16
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Advances in the identification of molecular markers for bone neoplasia

&
Pages 429-438 | Published online: 15 Jul 2010

Bibliography

  • Flanagan AM, Delaney D, O'Donnell P. Benefits of molecular pathology in the diagnosis of musculoskeletal disease: Part II of a two-part review: bone tumors and metabolic disorders. Skeletal Radiol 2010;39:213-24
  • American Cancer Society. Cancer facts and figures 2009. American Cancer Society, Atlanta; 2009
  • Gaylord HR. On the pathology of so-called bone aneurisms. Ann Surg 1903;37:834-47
  • Sciot R, Dorfman H, Brys P, Cytogenetic-morphologic correlations in aneurysmal bone cyst, giant cell tumor of bone and combined lesions. A report from the CHAMP study group. Mod Pathol 2000;13:1206-10
  • Panoutsakopoulos G, Pandis N, Kyriazoglou I, Recurrent t(16;17)(q22;p13) in aneurysmal bone cysts. Genes Chromosomes Cancer 1999;26:265-6
  • Dal Cin P, Kozakewich HP, Goumnerova L, Variant translocations involving 16q22 and 17p13 in solid variant and extraosseous forms of aneurysmal bone cyst. Genes Chromosomes Cancer 2000;28:233-4
  • Herens C, Thiry A, Dresse MF, Translocation (16;17)(q22;p13) is a recurrent anomaly of aneurysmal bone cysts. Cancer Genet Cytogenet 2001;127:83-4
  • Wyatt-Ashmead J, Bao L, Eilert RE, Primary aneurysmal bone cysts: 16q22 and/or 17p13 chromosome abnormalities. Pediatr Dev Pathol 2001;4:418-19
  • Baruffi MR, Neto JB, Barbieri CH, Aneurysmal bone cyst with chromosomal changes involving 7q and 16p. Cancer Genet Cytogenet 2001;129:177-80
  • Oliveira AM, Hsi BL, Weremowicz S, USP6 (Tre2) fusion oncogenes in aneurysmal bone cyst. Cancer Res 2004;64:1920-3
  • Wolff S. The repair of x-ray-induced chromosome aberrations in stimulated and unstimulated human lymphocytes. Mutat Res 1972;15:435-44
  • Oliveira AM, Perez-Atayde AR, Dal Cin P, Aneurysmal bone cyst variant translocations upregulate USP6 transcription by promoter swapping with the ZNF9, COL1A1, TRAP150, and OMD genes. Oncogene 2005;24:3419-26
  • Ellison DA, Sawyer JR, Parham DM, Soft-tissue aneurysmal bone cyst: report of a case with t(5;17)(q33;p13). Pediatr Dev Pathol 2007;10:46-9
  • Oliveira AM, Perez-Atayde AR, Inwards CY, USP6 and CDH11 oncogenes identify the neoplastic cell in primary aneurysmal bone cysts and are absent in so-called secondary aneurysmal bone cysts. Am J Pathol 2004;165:1773-80
  • Althof PA, Ohmori K, Zhou M, Cytogenetic and molecular cytogenetic findings in 43 aneurysmal bone cysts: aberrations of 17p mapped to 17p13.2 by fluorescence in situ hybridization. Mod Pathol 2004;17:518-25
  • Nora FE, Dahlin DC, Beabout JW. Bizarre parosteal osteochondromatous proliferations of the hands and feet. Am J Surg Pathol 1983;7:245-50
  • Meneses MF, Unni KK, Swee RG. Bizarre parosteal osteochondromatous proliferation of bone (Nora's lesion). Am J Surg Pathol 1993;17:691-7
  • Zambrano E, Nose V, Perez-Atayde AR, Distinct chromosomal rearrangements in subungual (Dupuytren) exostosis and bizarre parosteal osteochondromatous proliferation (Nora lesion). Am J Surg Pathol 2004;28:1033-9
  • Nilsson M, Domanski HA, Mertens F, Molecular cytogenetic characterization of recurrent translocation breakpoints in bizarre parosteal osteochondromatous proliferation (Nora's lesion). Hum Pathol 2004;35:1063-9
  • Endo M, Hasegawa T, Tashiro T, Bizarre parosteal osteochondromatous proliferation with a t(1;17) translocation. Virchows Arch 2005;447:99-102
  • Lichtenstein L, Jaffe HL. Fibrous dysplasia of bone; a condition affecting one, several, or many bones, the graver cases of which may present abnormal pigmentation of skin, premature sexual devlopment, hyperthyroidism, or still other extraskeletal abnormalities. Arch Path 1942;33:777-816
  • Telford ED. A case of osteitis fibrosa (with formation of hyaline cartilage). Br J Surg 1931;18:409-14
  • Albright F, Butler AM, Hampton AO, Syndrome characterized by osteitis fibrosa disseminata, areas of pigmentation and endocrine dysfunction, with precocious puberty in females. report of five cases. N Engl J Med 1937;216:727-46
  • McCune DJ, Bruch H. Osteodystrophia fibrosa: report of a case in which the condition was combined with precocious puberty, pathological pigmentation of the skin and hyperparathyroidism, with a review of the literature. Am J Dis Child 1937;54:806-48
  • Dal Cin P, Sciot R, Speleman F, Chromosome aberrations in fibrous dysplasia. Cancer Genet Cytogenet 1994;77:114-17
  • Mertens F, Albert A, Heim S, Clonal structural chromosome aberrations in fibrous dysplasia. Genes Chromosomes Cancer 1994;11:271-2
  • Rao VV, Schnittger S, Hansmann I. G protein Gs alpha (GNAS 1), the probable candidate gene for Albright hereditary osteodystrophy, is assigned to human chromosome 20q12-q13.2. Genomics 1991;10:257-61
  • Idowu BD, Al-Adnani M, O'Donnell P, A sensitive mutation-specific screening technique for GNAS1 mutations in cases of fibrous dysplasia: the first report of a codon 227 mutation in bone. Histopathology 2007;50:691-704
  • Kashima TG, Nishiyama T, Shimazu K, Periostin, a novel marker of intramembranous ossification, is expressed in fibrous dysplasia and in c-Fos-overexpressing bone lesions. Hum Pathol 2009;40:226-37
  • Marie PJ, de Pollak C, Chanson P, Increased proliferation of osteoblastic cells expressing the activating Gs alpha mutation in monostotic and polyostotic fibrous dysplasia. Am J Pathol 1997;150:1059-69
  • Weinstein LS, Shenker A, Gejman PV, Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med 1991;325:1688-95
  • Sakamoto A, Oda Y, Iwamoto Y, A comparative study of fibrous dysplasia and osteofibrous dysplasia with regard to Gsalpha mutation at the Arg201 codon: polymerase chain reaction-restriction fragment length polymorphism analysis of paraffin-embedded tissues. J Mol Diagn 2000;2:67-72
  • Riminucci M, Liu B, Corsi A, The histopathology of fibrous dysplasia of bone in patients with activating mutations of the Gs alpha gene: site-specific patterns and recurrent histological hallmarks. J Pathol 1999;187:249-58
  • Delaney D, Diss TC, Presneau N, GNAS1 mutations occur more commonly than previously thought in intramuscular myxoma. Mod Pathol 2009;22:718-24
  • Li J, Wang L, Mamon H, Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing. Nat Med 2008;14:579-84
  • Francannet C, Cohen-Tanugi A, Le Merrer M, Genotype-phenotype correlation in hereditary multiple exostoses. J Med Genet 2001;38:430-4
  • Kojima H, Wada T, Seki H, One third of Japanese patients with multiple osteochondromas may have mutations in genes other than EXT1 or EXT2. Genet Test 2008;12:557-61
  • Lonie L, Porter DE, Fraser M, Determination of the mutation spectrum of the EXT1/EXT2 genes in British Caucasian patients with multiple osteochondromas, and exclusion of six candidate genes in EXT negative cases. Hum Mutat 2006;27:1160
  • Ahn J, Ludecke HJ, Lindow S, Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1). Nat Genet 1995;11:137-43
  • Stickens D, Clines G, Burbee D, The EXT2 multiple exostoses gene defines a family of putative tumour suppressor genes. Nat Genet 1996;14:25-32
  • Potocki L, Shaffer LG. Interstitial deletion of 11(p11.2p12): a newly described contiguous gene deletion syndrome involving the gene for hereditary multiple exostoses (EXT2). Am J Med Genet 1996;62:319-25
  • Le Merrer M, Legeai-Mallet L, Jeannin PM, A gene for hereditary multiple exostoses maps to chromosome 19p. Hum Mol Genet 1994;3:717-22
  • Feely MG, Boehm AK, Bridge RS, Cytogenetic and molecular cytogenetic evidence of recurrent 8q24.1 loss in osteochondroma. Cancer Genet Cytogenet 2002;137:102-7
  • Hameetman L, Szuhai K, Yavas A, The role of EXT1 in nonhereditary osteochondroma: identification of homozygous deletions. J Natl Cancer Inst 2007;99:396-406
  • Bridge JA, Nelson M, Orndal C, Clonal karyotypic abnormalities of the hereditary multiple exostoses chromosomal loci 8q24.1 (EXT1) and 11p11-12 (EXT2) in patients with sporadic and hereditary osteochondromas. Cancer 1998;82:1657-63
  • Bovee JV, Hogendoorn PC. Molecular pathology of sarcomas: concepts and clinical implications. Virchows Arch 2010;456:193-9
  • Dupuytren G. On the injuries and diseases of bones: being selections from the collected edition of clinical lectures of Baron Dupuyten. Publications of the Sydenham Society, London;1847
  • Miller-Breslow A, Dorfman HD. Dupuytren's (subungual) exostosis. Am J Surg Pathol 1988;12:368-78
  • Dal Cin P, Pauwels P, Poldermans LJ, Clonal chromosome abnormalities in a so-called Dupuytren's subungual exostosis. Genes Chromosomes Cancer 1999;24:162-4
  • Storlazzi CT, Wozniak A, Panagopoulos I, Rearrangement of the COL12A1 and COL4A5 genes in subungual exostosis: molecular cytogenetic delineation of the tumor-specific translocation t(X;6)(q13-14;q22). Int J Cancer 2006;118:1972-6
  • Dickson BC, Chung CT-S, Flanagan AM. Molecular markers in diagnostic paediatric bone lesions. Open Pathol J 2010 (In Press)
  • Turc-Carel C, Philip I, Berger MP, Chromosomal translocation (11; 22) in cell lines of Ewing's sarcoma. C R Seances Acad Sci III 1983;296:1101-3
  • Aurias A, Rimbaut C, Buffe D, Translocation of chromosome 22 in Ewing's sarcoma. C R Seances Acad Sci III 1983;296:1105-7
  • Turc-Carel C, Philip I, Berger MP, Chromosome study of Ewing's sarcoma (ES) cell lines. Consistency of a reciprocal translocation t(11;22)(q24;q12). Cancer Genet Cytogenet 1984;12:1-19
  • Mugneret F, Favre B, Sidaner I, Translocation (21;22)(q22;q12) in a Ewing sarcoma. New case characterized by cytogenetic analysis and fluorescence in situ hybridization of a fresh tumor. Cancer Genet Cytogenet 1996;87:185-6
  • Kaneko Y, Yoshida K, Handa M, Fusion of an ETS-family gene, EIAF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chromosomes Cancer 1996;15:115-21
  • Mastrangelo T, Modena P, Tornielli S, A novel zinc finger gene is fused to EWS in small round cell tumor. Oncogene 2000;19:3799-804
  • Llombart-Bosch A, Pellin A, Carda C, Soft tissue Ewing sarcoma – peripheral primitive neuroectodermal tumor with atypical clear cell pattern shows a new type of EWS-FEV fusion transcript. Diagn Mol Pathol 2000;9:137-44
  • Zhao L, Hayes K, Van Fleet T, Detection of a novel reciprocal t(16;22)(q11.2;q12) in a Ewing sarcoma. Cancer Genet Cytogenet 2003;140:55-7
  • Szuhai K, M IJ, Tanke HJ, Detection and molecular cytogenetic characterization of a novel ring chromosome in a histological variant of Ewing sarcoma. Cancer Genet Cytogenet 2007;172:12-22
  • Ng TL, O'sullivan MJ, Pallen CJ, Ewing sarcoma with novel translocation t(2;16) producing an in-frame fusion of FUS and FEV. J Mol Diagn 2007;9:459-63
  • Wang L, Bhargava R, Zheng T, Undifferentiated small round cell sarcomas with rare EWS gene fusions: identification of a novel EWS-SP3 fusion and of additional cases with the EWS-ETV1 and EWS-FEV fusions. J Mol Diagn 2007;9:498-509
  • Maire G, Brown CW, Bayani J, Complex rearrangement of chromosomes 19, 21, and 22 in Ewing sarcoma involving a novel reciprocal inversion-insertion mechanism of EWS-ERG fusion gene formation: a case analysis and literature review. Cancer Genet Cytogenet 2008;181:81-92
  • Szuhai K, Ijszenga M, de Jong D, The NFATc2 gene is involved in a novel cloned translocation in a Ewing sarcoma variant that couples its function in immunology to oncology. Clin Cancer Res 2009;15:2259-68
  • Shing DC, McMullan DJ, Roberts P, FUS/ERG gene fusions in Ewing's tumors. Cancer Res 2003;63:4568-76
  • Barr FG, Womer RB. Molecular diagnosis of ewing family tumors: too many fusions? J Mol Diagn 2007;9:437-40
  • Fong YE, Lopez-Terrada D, Zhai QJ. Primary Ewing sarcoma/peripheral primitive neuroectodermal tumor of the vulva. Hum Pathol 2008;39:1535-9
  • Kikuta K, Tochigi N, Shimoda T, Nucleophosmin as a candidate prognostic biomarker of Ewing's sarcoma revealed by proteomics. Clin Cancer Res 2009;15:2885-94
  • Avigad S, Naumov I, Ohali A, Short telomeres: a novel potential predictor of relapse in Ewing sarcoma. Clin Cancer Res 2007;13:5777-83
  • Savola S, Klami A, Tripathi A, Combined use of expression and CGH arrays pinpoints novel candidate genes in Ewing sarcoma family of tumors. BMC Cancer 2009;9:17
  • Zoubek A, Dockhorn-Dworniczak B, Delattre O, Does expression of different EWS chimeric transcripts define clinically distinct risk groups of Ewing tumor patients? J Clin Oncol 1996;14:1245-51
  • de Alava E, Kawai A, Healey JH, EWS-FLI1 fusion transcript structure is an independent determinant of prognosis in Ewing's sarcoma. J Clin Oncol 1998;16:1248-55
  • Huang HY, Illei PB, Zhao Z, Ewing sarcomas with p53 mutation or p16/p14ARF homozygous deletion: a highly lethal subset associated with poor chemoresponse. J Clin Oncol 2005;23:548-58
  • Wei G, Antonescu CR, de Alava E, Prognostic impact of INK4A deletion in Ewing sarcoma. Cancer 2000;89:793-9
  • Tsuchiya T, Sekine K, Hinohara S, Analysis of the p16INK4, p14ARF, p15, TP53, and MDM2 genes and their prognostic implications in osteosarcoma and Ewing sarcoma. Cancer Genet Cytogenet 2000;120:91-8
  • Lopez-Guerrero JA, Pellin A, Noguera R, Molecular analysis of the 9p21 locus and p53 genes in Ewing family tumors. Lab Invest 2001;81:803-14
  • Kovar H, Jug G, Aryee DN, Among genes involved in the RB dependent cell cycle regulatory cascade, the p16 tumor suppressor gene is frequently lost in the Ewing family of tumors. Oncogene 1997;15:2225-32
  • Abudu A, Mangham DC, Reynolds GM, Overexpression of p53 protein in primary Ewing's sarcoma of bone: relationship to tumour stage, response and prognosis. Br J Cancer 1999;79:1185-9
  • Arnold WH. Hereditary bone dysplasia with sarcomatous degeneration. Study of a family. Ann Intern Med 1973;78:902-6
  • Hardcastle P, Nade S, Arnold W. Hereditary bone dysplasia with malignant change. Report of three families. J Bone Joint Surg Am 1986;68:1079-89
  • Norton KI, Wagreich JM, Granowetter L, Diaphyseal medullary stenosis (sclerosis) with bone malignancy (malignant fibrous histiocytoma): Hardcastle syndrome. Pediatr Radiol 1996;26:675-7
  • Martignetti JA, Desnick RJ, Aliprandis E, Diaphyseal medullary stenosis with malignant fibrous histiocytoma: a hereditary bone dysplasia/cancer syndrome maps to 9p21-22. Am J Hum Genet 1999;64:801-7
  • Muroya K, Nishimura G, Douya H, Diaphyseal medullary stenosis with malignant fibrous histiocytoma: further evidence for loss of heterozygosity involving 9p21-22 in tumor tissue. Genes Chromosomes Cancer 2002;33:326-8
  • Boyer A. Traite des Maladies Chirurgicales et des Operationes qui Leur Conviennent, Vol 3. Paris: Migneret; 1814
  • Schajowicz F, Sissons HA, Sobin LH. The world health organization's histologic classification of bone tumors. A commentary on the second edition. Cancer 1995;75:1208-14
  • Mirra JM, Bullough PG, Marcove RC, Malignant fibrous histiocytoma and osteosarcoma in association with bone infarcts; report of four cases, two in caisson workers. J Bone Joint Surg Am 1974;56:932-40
  • Greditzer HG III, McLeod RA, Unni KK, Bone sarcomas in Paget disease. Radiology 1983;146:327-33
  • Wolfe JJ, Platt WR. Postirradiation osteogenic sarcoma of the nasal bone; a report of two cases. Cancer 1949;2:438-46
  • Martland HS. The occurrence of malignancy in radio-active persons. A general review of data gathered in the study of radium dial painters, with special reference to the occurrence of osteogenic sarcoma and inter-relationship of certain blood diseases. Am J Cancer 1931;15:2435-516
  • Tebbet RD, Vickery RD. Osteogenic sarcoma following irradiation for retinoblastoma; with the report of a case. Am J Ophthalmol 1952;35:811-18
  • Castedo SM, Seruca R, Oosterhuis JW, Cytogenetics of a case of osteosarcoma. Cancer Genet Cytogenet 1988;32:149-51
  • Ragland BD, Bell WC, Lopez RR, Cytogenetics and molecular biology of osteosarcoma. Lab Invest 2002;82:365-73
  • Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: osteosarcoma and related tumors. Cancer Genet Cytogenet 2003;145:1-30
  • Gilman PA, Wang N, Fan SF, Familial osteosarcoma associated with 13;14 chromosomal rearrangement. Cancer Genet Cytogenet 1985;17:123-32
  • Mertens F, Larramendy M, Gustavsson A, Radiation-associated sarcomas are characterized by complex karyotypes with frequent rearrangements of chromosome arm 3p. Cancer Genet Cytogenet 2000;116:89-96
  • Tarkkanen M, Elomaa I, Blomqvist C, DNA sequence copy number increase at 8q: a potential new prognostic marker in high-grade osteosarcoma. Int J Cancer 1999;84:114-21
  • Forus A, Weghuis DO, Smeets D, Comparative genomic hybridization analysis of human sarcomas: II. Identification of novel amplicons at 6p and 17p in osteosarcomas. Genes Chromosomes Cancer 1995;14:15-21
  • Stock C, Kager L, Fink FM, Chromosomal regions involved in the pathogenesis of osteosarcomas. Genes Chromosomes Cancer 2000;28:329-36
  • Zielenska M, Bayani J, Pandita A, Comparative genomic hybridization analysis identifies gains of 1p35 approximately p36 and chromosome 19 in osteosarcoma. Cancer Genet Cytogenet 2001;130:14-21
  • Ozaki T, Schaefer KL, Wai D, Genetic imbalances revealed by comparative genomic hybridization in osteosarcomas. Int J Cancer 2002;102:355-65
  • Batanian JR, Cavalli LR, Aldosari NM, Evaluation of paediatric osteosarcomas by classic cytogenetic and CGH analyses. Mol Pathol 2002;55:389-93
  • Squire JA, Pei J, Marrano P, High-resolution mapping of amplifications and deletions in pediatric osteosarcoma by use of CGH analysis of cDNA microarrays. Genes Chromosomes Cancer 2003;38:215-25
  • Lau CC, Harris CP, Lu XY, Frequent amplification and rearrangement of chromosomal bands 6p12-p21 and 17p11.2 in osteosarcoma. Genes Chromosomes Cancer 2004;39:11-21
  • Atiye J, Wolf M, Kaur S, Gene amplifications in osteosarcoma-CGH microarray analysis. Genes Chromosomes Cancer 2005;42:158-63
  • Tarkkanen M, Bohling T, Gamberi G, Comparative genomic hybridization of low-grade central osteosarcoma. Mod Pathol 1998;11:421-6
  • Salas S, Jezequel P, Campion L, Molecular characterization of the response to chemotherapy in conventional osteosarcomas: predictive value of HSD17B10 and IFITM2. Int J Cancer 2009;125:851-60
  • Urakawa H, Nishida Y, Naruse T, Cyclooxygenase-2 overexpression predicts poor survival in patients with high-grade extremity osteosarcoma: a pilot study. Clin Orthop Relat Res 2009;467:2932-8
  • Do SI, Kim YW, Park HR, Expression of insulin-like growth factor-II mRNA binding protein 3 (IMP3) in osteosarcoma. Oncol Res 2008;17:269-72
  • Nakajima G, Patino-Garcia A, Bruheim S, CDH11 expression is associated with survival in patients with osteosarcoma. Cancer Genomics Proteomics 2008;5:37-42
  • Osaka E, Suzuki T, Osaka S, Survivin as a prognostic factor for osteosarcoma patients. Acta Histochem Cytochem 2006;39:95-100
  • Osaka E, Suzuki T, Osaka S, Survivin expression levels as independent predictors of survival for osteosarcoma patients. J Orthop Res 2007;25:116-21
  • Trieb K, Lehner R, Stulnig T, Survivin expression in human osteosarcoma is a marker for survival. Eur J Surg Oncol 2003;29:379-82
  • Oda Y, Yamamoto H, Tamiya S, CXCR4 and VEGF expression in the primary site and the metastatic site of human osteosarcoma: analysis within a group of patients, all of whom developed lung metastasis. Mod Pathol 2006;19:738-45
  • Laverdiere C, Hoang BH, Yang R, Messenger RNA expression levels of CXCR4 correlate with metastatic behavior and outcome in patients with osteosarcoma. Clin Cancer Res 2005;11:2561-7
  • Hallor KH, Staaf J, Bovee JV, Genomic profiling of chondrosarcoma: chromosomal patterns in central and peripheral tumors. Clin Cancer Res 2009;15:2685-94
  • Boeuf S, Bovee JV, Lehner B, Correlation of hypoxic signalling to histological grade and outcome in cartilage tumours. Histopathology 2010;56:641-51
  • Bovee JV, Cleton-Jansen AM, Kuipers-Dijkshoorn NJ, Loss of heterozygosity and DNA ploidy point to a diverging genetic mechanism in the origin of peripheral and central chondrosarcoma. Genes Chromosomes Cancer 1999;26:237-46
  • Bovee JV, van den Broek LJ, Cleton-Jansen AM, Up-regulation of PTHrP and Bcl-2 expression characterizes the progression of osteochondroma towards peripheral chondrosarcoma and is a late event in central chondrosarcoma. Lab Invest 2000;80:1925-34
  • Hameetman L, Kok P, Eilers PH, The use of Bcl-2 and PTHLH immunohistochemistry in the diagnosis of peripheral chondrosarcoma in a clinicopathological setting. Virchows Arch 2005;446:430-7
  • van Beerendonk HM, Rozeman LB, Taminiau AH, Molecular analysis of the INK4A/INK4A-ARF gene locus in conventional (central) chondrosarcomas and enchondromas: indication of an important gene for tumour progression. J Pathol 2004;202:359-66
  • Tiet TD, Hopyan S, Nadesan P, Constitutive hedgehog signaling in chondrosarcoma up-regulates tumor cell proliferation. Am J Pathol 2006;168:321-30
  • Hameetman L, Rozeman LB, Lombaerts M, Peripheral chondrosarcoma progression is accompanied by decreased Indian Hedgehog signalling. J Pathol 2006;209:501-11
  • Sun X, Wei L, Chen Q, CXCR4/SDF1 mediate hypoxia induced chondrosarcoma cell invasion through ERK signaling and increased MMP1 expression. Mol Cancer 2010;9:17
  • Rozeman LB, Szuhai K, Schrage YM, Array-comparative genomic hybridization of central chondrosarcoma: identification of ribosomal protein S6 and cyclin-dependent kinase 4 as candidate target genes for genomic aberrations. Cancer 2006;107:380-8
  • Morrison C, Radmacher M, Mohammed N, MYC amplification and polysomy 8 in chondrosarcoma: array comparative genomic hybridization, fluorescent in situ hybridization, and association with outcome. J Clin Oncol 2005;23:9369-76

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.