46
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Inherited hearing loss: molecular genetics and diagnostic testing

, MD & , MD
Pages 231-248 | Published online: 11 Mar 2008

Bibliography

  • Petit C, Levilliers J, Marlin S, Hardelin J-P. Hereditary hearing loss. In: The Metabolic & Molecular Bases of Inherited Disease. 8th edition. Volume IV. Scriver CR, Beaudet AL, Sly WS, Valle D, editors. McGraw Hill, NY, USA; 2001. p. 6281-328
  • Tekin M, Arnos KS, Pandya A. Advances in hereditary deafness. Lancet 2001;358(9287):1082-90
  • Keats BJ, Berlin CI. Genomics and hearing impairment. Genome Res 1999;9(1):7-16
  • Van Camp G, Smith RJH. Hereditary Hearing Loss Homepage. Available from: URL: webhost.ua.ac.be/hhh/ [last accessed February 2008]
  • Kochhar A, Hildebrand MS, Smith RJ. Clinical aspects of hereditary hearing loss. Genet Med 2007;9(7):393-408
  • Cohen MM, Gorlin RJ. Epidemiology, etiology and genetic patterns. In: Hereditary Hearing Loss and its Syndromes. No 28. Gorlin RJ, Toriello HV, Cohen MM, editors. Oxford Monographs on Medical Genetics, Oxford University Press, New York; 1995. p. 9-21
  • Smith RJ, Hone S. Genetic screening for deafness. Pediatr Clin North Am 2003;50(2):315-29
  • Rose SP, Conneally PM, Nance WE. Genetic analysis of childhood deafness. In: Childhood Deafness. Bess FH, editor. Grune and Stratton, New York; 1977. p. 9-35
  • Nance WE. The genetics of deafness. Ment Retard Dev Disabil Res Rev 2003;9(2):109-19
  • Morton CC. Genetics, genomics and gene discovery in the auditory system. Hum Mol Genet 2002;11(10):1229-40
  • Wangemann P. Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol 2006;576(Pt 1):11-21
  • Eisen MD, Ryugo DK. Hearing molecules: contributions from genetic deafness. Cell Mol Life Sci 2007;64(5):566-80
  • Cho A. Physiology. Math clears up an inner-ear mystery: spiral shape pumps up the bass. Science 2006;311(5764):1087
  • Manoussaki D, Dimitriadis EK, Chadwick RS. Cochlea's graded curvature effect on low frequency waves. Phys Rev Lett 2006;96(8):088701
  • Parsons TD. Neurobiology: auditory fidelity. Nature 2006;444(7122):1013-4
  • Dallos P, Zheng J, Cheatham MA. Prestin and the cochlear amplifier. J Physiol 2006;576(Pt 1):37-42
  • Cryns K, Van Camp G. Deafness genes and their diagnostic applications. Audiol Neurootol 2004;9(1):2-22
  • Kros CJ. Physiology of mammalian hair cells. In: Springer Handbook of Auditory Research: the Cochlea. Dallos P, Popper AN, Fay R, editors. New York: Springer; 1996 p. 319-85
  • Spicer SS, Schulte BA. The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear Res 1996;100(1-2):80-100
  • Marcus DC, Wu T, Wangemann P, Kofuji P. KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. Am J Physiol Cell Physiol 2002;282(2):C403-7
  • Sunose H, Liu J, Marcus DC. cAMP increases K+ secretion via activation of apical IsK/KvLQT1 channels in strial marginal cells. Hear Res 1997;114(1-2):107-16
  • Goodenough DA, Goliger JA, Paul DL. Connexins, connexons, and intercellular communication. Ann Rev Biochem 1996;65:475-502
  • Kumar NM, Gilula NB. The gap junction communication channel. Cell 1996;84(3):381-8
  • Makowski L, Caspar DLD, Phillips WC, Goodenough DA. Gap junction structures. II. Analysis of the x-ray diffraction data. J Cell Biol 1977;74(2):629-45
  • Brink PR, Cronin K, Banach K, et al. Evidence for heteromeric gap junction channels formed from rat connexin43 and human connexin37. Am J Physiol 1997;273(4 Pt 1):C1386-96
  • Evans WH, Martin PE. Gap junctions: structure and function (Review). Mol Membr Biol 2002;19(2):121-36
  • Rabionet R, Lopez-Bigas N, Arbones ML, Estivill X. Connexin mutations in hearing loss, dermatological and neurological disorders. Trends Mol Med 2002;8(5):205-12
  • Willecke K, Eiberger J, Degen J, et al. Structural and functional diversity of connexin genes in mouse and human genome. Biol Chem 2002;383(5):725-37
  • Sohl G, Willecke K. An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes 2003;10(4-6):173-80
  • Richard G. Connexin gene pathology. Clin Exp Dermatol 2003;28(4):397-409
  • Zhao HB. Connexin26 is responsible for anionic molecule permeability in the cochlea for intercellular signalling and metabolic communications. Eur J Neurosci 2005;21(7):1859-68
  • Kikuchi T, Kimura RS, Paul DL, et al. Gap junction systems in the mammalian cochlea. Brain Res Brain Res Rev 2000;32(1):163-6
  • OMIM - Online Mendelian Inheritance in Man. Available from: URL: www.ncbi.nlm.nih.gov/sites/entrez?db=omim [last accessed February 2008]
  • Van Laer L, Cryns K, Smith RJH, Van Camp G. Nonsyndromic Hearing Loss. Ear Hearing 2003;24:275-88
  • GeneTests. Available from: URL: www.genetests.org [last accessed February 2008]
  • Petit C. From deafness genes to hearing mechanisms: harmony and counterpoint. Trends Mol Med 2006;12(2):57-64
  • Kelley PM, Abe S, Askew JW, et al. Human connexin 30 (GJB6), a candidate gene for nonsyndromic hearing loss: molecular cloning, tissue-specific expression, and assignment to chromosome 13q12. Genomics 1999;62(2):172-6
  • Del Castillo I, Moreno-Pelayo MA, Del Castillo FJ, et al. Prevalence and evolutionary origins of the del(GJB6-D13S1830) mutation in the DFNB1 locus in hearing-impaired subjects: a multicenter study. Am J Hum Genet 2003;73(6):1452-8
  • Denoyelle F, Weil D, Maw MA, et al. Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene. Hum Mol Genet 1997;6(12):2173-7
  • Morell RJ, Kim HJ, Hood LJ, et al. Mutations in the connexin 26 gene (GJB2) among Ashkenazi Jews with nonsyndromic recessive deafness. N Engl J Med 1998;339(21):1500-5
  • Kudo T, Ikeda K, Kure S, et al. Novel mutations in the connexin 26 gene (GJB2) responsible for childhood deafnes in the Japanese population. Am J Med Genet 2000;90(2):141-5
  • Matos TD, Caria H, Simoes-Teixeira H, et al. A novel hearing loss related mutation occurring in the GJB2 basal promoter. J Med Genet 2007;44(11):721-5
  • Del Castillo FJ, Rodriguez-Ballesteros M, Alvarez A, et al. A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment. J Med Genet 2005;42(7):588-94
  • Schrijver I, Gardner P. Hereditary sensorineural hearing loss: advances in molecular genetics and mutation analysis. Expert Rev Mol Diagn 2006;6(3):375-86
  • Wilch E, Zhu M, Burkhart KB, et al. Expression of GJB2 and GJB6 Is Reduced in a Novel DFNB1 Allele. Am J Hum Genet 2006;79(1):174-9
  • The Connexin-deafness homepage. Available from: URL: davinci.crg.es/deafness [last accessed February 2008]
  • Prasad S, Kolln KA, Cucci RA, et al. Pendred syndrome and DFNB4-mutation screening of SLC26A4 by denaturing high-performance liquid chromatography and the identification of eleven novel mutations. Am J Med Genet A 2004;124(1):1-9
  • Scott DA, Wang R, Kreman TM, et al. Functional differences of the PDS gene product are associated with phenotypic variation in patients with Pendred syndrome and non-syndromic hearing loss (DFNB4). Hum Mol Genet 2000;9(11):1709-15
  • Azaiez H, Yang T, Prasad S, et al. Genotype-phenotype correlations for SLC26A4-related deafness. Hum Genet 2007;122(5):451-7
  • Varga R, Avenarius MR, Kelley PM, et al. OTOF mutations revealed by genetic analysis of hearing loss families including a potential temperature sensitive auditory neuropathy allele. J Med Genet 2006;43(7):576-81
  • Yasunaga S, Grati M, Cohen-Salmon M, et al. A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness. Nat Genet 1999;21(4):363-9
  • Yasunaga S, Petit C. Physical map of the region surrounding the OTOFERLIN locus on chromosome 2p22-p23. Genomics 2000;66(1):110-2
  • Houseman MJ, Jackson AP, Al-Gazali LI, et al. A novel mutation in a family with non-syndromic sensorineural hearing loss that disrupts the newly characterised OTOF long isoforms. J Med Genet 2001;38(8):E25
  • Mirghomizadeh F, Pfister M, Apaydin F, et al. Substitutions in the conserved C2C domain of otoferlin cause DFNB9, a form of nonsyndromic autosomal recessive deafness. Neurobiol Dis 2002;10(2):157-64
  • Varga R, Kelley PM, Keats BJ, et al. Non-syndromic recessive auditory neuropathy is the result of mutations in the otoferlin (OTOF) gene. J Med Genet 2003;40(1):45-50
  • Roux I, Safieddine S, Nouvian R. Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 2006;127(2):277-89
  • Migliosi V, Modamio-Hoybjor S, Moreno-Pelayo MA, et al. Q829X, a novel mutation in the gene encoding otoferlin (OTOF), is frequently found in Spanish patients with prelingual non-syndromic hearing loss. J Med Genet 2002;39(7):502-6
  • Yasunaga S, Grati M, Chardenoux S, et al. OTOF encodes multiple long and short isoforms: genetic evidence that the long ones underlie recessive deafness DFNB9. Am J Hum Genet 2000;67(3):591-600
  • Schug N, Braig C, Zimmermann U, et al. Differential expression of otoferlin in brain, vestibular system, immature and mature cochlea of the rat. Eur J Neurosci 2006;24(12):3372-80
  • Zheng J, Du GG, Anderson CT, et al. Analysis of the oligomeric structure of the motor protein prestin. J Biol Chem 2006;281(29):19916-24
  • Zheng J, Du GG, Matsuda K, et al. The C-terminus of prestin influences nonlinear capacitance and plasma membrane targeting. J Cell Sci 2005;118(Pt 13):2987-96
  • Liu XZ, Ouyang XM, Xia XJ, et al. Prestin, a cochlear motor protein, is defective in non-syndromic hearing loss. Hum Mol Genet 2003;12(10):1155-62
  • Tang HY, Xia A, Oghalai JS, et al. High frequency of the IVS2-2A>G DNA sequence variation in SLC26A5, encoding the cochlear motor protein prestin, precludes its involvement in hereditary hearing loss. BMC Med Genet 2005;6:30
  • Grifa A, Wagner CA, D'Ambrosio L, et al. Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat Genet 1999;23(1):16-8
  • Cryns K, Thys S, Van Laer L. The WFS1gene, responsible for low frequency sensorineural hearing loss and Wolfram syndrome, is expressed in a variety of inner ear cells. Histochem Cell Biol 2003;119(3):247-56
  • Takeda K, Inoue H, Tanizawa Y, et al. WFS1 (Wolfram syndrome 1) gene product: predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain. Hum Mol Genet 2001;10(5):477-84
  • Bespalova IN, Van Camp G, Bom SJ, et al. Mutations in the Wolfram syndrome 1 gene (WFS1) are a common cause of low frequency sensorineural hearing loss. Hum Mol Genet 2001;10(22):2501-8
  • Inoue H, Tanizawa Y, Wasson J, et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 1998;20(2):143-8
  • Strom TM, Hortnagel K, Hofmann S, et al. Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein. Hum Mol Genet 1998;7(13):2021-8
  • Robertson NG, Cremers CW, Huygen PL, et al. Cochlin immunostaining of inner ear pathologic deposits and proteomic analysis in DFNA9 deafness and vestibular dysfunction. Hum Mol Genet 2006;15(7):1071-85
  • Robertson NG, Hamaker SA, Patriub V, et al. Subcellular localisation, secretion, and post-translational processing of normal cochlin, and of mutants causing the sensorineural deafness and vestibular disorder, DFNA9. J Med Genet 2003;40(7):479-86
  • Grabski R, Szul T, Sasaki T, et al. Mutations in COCH that result in non-syndromic autosomal dominant deafness (DFNA9) affect matrix deposition of cochlin. Hum Genet 2003;113(5):406-16
  • Lemaire FX, Feenstra L, Huygen PL, et al. Progressive late-onset sensorineural hearing loss and vestibular impairment with vertigo (DFNA9/COCH): longitudinal analyses in a Belgian family. Otol Neurotol 2003;24(5):743-8
  • Ikezono T, Shindo S, Li L, et al. Identification of a novel Cochlin isoform in the perilymph: insights to Cochlin function and the pathogenesis of DFNA9. Biochem Biophys Res Commun 2004;314(2):440-6
  • Fransen E, Verstreken M, Verhagen WI, et al. High prevalence of symptoms of Meniere's disease in three families with a mutation in the COCH gene. Hum Mol Genet 1999;8(8):1425-9
  • Kharkovets T, Hardelin JP, Safieddine S, et al. KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc Natl Acad Sci USA 2000;97(8):4333-8
  • Robbins J. KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Pharmacol Ther 2001;90(1):1-19
  • Chen Q, Zhang D, Gingell RL, et al. Homozygous deletion in KVLQT1 associated with Jervell and Lange-Nielsen syndrome. Circulation 1999;99(10):1344-7
  • Coucke PJ, Van Hauwe P, Kelley PM. Mutations in the KCNQ4 gene are responsible for autosomal dominant deafness in four DFNA2 families. Hum Mol Genet 1999;8(7):1321-8
  • Demolombe S, Baro I, Pereon Y, et al. A dominant negative isoform of the long QT syndrome 1 gene product. J Biol Chem 1998;273(12):6837-43
  • Van Camp G, Coucke PJ, Kunst H, et al. Linkage analysis of progressive hearing loss in five extended families maps the DFNA2 gene to a 1.25-Mb region on chromosome 1p. Genomics 1997;41(1):70-4
  • Cremers CW. How to prevent a stapes gusher. Adv Otorhinolaryngol 2007;65:278-84
  • Vore AP, Chang EH, Hoppe JE, et al. Deletion of and novel missense mutation in POU3F4 in 2 families segregating X-linked nonsyndromic deafness. Arch Otolaryngol Head Neck Surg 2005;131(12):1057-63
  • De Kok YJ, Cremers CW, Ropers HH, Cremers FM. The molecular basis of X-linked deafness type 3 (DFN3) in two sporadic cases: identification of a somatic mosaicism for a POU3F4 missense mutation. Hum Mutat 1997;10(3):207-11
  • Oh N, Kupka S, Mirghomizadeh F, et al. Clinical and molecular genetic analysis of monozygotic twins displaying stapes gusher syndrome (DFN3). HNO 2003;51(8):629-33
  • Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Genet 2005;6(5):389-402
  • Wallace D, Ye JH, Neckelmann SN, et al. Sequence analysis of cDNAs for the human and bovine ATP synthase beta subunit: mitochondrial DNA genes sustain seventeen times more mutations. Curr Genet 1987;12(2):81-90
  • Kokotas H, Petersen MB, Willems PJ. Mitochondrial deafness. Clin Genet 2007;71(5):379-91
  • Chinnery PF, Turnbull DM. Mitochondrial DNA mutations in the pathogenesis of human disease. Mol Med Today 2000;6(11):425-32
  • Korres S, Balatsouras D, Manta P, et al. Cochlear dysfunction in patients with mitochondrial myopathy. ORL J Otorhinolaryngol Relat Spec 2002;64(5):315-20
  • Mitomap: a human mitochondrial genome database. Available from: URL: www.mitomap.org [last accessed February 2008]
  • Del Castillo FJ, Rodriguez-Ballesteros M, Martin Y, et al. Heteroplasmy for the 1555A>G mutation in the mitochondrial 12S rRNA gene in six Spanish families with non-syndromic hearing loss. J Med Genet 2003;40(8):632-6
  • Bravo O, Ballana E, Estivill X. Cochlear alterations in deaf and unaffected subjects carrying the deafness-associated A1555G mutation in the mitochondrial 12S rRNA gene. Biochem Biophys Res Commun 2006;344(2):511-6
  • Hamasaki K, Rando RR. Specific binding of aminoglycosides to a human rRNA construct based on a DNA polymorphism which causes aminoglycoside-induced deafness. Biochemistry 1997;36(40):12323-8
  • Ballana E, Morales E, Rabionet R. Mitochondrial 12S rRNA gene mutations affect RNA secondary structure and lead to variable penetrance in hearing impairment. Biochem Biophys Res Commun 2006;341(4):950-7
  • Guan MX. Molecular pathogenetic mechanism of maternally inherited deafness. Ann NY Acad Sci 2004;1011:259-71
  • Green GE, Scott DA, Mcdonald JM, et al. Carrier rates in the midwestern United States for GJB2 mutations causing inherited deafness. JAMA 1999;281(23):2211-6
  • Putcha GV, Bejjani BA, Bleoo S, et al. A multicenter study of the frequency and distribution of GJB2 and GJB6 mutations in a large North American cohort. Genet Med 2007;9(7):413-26
  • Ellis LA, Taylor CF, Taylor GR. A comparison of fluorescent SSCP and denaturing HPLC for high throughput mutations screening. Hum Mutat 2000;15(6):556-64
  • Forli F, Passetti S, Mancuso M, et al. Mitochondrial syndromic sensorineural hearing loss. Biosci Rep 2007;27(1-3):113-23
  • Li R, Greinwald JH, Yang L, et al. Molecular analysis of the mitochondrial 12S rRNA and tRNASer (UCN) genes in paediatric subjects with non-syndromic hearing loss. J Med Genet 2004;41(8):615-20
  • Kupka S, Braun S, Aberle S, et al. Frequencies of GJB2 mutations in German control individuals and patients showing sporadic non-syndromic hearing impairment. Hum Mutat 2002;20(1):77-8
  • Usami S, Abe S, Akita J, et al. Prevalence of mitochondrial gene mutations among hearing impaired patients. J Med Genet 2000;37(1):38-40
  • Gardner P, Oitmaa E, Messner A, et al. Simultaneous multigene mutation detection in patients with sensorineural hearing loss through a novel diagnostic microarray: a new approach for newborn screening follow-up. Pediatrics 2006;118(3):985-94
  • Kalatzis V, Sahly I, El-Amraoui A, Petit C. Eya1 expression in the developing ear and kidney: towards the understanding of the pathogenesis of Branchio-Oto-Renal (BOR) syndrome. Dev Dyn 1998;213(4):486-99
  • Friedman TB, Schultz JM, Ben-Yosef T, et al. Recent advances in the understanding of syndromic forms of hearing loss. Ear Hear 2003;24(4):289-302
  • Kibar Z, Dube MP, Powell J, et al. Clouston hidrotic ectodermal dysplasia (HED): genetic homogeneity, presence of a founder effect in the French Canadian population and fine genetic mapping. Eur J Hum Genet 2000;8(5):372-80
  • Nayak CS, Isaacson G. Worldwide distribution of Waardenburg syndrome. Ann Otol Rhinol Laryngol 2003;112(9 Pt 1):817-20
  • Dourmishev AL, Dourmishev LA, Schwartz RA, Janniger CK. Waardenburg syndrome. Int J Dermatol 1999;38(9):656-63
  • Waardenburg PJ. A new syndrome combining developmental anomalies of the eyelids, eyebrows and nose root with pigmentary defects of the iris and head hair and with congenital deafness. Am J Hum Genet 1951;3(3):195-253
  • Hoth CF, Milunsky A, Lipsky N, et al. Mutations in the paired domain of the human PAX3 gene cause Klein-Waardenburg syndrome (WS-III) as well as Waardenburg syndrome type I (WS-I). Am J Hum Genet 1993;52(3):455-62
  • Destefano AL, Cupples LA, Arnos KS, et al. Correlation between Waardenburg syndrome phenotype and genotype in a population of individuals with identified PAX3 mutations. Hum Genet 1998;102(5):499-506
  • Read AP, Newton VE. Waardenburg syndrome. J Med Genet 1997;34(8):656-65
  • Nobukuni Y, Watanabe A, Takeda K, et al. Analyses of loss-of-function mutations of the MITF gene suggest that haploinsufficiency is a cause of Waardenburg syndrome type 2A. Am J Hum Genet 1996;59(1):76-83
  • Sanchez-Martin M, Rodriguez-Garcia A, Perez-Losada J, et al. SLUG (SNAI2) deletions in patients with Waardenburg disease. Hum Mol Genet 2002;11(25):3231-6
  • Edery P, Attie T, Amiel J, et al. Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome). Nat Genet 1996;12(4):442-4
  • Milunsky JM, Maher TA, Ito M, Milunsky A. The value of MLPA in Waardenburg syndrome. Genet Test 2007;11(2):179-82
  • Madden C, Halsted MJ, Hopkin RJ, et al. Temporal bone abnormalities associated with hearing loss in Waardenburg syndrome. Laryngoscope 2003;113(11):2035-41
  • Ahmad NN, Ala-Kokko L, Knowlton RG, et al. Stop codon in the procollagen II gene (COL2A1) in a family with the Stickler syndrome (arthro-ophthalmopathy). Proc Natl Acad Sci USA 1991;88(15):6624-7
  • Niffenegger JH, Topping TM, Mukai S. Stickler's syndrome. Int Ophthalmol Clin 1993;33(2):271-80
  • Snead MP, Yates JR. Clinical and molecular genetics of Stickler syndrome. J Med Genet 1999;36(5):353-9
  • Fraser FC, Sproule JR, Halal F. Frequency of the branchio-oto-renal (BOR) syndrome in children with profound hearing loss. Am J Med Genet 1980;7(3):341-9
  • Melnick M, Bixler D, Silk K, et al. Autosomal dominant branchiootorenal dysplasia. Birth Defects Orig Artic Ser 1975;11(5):121-8
  • Stratakis CA, Lin JP, Rennert OM. Description of a large kindred with autosomal dominant inheritance of branchial arch anomalies, hearing loss, and ear pits, and exclusion of the branchio-oto-renal (BOR) syndrome gene locus (chromosome 8q13.3). Am J Med Genet 1998;79(3):209-14
  • Chen A, Francis M, Ni L, et al. Phenotypic manifestations of branchio-oto-renal syndrome. Am J Med Genet 1995;58(4):365-70
  • Kochhar A, Fischer SM, Kimberling WJ, Smith RJ. Branchio-oto-renal syndrome. Am J Med Genet A 2007;143(14):1671-8
  • Hoskins BE, Cramer CH, Silvius D, et al. Transcription factor SIX5 is mutated in patients with branchio-oto-renal syndrome. Am J Hum Genet 2007;80(4):800-4
  • Chang EH, Menezes M, Meyer NC, et al. Branchio-oto-renal syndrome: the mutation spectrum in EYA1 and its phenotypic consequences. Hum Mutat 2004;23(6):582-9
  • Sanggaard KM, Rendtorff ND, Kjaer KW, et al. Branchio-oto-renal syndrome: detection of EYA1 and SIX1 mutations in five out of six Danish families by combining linkage, MLPA and sequencing analyses. Eur J Hum Genet 2007;15(11):1121-31
  • The Pendred/BOR webpage. Available from: URL: www.medicine.uiowa.edu/pendredandbor [last accessed February 2008]
  • Evans DG, Moran A, King A, et al. Incidence of vestibular schwannoma and neurofibromatosis 2 in the North West of England over a 10-year period: higher incidence than previously thought. Otol Neurotol 2005;26(1):93-7
  • Yohay K. Neurofibromatosis types 1 and 2. Neurologist 2006;12(2):86-93
  • Evans DG, Huson SM, Donnai D, et al. A clinical study of type 2 neurofibromatosis. Q J Med 1992;84(304):603-18
  • Parry DM, Maccollin MM, Kaiser-Kupfer MI, et al. Germ-line mutations in the neurofibromatosis 2 gene: correlations with disease severity and retinal abnormalities. Am J Hum Genet 1996;59(3):529-39
  • Bretscher A, Edwards K, Fehon RG. ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 2002;3(8):586-99
  • Kluwe L, Nygren AO, Errami A, et al. Screening for large mutations of the NF2 gene. Genes Chromosomes Cancer 2005;42(4):384-91
  • Wallace AJ, Watson CJ, Oward E, et al. Mutation scanning of the NF2 gene: an improved service based on meta-PCR/sequencing, dosage analysis, and loss of heterozygosity analysis. Genet Test 2004;8(4):368-80
  • Tsilchorozidou T, Menko FH, Lalloo F, et al. Constitutional rearrangements of chromosome 22 as a cause of neurofibromatosis 2. J Med Genet 2004;41(7):529-34
  • Richard G, Brown N, Ishida-Yamamoto A, Krol A. Expanding the phenotypic spectrum of Cx26 disorders: Bart-Pumphrey syndrome is caused by a novel missense mutation in GJB2. J Invest Dermatol 2004;123(5):856-63
  • Reardon W, Omahoney CF, Trembath R, et al. Enlarged vestibular aqueduct: a radiological marker of pendred syndrome, and mutation of the PDS gene. QJM 2000;93(2):99-104
  • Dawson PA, Markovich D. Pathogenetics of the human SLC26 transporters. Curr Med Chem 2005;12(4):385-96
  • Kremer H, Van Wijk E, Marker T, et al. Usher syndrome: molecular links of pathogenesis, proteins and pathways. Hum Mol Genet 2006;15(Spec No 2):R262-70
  • Boughman JA, Vernon M, Shaver KA. Usher syndrome: definition and estimate of prevalence from two high-risk populations. J Chronic Dis 1983;36(8):595-603
  • Smith RJ, Berlin CI, Hejtmancik JF, et al. Clinical diagnosis of the Usher syndromes. Usher Syndrome Consortium. Am J Med Genet 1994;50(1):32-8
  • Kimberling WJ, Moller CG, Davenport SL, et al. Usher syndrome: clinical findings and gene localization studies. Laryngoscope 1989;99(1):66-72
  • Sankila EM, Pakarinen L, Kaariainen H, et al. Assignment of an Usher syndrome type III (USH3) gene to chromosome 3q. Hum Mol Genet 1995;4(1):93-8
  • Ebermann I, Scholl HP, Charbel Issa P, et al. A novel gene for Usher syndrome type 2: mutations in the long isoform of whirlin are associated with retinitis pigmentosa and sensorineural hearing loss. Hum Genet 2007;121(2):203-11
  • Ahmed ZM, Smith TN, Riazuddin S, et al. Nonsyndromic recessive deafness DFNB18 and Usher syndrome type IC are allelic mutations of USHIC. Hum Genet 2002;110(6):527-31
  • Bitner-Glindzicz M, Lindley KJ, Rutland P, et al. A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene. Nat Genet 2000;26(1):56-60
  • Lentz J, Savas S, Ng SS, et al. The USH1C 216G-->A splice-site mutation results in a 35-base-pair deletion. Hum Genet 2005;116(3):225-7
  • Maubaret C, Griffoin JM, Arnaud B, Hamel C. Novel mutations in MYO7A and USH2A in Usher syndrome. Ophthalmic Genet 2005;26(1):25-9
  • Van Wijk E, Pennings RJ, Te Brinke H, et al. Identification of 51 novel exons of the Usher syndrome type 2A (USH2A) gene that encode multiple conserved functional domains and that are mutated in patients with Usher syndrome type II. Am J Hum Genet 2004;74(4):738-44
  • Cremers FP, Kimberling WJ, Kulm M, et al. Development of a genotyping microarray for Usher syndrome. J Med Genet 2007;44(2):153-60
  • Jervell A, Lange-Nielsen F. Congenital deaf mutism, functional heart disease with prolongation of the QT interval and sudden death. Am Heart J 1957;54(1):59-68
  • Priori SG, Napolitano C, Schwartz PJ, et al. Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA 2004;292(11):1341-4
  • Priori SG, Napolitano C, Schwartz P. Genetics of cardiac arrhythmia. In: Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine. Volume I. 7th edition. Zipes DP, Libby P, Bonow RO, Braunwald E, editors. Elsevier Saunders, Philadephia; 2005. p. 690
  • Tristani-Firouzi M, Chen J, Mitcheson JS, Sanguinetti MC. Molecular biology of K(+) channels and their role in cardiac arrhythmias. Am J Med 2001;110(1):50-9
  • Wollnik B, Schroeder BC, Kubisch C, et al. Pathophysiological mechanisms of dominant and recessive KVLQT1 K+ channel mutations found in inherited cardiac arrhythmias. Hum Mol Genet 1997;6(11):1943-9
  • Splawski I, Shen J, Timothy KW, et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 2000;102(10):1178-85
  • Schwartz PJ, Spazzolini C, Crotti L, et al. The Jervell and Lange-Nielsen syndrome: natural history, molecular basis, and clinical outcome. Circulation 2006;113(6):783-90
  • Tranebjaerg L, Bathen J, Tyson J, Bitner-Glindzicz M. Jervell and Lange-Nielsen syndrome: a Norwegian perspective. Am J Med Genet 1999;89(3):137-46
  • Tranebjaerg L. Jervell and Lange-Nielsen syndrome. In: Genetic Hearing Loss. Willems PJ, editor. Marcel Dekker Publications, NY; 2004. p. 117-34
  • Jais JP, Knebelmann B, Giatras I, et al. X-linked Alport syndrome: natural history in 195 families and genotype-phenotype correlations in males. J Am Soc Nephrol 2000;11(4):649-57
  • Jais JP, Knebelmann B, Giatras I, et al. X-linked Alport syndrome: natural history and genotype-phenotype correlations in girls and women belonging to 195 families: A ‘European Community Alport Syndrome Concerted Action’ study. J Am Soc Nephrol 2003;14(10):2603-10
  • Kashtan CE. Alport syndrome and thin glomerular basement membrane disease. J Am Soc Nephrol 1998;9(9):1736-50
  • Hudson BG. The molecular basis of Goodpasture and Alport syndromes: beacons for the discovery of the collagen IV family. J Am Soc Nephrol 2004;15(10):2514-27
  • Merchant SN, Burgess BJ, Adams JC, et al. Temporal bone histopathology in Alport syndrome. Laryngoscope 2004;114(9):1609-18
  • Martin P, Heiskari N, Zhou J, et al. High mutation detection rate in the COL4A5 collagen gene in suspected Alport syndrome using PCR and direct DNA sequencing. J Am Soc Nephrol 1998;9(12):2291-301
  • King K, Flinter FA, Green PM. A two-tier approach to mutation detection in the COL4A5 gene for Alport syndrome. Hum Mutat 2006;27(10):1061
  • Tranebjaerg L, Schwartz C, Eriksen H, et al. A new X linked recessive deafness syndrome with blindness, dystonia, fractures, and mental deficiency is linked to Xq22. J Med Genet 1995;32(4):257-63
  • Tranebjaerg L, Jensen PK, Van Ghelue M, et al. Neuronal cell death in the visual cortex is a prominent feature of the X-linked recessive mitochondrial deafness-dystonia syndrome caused by mutations in the TIMM8A gene. Ophthalmic Genet 2001;22(4):207-23
  • Jin H, May M, Tranebjaerg L, et al. A novel X-linked gene, DDP, shows mutations in families with deafness (DFN-1), dystonia, mental deficiency and blindness. Nat Genet 1996;14(2):177-80
  • Bahmad F Jr, Merchant SN, Nadol JB Jr, Tranebjaerg L. Otopathology in Mohr-Tranebjaerg syndrome. Laryngoscope 2007;117(7):1202-8
  • Aguirre LA, Del Castillo I, Macaya A, et al. A novel mutation in the gene encoding TIMM8a, a component of the mitochondrial protein translocase complexes, in a Spanish familial case of deafness-dystonia (Mohr-Tranebjaerg) syndrome. Am J Med Genet A 2006;140(4):392-7
  • Marazita ML, Ploughman LM, Rawlings B, et al. Genetic epidemiological studies of early-onset deafness in the U.S. school-age population. Am J Med Genet 1993;46(5):486-91
  • Karkos PD, Waldron M, Johnson IJ. The MELAS syndrome. Review of the literature: the role of the otologist. Clin Otolaryngol Allied Sci 2004;29(1):1-4
  • Tsutsumi T, Nishida H, Noguchi Y, et al. Audiological findings in patients with myoclonic epilepsy associated with ragged-red fibres. J Laryngol Otol 2001;115(10):777-81
  • Guillausseau PJ, Massin P, Dubois-Laforgue D, et al. Maternally inherited diabetes and deafness: a multicenter study. Ann Intern Med 2001;134(9 Pt 1):721-8
  • Ballinger SW, Shoffner JM, Hedaya EV, et al. Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion. Nat Genet 1992;1(1):11-5
  • Martin Negrier ML, Coquet M, Moretto BT, et al. Partial triplication of mtDNA in maternally transmitted diabetes mellitus and deafness. Am J Hum Genet 1998;63(4):1227-32

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.