita Y, Osada H, Tatematsu Y, A polycistronic microRNA cluster, miR 17-92 is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 2005;65:9628-32
  • Zhang B, Pan X, Cobb GP, MicroRNAs as oncogenes and tumour suppressors. Dev Biol 2007;302:1-12
  • Kent OA, Mendell JT. A Small piece in the cancer puzzle: microRNAs as tumour suppressors and oncogenes. Oncogene 2006;25:6188-96
  • Mascaux C, Laes JF, Anthoine G, Evolution of microRNAs expression during human bronchial squamous carcinogenesis. Eur Respir J 2009;32:352-59
  • Zheng Z, Chen T, Li X, DNA synthesis and repair genes RRM1 and ERCC1 in lung cancer. N Engl J Med 2007;356:800-8
  • Olaussen KA, Dunant A, Fouret P, DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 2006;355:983-91
  • Cobo M, Isla D, Massuti B, Customizing cisplatin based on quantitative excision repair cross-complementing 1 mRNA expression: a phase III trial in non-small-cell lung cancer. J Clin Oncol 2007;25:2747-54
  • Chen XQ, Stroun M, Magnenat JL, Microsatellite alterations in plasma DNA of small cell lung cancer patients. Nat Med 1996;2:1033-5
  • Wistuba II, Behrens C, Milchgrub S, Sequential molecular abnormalities are involved in the multistage development of squamous cell lung carcinoma. Oncogene 1999;18:643-50
  • Girard L, Zöchbauer-Müller S, Virmani AK, Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer Res 2000;60:4894-906
  • Tseng RC, Chang JW, Hsien FJ, Genome-wide loss of heterozygosity and its clinical associations in non small cell lung cancer. Int J Cancer 2005;117:241-47
  • Wistuba I, Behrens C, Virmani AK, High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res 2000;60:1949-60
  • Li Y, Dong X, Yin Y, BJ-TSA-9, a novel human tumour-specific gene, has potential as a biomarker of lung cancer. Neoplasia 2005;7:1073-80
  • Iwao K, Watanabe T, Fujiwara Y, Isolation of a novel human lung-specific gene, LUNX, a potential molecular marker for detection of micrometastasis in non-smallcell lung cancer. Int J Cancer 2001;91(4):433-7
  • Tainsky MA. Genomic and proteomic biomarkers for cancer: a multitude of opportunities. Biochim Biophys Acta 2009;1796:176-93
  • Wright GL Jr. Two-dimensional acrylamide gel electrophoresis of cancer-patient serum proteins. Ann Clin Lab Sci 1974;4:281-93
  • Lilley KS, Rassaq A, Dupree P. Two-dimensional gel electrophoresis: recent advances in sample preparation, detection and quantitation. Curr Opin Chem Biol 2002;6:46-50
  • Schmid HR, Schmitter D, Blum P, Lung tumour cells: a multivariate approach to cell classification using two-dimensional protein pattern. Electrophoresis 1995;16:1961-68
  • Chen G, Gharib TG, Huang CC, Proteomic analysis of lung adenocarcinoma: identification of a highly expressed set of proteins in tumours. Clin Cancer Res 2002;8:2298-305
  • Oh JM, Brichory F, Puravs E, A database of protein expression in lung cancer. Proteomics 2001;1:1303-319
  • Oh P, Li Y, Yu J, Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 2004;429:629-35
  • Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 1997;18:2071-77
  • Cox J, Mann M. Is proteomics the new genomics? Cell 2007;130:395-98
  • Yanagisawa K, Shyr Y, Xu BJ, Proteomic patterns of tumour subsets in non-small-cell lung cancer. Lancet 2003;362:433-39
  • Huang LJ, Chen SX, Huang Y, Proteomics-based identification of secreted protein dihydrodiol dehydrogenase as a novel serum markers of nonsmall cell lung cancer. Lung Cancer 2006;54:87-94
  • Alfonso P, Catala M, Rico-Morales ML, Proteomic analysis of lung biopsies. differential protein expression profile between peritumoural and tumoural tissue. Proteomics 2004;4:442-47
  • Zhukov TA, Johanson RA, Cantor AB, Discovery of distinct protein profiles specific for lung tumours and pre-malignant lung lesions by SELDI mass spectrometry. Lung Cancer 2003;40:267-79
  • Diamandis EP. Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: opportunities and potential. Mol Cell Proteomics 2004;3(4):367-78
  • Tibes R, Qiu Y, Lu Y, Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther 2006;5:2512-21
  • LaBaer J, Ramachandran N. Protein microarrays as tools for functional proteomics. Curr Opin Chem Biol 2005;9:14-9
  • Madoz-Gurpide J, Kuick R, Wang H, Integral protein microarrays for the identification of lung cancer antigens in sera that induce a humoral immune response. Mol Cell Proteomics 2007;7:268-81
  • Zhu W, Smith JW, Huang CM. Mass spectrometry-based label free quantitative proteomics. J Biomed Biotechnol 2010;2010:840518. [Epub ahead of print]
  • Maurya P, Meleady P, Dowling P, Proteomic approaches for serum biomarker discovery in cancer. Anticancer Res 2007;27:1247-55
  • McDonald WH, Yates JR III. Shotgun proteomics and biomarker discovery. Dis Markers 2002;18:99-105
  • Chen EI, Hewel J, Felding-Habermann B, Large scale protein profiling by combination of protein fractionation and multidimensional protein identification technology (MUDPIT). Mol Cell Proteomics 2006;5:53-6
  • Fujii K, Nakano T, Kanazawa M, Clinical-scale high-throughput human plasma proteome analysis: lung adenocarcinoma. Proteomics 2005;5:1150-9
  • Yang X, Lazar IM. MRM screening/biomarker discovery with linear ion trap MS: a library of human cancer-specific peptides. BMC Cancer 2009;9:96
  • Reymond MA, Schlegel W. Proteomics in cancer. Adv Clin Chem 2007;44:103-42
  • Anderson L, Hunter CL. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 2006;5:573-88
  • Keshishian H, Addona T, Burgess M, Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry, and stable isotope dilution. Mol Cell Proteomics 2007;6:2212-29
  • Inoshima N, Nakanishi Y, Minami T, The influence of dendritic cell infiltration and vascular endothelial growth factor expression on the prognosis of non-small cell lung cancer. Clin Cancer Res 2002;8:3480-6
  • Tomita M, Matsuzaki Y, Shimizu T, Vascular endothelial growth factor expression in pN2 on-small cell lung cancer: lack of prognostic value. Respirology 2005;10:31-5
  • Lantuejoul S, Constantin B, Drabkin H, Expression of VEGF, semaphorin SEMA3F, and their common receptors neuropilins NP1 and NP2 in preinvasive bronchial lesions, lung tumours, and cell lines. J Pathol 2003;200:336-47
  • Yee J, Sadar M, Sin Don D, Connective Tissue-Activating Peptide III (CTAP III): a novel blood biomarker for early lung cancer detection. J Clin Oncol 2009;17:2787-92
  • Chen JJ, Yao PL, Yuan A, Up-regulation of tumour interleukin-8 expression by infiltrating macrophages: its correlation with tumour angiogenesis and patient survival in non-small cell lung cancer. Clin Cancer Res 2003;9:729-37
  • Arenberg DA, Keane MP, DiGiovine B, Epithelial-neutrophil activating peptide (ENA-78) is an important angiogenic factor in non-small cell lung cancer. J Clin Invest 1998;102:465-72
  • Hommura F, Furuuchi K, Yamazaki K, Increased expression of b-cateninpredicts better prognosis in nonsmall cell lung carcinomas. Cancer 2002;94:752-8
  • Lee YC, Wu CT, Chen CS, The significance of E-cadherin and a-, b-, and c-catenin expression in surgically treated non-small cell lung cancers of 3 cm or less in size. J Thorac Cardiovasc Surg 2002;123:502-7
  • Kase S, Sugio K, Yamazaki K, Expression of E-cadherin and beta-catenin in human non-small cell lung cancer and the clinical significance. Clin Cancer Res 2000;64:789-96
  • Choi YS, Shim YM, Kim SH, Prognostic significance of E-cadherin and b-catenin in resected stage I non-small cell lung cancer. Eur J Cardio Thorac Surg 2003;24:441-9
  • Liu D, Huang CL, Kameyama K, E-cadherin expression associated with differentiation and prognosis in patients with non-small cell lung cancer. Ann Thorac Surg 2001;71:949-55
  • Passlick B, Sienel W, Seen-Hibler R, Overexpression of matrix metalloproteinase 2 predicts unfavorable outcome in early-stage non-small cell lung cancer. Clin Cancer Res 2000;6:3944-8
  • Ishikawa S, Takenaka K, Yanagihara K, Matrix metalloproteinase-2 status in stromal fibroblasts, not in tumour cells, is a significant prognostic factor in non-small-cell lung cancer. Clin Cancer Res 2004;10:6579-85
  • Takano A, Ishikawa N, Nishino R, Identification of nectin-4 oncoprotein as a diagnostic and therapeutic target for lung cancer. Cancer Res 2009;69:6694-703
  • Lantuejoul S, Soria JC, Moro-Sibilot D, Differential expression of telomerase reverse transcriptase (hTERT) in lung tumours. Br J Cancer 2004;90:1222-9
  • Liu DH, Wang XM, Zhang LJ, Serum amyloid A protein: a potential biomarker correlated with clinical stage of lung cancer. Biomed Environ Sci 2007;20:33-40
  • Hsu NY, Ho HC, Chow KC, Overexpression of dihydrodiol dehydrogenase as a prognostic marker of non-small cell lung cancer. Cancer Res 2001;61:2727-31
  • Heo SH, Lee SJ, Ryoo HM, Identification of putative serum glycoprotein biomarkers for human lung adenocarcinoma by multilectin affinity chromatography, and LC-MS/MS. Proteomics 2007;7:4292-302
  • Zhang G, Xu Y, Lu X, Diagnosis value of serum B7-H3 expression in non-small cell lung cancer. Lung Cancer 2009;66:245-9
  • Addis BJ, Hamid Q, Ibrahim NB, Immunohistochemical markers of small cell carcinoma and related neuroendocrine tumours of the lung. J Pathol 1987;153:137-50
  • Brichory F, Beer D, Le Naour F, Proteomics-based identification of protein gene product 9.5 as a tumour antigen that induces a humoral immune response in lung cancer. Cancer Res 2001;61:7908-12
  • Swinson DEB, Jones JL, Cox G, Hypoxia-indicible factor-1a in non small cell lung cancer: relation to growth factor, protease and apoptosis pathways. Int J Cancer 2004;111:43-50
  • Toledo G, Sola JJ, Lozano MD, Loss of FHIT protein expression is related to high proliferation, low apoptosis and worse prognosis in non-small cell lung cancer. Mod Pathol 2004;17:440-8
  • Maciel CM, Junqueira M, Paschoal ME, Differential proteomic serum pattern of low molecular weight proteins expressed by adenocarcinoma lung cancer patients. J Exp Ther Oncol 2005;5:31-8
  • Snead DR, Perunovic B, Cullen N, hnRNP B1 expression in benign and malignant lung disease. J Pathol 2003;200:88-94
  • Caron M, Choquet-Kastylevsky G, Joubert-Caron R. Cancer immunomics: using autoantibody signatures for biomarker discovery. Mol Cell Proteomics 2007;6:1115-22
  • Anderson KS, LaBaer J. The sentinel within: exploiting the immune system for cancer biomarkers. J Proteome Res 2005;4:1123-33
  • Hanash S. Harnessing immunity for cancer marker discovery. Nat Biotechnol 2003;21:37-8
  • Soussi T. P53 antibodies in the sera of patients with various types of cancer: a review. Cancer Res 2000;60:1777-88
  • Tan EM, Zhang J. Autoantibodies to tumour-associated antigens: reporters from the immune system. Immunol Rev 2008;222:328-40
  • Zhong L, Coe SP, Stromberg AJ, Profiling tumour-associated antibodies for early detection of non-small cell lung cancer. J Thorac Oncol 2006;1:513-19
  • Pereira-Faca SR, Kuick R, Puravs E, Identification of 14-3-3 theta as an antigen that induces a humoral response in lung cancer. Cancer Res 2007;67:12000-6
  • Chapman CJ, Murray A, McElveen JE, Autoantibodies in lung cancer: possibilities for early detection and subsequent cure. Thorax 2008;63:228-33
  • Tureci O, Mack U, Luxemburger U, Humoral immune responses of lung cancer patients against tumour antigen NY-ESO-1. Cancer Lett 2006;236:64-71
  • Jensen M, Berthold F. Targeting the neural cell adhesion molecule in cancer. Cancer Lett 2007;258:9-21
  • Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. Nat Rev Cancer 2004;4:551-61
  • Fan TW, Lane AN, Higashi RM. The promise of metabolomics in cancer molecular therapeutics. Curr Opin Mol Ther 2004;6:584-92
  • Azmi J, Connelly J, Holmes E, Characterization of the biochemical effects of 1 nitronaphthalene in rats using global metabolic profiling by NMR spectroscopy and pattern recognition. Biomarkers 2005;10:401-16
  • Fan TW, Lane AN, Higashi RM, Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Mol Cancer 2009;8:41
  • Kim H, Kwon YM, Kim JS, Tumour-specific methylation in bronchial lavage for the early detection of non-small-cell lung cancer. J Clin Oncol 2004;22:2363-70
  • Guo M, House MG, Hooker C, Promoter hypermethylation of resected bronchial margins: a field defect of changes? Clin Cancer Res 2004;10:5131-6
  • De Fraipont F, Moro-Sibilot D, Michelland S, Promoter methylation of genes in bronchial lavages: a marker for early diagnosis of primary and relapsing non-small cell lung cancer? Lung Cancer 2005;50:199-209
  • Grote HJ, Schmiemann V, Geddert H, Methylation of RAS association domain family protein 1A as a biomarker of lung cancer. Cancer 2006;108:129-34
  • Schmiemann V, Bocking A, Kazimirek M, Methylation assay for the diagnosis of lung cancer on bronchial aspirates: a cohort study. Clin Cancer Res 2005;11:7728-34
  • Liloglou T, Maloney P, Xinarianos G, Cancer-specific genomic instability in bronchial lavage: a molecular tool for lung cancer detection. Cancer Res 2001;61:1624-8
  • Schmidt B, Engel E, Carstensen T, Quantification of free RNA in serum and bronchial lavage: a new diagnostic tool in lung cancer detection? Lung Cancer 2005;48:145-7
  • Palmisano WA, Divine KK, Saccomanno G, Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res 2000;60:5954-8
  • Li R, Todd NW, Qiu Q, Genetic deletions in sputum as diagnostic markers for early detection of stage I non-small cell lung cancer. Clin Cancer Res 2007;13:482-7
  • Olaussen KA, Soria JC, Park YW, Assessing abnormal gene promoter methylation in paraffin-embedded sputum from patients with NSCLC. Eur J Cancer 2005;41:2112-9
  • Palcic B, Garner DM, Beveridge J, Increase of sensitivity of sputum cytology using high-resolution image cytometry: field study results. Cytometry 2002;50:168-76
  • Kettunen E, Salmenkivi K, Vuopala K, Copy number gains on 5p15, 6p11-q11, 7p12, and 8q24 are rare in sputum cells of individuals at high risk of lung cancer. Lung Cancer 2006;54:169-76
  • Conrad DH, Goyette J, Thomas PS. Proteomics as a method for early detection of cancer: a review of proteomics, exhaled breath condensate, and lung cancer screening. J Gen Intern Med 2008;23:78-84
  • Hunt J. Exhaled breath condensate: an evolving tool for noninvasive evaluation of lung disease. J Allergy Clin Immunol 2002;110:28-34
  • Carpagnano GE, Foschino-Barbaro MP, Resta O, Endothelin-1 is increased in the breath condensate of patients with non-small-cell lung cancer. Oncology 2004;66:180-4
  • Carpagnano GE, Foschino-Barbaro MP, Mule G, 3p microsatellite alterations in exhaled breath condensate from patients with non-small cell lung cancer. Am J Respir Crit Care Med 2005;172:738-44
  • Carpagnano GE, Spanevello A, Carpagnano F, Prognostic value of exhaled microsatellite alterations at 3p in NSCLC patients. Lung Cancer 2009;64(3):334-40
  • Carpagnano GE, Spanevello A, Curci C, IL-2, TNF-alpha, and leptin: local versus systemic concentrations in NSCLC patients. Oncol Res 2007;16(8):375-81
  • Gordon SM, Szidon JP, Krotoszynski BK, Volatile organic compounds in exhaled air from patients with lung cancer. Clin Chem 1985;31:1278-82
  • Mazzone PJ, Hammel J, Dweik R, Diagnosis of lung cancer by the analysis of exhaled breath with a colorimetric sensor array. Thorax 2007;62:565-8
  • Gianazza E, Allegra L, Bucchioni E, Increased keratin content detected by protomi analysis of exhaled breath condensate from healthy persons who smoke. Am J Med 2004;117(1):51-4
  • Paci M, Maramotti S, Bellesia E, Circulating plasma DNA as diagnostic biomarker in non-small cell lung cancer. Lung Cancer 2009;64:92-7
  • Xue X, Zhu YM, Woll PJ. Circulating DNA and lung cancer. Ann NY Acad Sci 2006;1075:154-64
  • Sozzi G, Conte D, Leon M, Quantification of free circulating DNA as a diagnostic marker in lung cancer. J Clin Oncol 2003;21:3902-8
  • Hagiwara N, Mechanic LE, Trivers GE, Quantitative detection of p53 mutations in plasma DNA from tobacco smokers. Cancer Res 2006;66:8309-17
  • Sozzi G, Musso K, Ratcliffe C, Detection of microsatellite alterations in plasma DNA of non-small cell lung cancer patients: a prospect for early diagnosis. Clin Cancer Res 1999;5:2689-92
  • Hsu HS, Chen TP, Hung CH, Characterization of a multiple epigenetic marker panel for lung cancer detection and risk assessment in plasma. Cancer 2007;110:2019-26
  • Belinsky SA, Grimes MJ, Casas E, Predicting gene promoter methylation in non-small-cell lung cancer by evaluating sputum and serum. Br J Cancer 2007;96:1278-83
  • Kopreski MS, Benko FA, Gocke CD. Circulating RNA as tumour marker: detection of 5T4 mRNA in breast and lung cancer patient serum. Ann NY Acad Sci 2001;945:172-8
  • Lodes MJ, Caraballo M, Suciu D, Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One 2009;4(7):e6229
  • Chen X, Ba Y, Ma L, Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008;18:997-1006
  • Staunton JE, Slonim DK, Coller HA, Chemosensivity prediction by transcriptional profiling. Proc Natl Acad Sci USA 2001;98:10787-92
  • Potti A, Dressman HK, Bild A, Genomic signatures to guide the use of chemotherapeutics. Nat Med 2006;12:1294-300
  • Hsu DS, Balakumaran BS, Acharya CR, Pharmacogenomics strategies provide rational approach to the treatment of cisplatin-resistant patients with advanced cancer. J Clin Oncol 2007;25:4350-7
  • Gemma A, Li C, Sugiyama Y, Anticancer drug clustering in lung cancer based on gene expression profiles and sensitivity database. BMC Cancer 2006;6:174
  • Coate LE, John T, Tsao MS, Molecular predictive and prognostic markers in non-small-cell lung cancer. Lancet Oncol 2009;10:1001-10
  • Tuck MK, Chan DW, Chia D, Standard operating procedures for serum and plasma collection: early detection research network consensus statement standard operating procedure integration working group. J Proteome Res 2009;8:113-7
  • Holland NT, Smith MT, Eskenazi B, Biological sample collection and processing for molecular epidemiological studies. Mutat Res 2003;543:217-34
  • Clinical Laboratory Improvement Amendments (CLIA). Available from: http://www.fda.gov/cdrh/clia
  • Early Detection Research Network (National Cancer Institute, Division of Cancer Prevention). Available from: http://www.cancer.gov/edrn
  • Sullivan Pepe M, Etzioni R, Feng Z, Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 2001;93:1054-61
  • McShane LM, Altman DG, Sauerbrei W, Statistics subcommittee of the NCI-EORT working group on cancer diagnostics. Eur J Cancer 2005;41(12):1690-6
  • Fleischhacker M, Beinert T, Ermitsch M, Detection of amplifiable messenger RNA in the serum of patients with lung cancer. Ann NY Acad Sci 2001;945:179-88
  • Sueoka E, Sueoka N, Iwanaga K, Detection of plasma hnRNP B1 mRNA, a new cancer biomarker, in lung cancer patients by quantitative real-time polymerase chain reaction. Lung Cancer 2005;48(1):77-83
  • Bearzatto A, Conte D, Frattini M, p16(INK4A) hypermethylation detected by fluorescent methylation-specific PCR in plasmas from non-small cell lung cancer. Clin Cancer Res 2002;8(12):3782-7
  • An Q, Liu Y, Gao Y, Detection of p16 hypermethylation in circulating plasma DNA of non-small-cell lung cancer patients. Cancer Lett 2002;188:109-14
  • Liu Y, An Q, Li L, Hypermethylation of p16INK4alpha in Chinese lung cancer patients: biological and clinical implications. Carcinogenesis 2003;24:1897-901
  • Gonzalez R, Silva JM, Sanchez A, Microsatellite alterations and TP53 mutations in plasma DNA of small-cell lung cancer patients: follow-up study and prognostic significance. Ann Oncol 2000;11:1097-104
  • Andriani F, Conte D, Mastrangelo T, Detecting lung cancer in plasma with the use of multiple genetic markers. Int J Cancer 2004;108(1):91-6
  • Ramirez JL, Sarries C, de Castro PL, Methylation patterns and K-ras mutations in tumour and paired serum of resected non-small-cell lung cancer patients. Cancer Lett 2003;11:1219-25
  • Usadel H, Brabender J, Danenberg KD, Quantitative adenomatous polyposis coli promoter methylation analysis in tumour tissue, serum and plasma DNA of patients with lung cancer. Cancer Res 2002;62:371-5
  • Cuda G, Gallelli A, Nistico A, Detection of microsatellite instability and loss of heterozygosity in serum DNA of small and non-small cell lung cancer patients: a tool for early diagnosis? Lung Cancer 2000;30:211-4
  • Bruhn N, Beinert T, Oehm C, Detection of microsatellite alterations in DNA isolated in from tumour cells and from plasma DNA of patients with lung cancer. Ann NY Acad Sci 2000;906:72-82
  • Kahn S, Coulson JM, Woll PJ. Genetic abnormalities in plasma DNA of patients with lung cancer and other respiratory diseases. Int J Cancer 2004;110:891-5
  • Beau-Faller M, Gaub MP, Schneider A, Plasma DNA microsatellite panels as sensitive and tumour-specific marker in lung cancer patients. Int J Cancer 2003;105:361-70
  • Johnson FL, Turic B, Kemp R, Improved diagnostic sensitivity for lung cancer using an automated quantitative cytology system and uridine 5′-triphosphate-induced sputum specimens. Chest 2004;125:157S-8S
  • Tockman MS, Mulshine JL, Piantadosi S, Prospective detection of preclinical lung cancer: results from two studies of heterogeneous nuclear ribonucleoprotein A2/B1 overexpression. Clin Cancer Res 1997;3:2237-46
  • Sokolowa IA, Bubendorf L, O'Hare A, A fluorescence in situ hybridization-based assay for improved detection of lung cancer cells in bronchial washing specimens. Cancer 2002;96:306-15
  • Fielding P, Turnbull L, Prime W, Heterogeneous nuclear ribonucleoprotein A2/B1 up-regulation in bronchial lavage specimens: a clinical marker of early lung cancer detection. Clin Cancer Res 1999;5:4048-52
  • Gessner C, Kuhn H, Toepfer K, Detection of p53 gene mutations in exhaled breath condensate of non-small cell lung cancer patients. Lung Cancer 2004;43:215-22
  • Simon GR, Sharma S, Cantor A, ERCC1 expression is a predictor of survival in resected patients with non-small cell lung cancer. Chest 2005;127:978-83
  • Rosell R, Shrzypski M, Jassem E, BRCA1: a novel prognostic factor in resected non-small-cell lung cancer. PLoS ONE 2007;2:e1129
  • Tsao MS, Aviel-Ronen S, Ding K, Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non-small cell lung cancer. J Clin Oncol 2007;25:5240-47
  • Zhu CQ, da Cunha Santos G, Ding K, Role of k-RAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canadaof Canada Clinical Trials Group study BR.21. J Clin Oncol 2008;26:4268-75
  • Seve P, Lai R, Ding K, Class III beta-tubulin espression and benefit from adjuvant cisplatin/vinorelbine chemotheraphy in operable NSCLC: analysis of NCIC JBR.10. Clin Cancer Res 2007;13:94-9
  • Sheperd FA, Rodrigues Pereira J, Ciuleanu T, Erlotinib in previously treated non-small cell lung cancer. N Engl J Med 2005;353:123-32
  • Rosell R, Danenberg KD, Alberola V, Ribonucleotide reductase messenger RNA expression and serviva in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients. Clin Cancer Res 2004;10:1318-25
  • Cobo M Sr, Massuti B, Moràn T, Spanish customized adjuvant trial (SCAT) based on BRCA1 mRNA levels. Proc Am Soc Clin Oncol 2008;26(20 Suppl): abstract 7533
  • Tsao MS, Sakurada A, Cutz JC, Erlotinib in lung cancer – molecular and clinical predictors of outcome. N Engl Med 2005;353:133-44

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.