33
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Advances and challenges in biomarker development for type 1 diabetes prediction and prevention using ‘omic’ technologies

, &
Pages 397-410 | Published online: 05 Aug 2010

Bibliography

  • Borchers AT, Uibo R, Gershwin ME. The geoepidemiology of type 1 diabetes. Autoimmun Rev 2009;9(5):A355-65
  • Bruno G, Novelli G, Panero F, The incidence of type 1 diabetes is increasing in both children and young adults in Northern Italy: 1984-2004 temporal trends. Diabetologia 2009;52(12):2531-5
  • Chan JC, Malik V, Jia W, Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 2009;301(20):2129-40
  • Levitt NS. Diabetes in Africa: epidemiology, management and healthcare challenges. Heart 2008;94(11):1376-82
  • Atkinson MA. ADA Outstanding Scientific Achievement Lecture 2004. Thirty years of investigating the autoimmune basis for type 1 diabetes: why can't we prevent or reverse this disease? Diabetes 2005;54(5):1253-63
  • Bingley PJ, Bonifacio E, Williams AJ, Prediction of IDDM in the general population: strategies based on combinations of autoantibody markers. Diabetes 1997;46(11):1701-10
  • Bonifacio E, Genovese S, Braghi S, Islet autoantibody markers in IDDM: risk assessment strategies yielding high sensitivity. Diabetologia 1995;38(7):816-22
  • Jin Y, Chen X, Podolsky R, APC dysfunction is correlated with defective suppression of T cell proliferation in human type 1 diabetes. Clin Immunol 2009;130(3):272-9
  • Hedman M, Faresjo M, Axelsson S, Impaired CD4 and CD8 T cell phenotype and reduced chemokine secretion in recent-onset type 1 diabetic children. Clin Exp Immunol 2008;153(3):360-8
  • Chen X, Makala LH, Jin Y, Type 1 diabetes patients have significantly lower frequency of plasmacytoid dendritic cells in the peripheral blood. Clin Immunol 2008;129(3):413-18
  • Hinkmann C, Knerr I, Hahn EG, Reduced frequency of peripheral plasmacytoid dendritic cells in type 1 diabetes. Horm Metab Res 2008;40(11):767-71
  • Driver JP, Scheuplein F, Chen YG, Invariant natural killer T-cell control of type 1 diabetes: a dendritic cell genetic decision of a silver bullet or Russian roulette. Diabetes 2010;59(2):423-32
  • Eisenbarth GS, Kotzin BL. Enumerating autoreactive T cells in peripheral blood: a big step in diabetes prediction. J Clin Invest 2003;111(2):179-81
  • Noble JA, Valdes AM, Cook M, The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families. Am J Hum Genet 1996;59(5):1134-48
  • Franke A, Hampe J, Rosenstiel P, Systematic association mapping identifies NELL1 as a novel IBD disease gene. PLoS ONE 2007;2(1):e691
  • Kugathasan S, Baldassano RN, Bradfield JP, Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nat Genet 2008;40(10):1211-15
  • Aulchenko YS, Hoppenbrouwers IA, Ramagopalan SV, Genetic variation in the KIF1B locus influences susceptibility to multiple sclerosis. Nat Genet 2008;40(12):1402-3
  • Comabella M, Craig DW, Camina-Tato M, Identification of a novel risk locus for multiple sclerosis at 13q31.3 by a pooled genome-wide scan of 500,000 single nucleotide polymorphisms. PLoS ONE 2008;3(10):e3490
  • Saxena R, Voight BF, Lyssenko V, Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007;316(5829):1331-6
  • Sladek R, Rocheleau G, Rung J, A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007;445(7130):881-5
  • Timpson NJ, Lindgren CM, Weedon MN, Adiposity-related heterogeneity in patterns of type 2 diabetes susceptibility observed in genome-wide association data. Diabetes 2009;58(2):505-10
  • Zeggini E, Scott LJ, Saxena R, Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008;40(5):638-45
  • Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447(7145):661-78
  • Barrett JC, Clayton DG, Concannon P, Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 2009
  • Grant SF, Qu HQ, Bradfield JP, Follow-up analysis of genome-wide association data identifies novel loci for type 1 diabetes. Diabetes 2009;58(1):290-5
  • Grant SF, Hakonarson H. Genome-wide association studies in type 1 diabetes. Curr Diab Rep 2009;9(2):157-63
  • Hakonarson H, Qu HQ, Bradfield JP, A novel susceptibility locus for type 1 diabetes on Chr12q13 identified by a genome-wide association study. Diabetes 2008;57(4):1143-6
  • Smyth DJ, Cooper JD, Bailey R, A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet 2006;38(6):617-19
  • Cooper JD, Smyth DJ, Smiles AM, Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat Genet 2008;40(12):1399-401
  • Todd JA, Walker NM, Cooper JD, Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 2007;39(7):857-64
  • GWAS Catalog. Available from: www.genome.gov/gwastudies [Last accessed July 9 2010]
  • Fung EY, Smyth DJ, Howson JM, Analysis of 17 autoimmune disease-associated variants in type 1 diabetes identifies 6q23/TNFAIP3 as a susceptibility locus. Genes Immun 2009;10(2):188-91
  • Todd JA. Statistical false positive or true disease pathway? Nat Genet 2006;38(7):731-3
  • Concannon P, Chen WM, Julier C, Genome-wide scan for linkage to type 1 diabetes in 2,496 multiplex families from the Type 1 Diabetes Genetics Consortium. Diabetes 2009;58(4):1018-22
  • Howson JM, Walker NM, Smyth DJ, Analysis of 19 genes for association with type I diabetes in the Type I Diabetes Genetics Consortium families. Genes Immun 2009;10(Suppl 1):S74-84
  • Qu HQ, Bradfield JP, Grant SF, Remapping the type I diabetes association of the CTLA4 locus. Genes Immun 2009;10(Suppl 1):S27-32
  • Ueda H, Howson JM, Esposito L, Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003;423(6939):506-11
  • Wei Z, Wang K, Qu HQ, From disease association to risk assessment: an optimistic view from genome-wide association studies on type 1 diabetes. PLoS Genet 2009;5(10):e1000678
  • Eckenrode SE, Ruan Q, Yang P, Gene expression profiles define a key checkpoint for type 1 diabetes in NOD mice. Diabetes 2004;53(2):366-75
  • Kodama K, Butte AJ, Creusot RJ, Tissue- and age-specific changes in gene expression during disease induction and progression in NOD mice. Clin Immunol 2008;129(2):195-201
  • Mi QS, Meagher C, Delovitch TL. CD1d-restricted NKT regulatory cells: functional genomic analyses provide new insights into the mechanisms of protection against Type 1 diabetes. Novartis Found Symp 2003;252:146-60
  • Irie J, Reck B, Wu Y, Genome-wide microarray expression analysis of CD4+ T Cells from nonobese diabetic congenic mice identifies Cd55 (Daf1) and Acadl as candidate genes for type 1 diabetes. J Immunol 2008;180(2):1071-9
  • Chen Z, Herman AE, Matos M, Where CD4+CD25+ T reg cells impinge on autoimmune diabetes. J Exp Med 2005;202(10):1387-97
  • Zucchelli S, Holler P, Yamagata T, Defective central tolerance induction in NOD mice: genomics and genetics. Immunity 2005;22(3):385-96
  • Matos M, Park R, Mathis D, Progression to islet destruction in a cyclophosphamide-induced transgenic model: a microarray overview. Diabetes 2004;53(9):2310-21
  • Ortis F, Naamane N, Flamez D, Cytokines interleukin-1beta and tumor necrosis factor-alpha regulate different transcriptional and alternative splicing networks in primary beta-cells. Diabetes 2010;59(2):358-74
  • Ortis F, Pirot P, Naamane N, Induction of nuclear factor-kappaB and its downstream genes by TNF-alpha and IL-1beta has a pro-apoptotic role in pancreatic beta cells. Diabetologia 2008;51(7):1213-25
  • Flamez D, Roland I, Berton A, A genomic-based approach identifies FXYD domain containing ion transport regulator 2 (FXYD2)gamma as a pancreatic beta cell-specific biomarker. Diabetologia 2010;53(7):1372-83
  • Kutlu B, Burdick D, Baxter D, Detailed transcriptome atlas of the pancreatic beta cell. BMC Med Genomics 2009;2:3
  • Kutlu B, Cardozo AK, Darville MI, Discovery of gene networks regulating cytokine-induced dysfunction and apoptosis in insulin-producing INS-1 cells. Diabetes 2003;52(11):2701-19
  • Eizirik DL, Kutlu B, Rasschaert J, Use of microarray analysis to unveil transcription factor and gene networks contributing to Beta cell dysfunction and apoptosis. Ann NY Acad Sci 2003;1005:55-74
  • Collins CD, Purohit S, Podolsky RH, The application of genomic and proteomic technologies in predictive, preventive and personalized medicine. Vascul Pharmacol 2006;45(5):258-67
  • Elo LL, Mykkanen J, Nikula T, Early suppression of immune response pathways characterizes children with prediabetes in genome-wide gene expression profiling. J Autoimmun 2010;35(1):70-6
  • Kaizer EC, Glaser CL, Chaussabel D, Gene expression in peripheral blood mononuclear cells from children with diabetes. J Clin Endocrinol Metab 2007;92(9):3705-11
  • Reynier F, Pachot A, Paye M, Specific gene expression signature associated with development of autoimmune type-I diabetes using whole-blood microarray analysis. Genes Immun 2010;11(3):269-78
  • Wang X, Jia S, Geoffrey R, Identification of a molecular signature in human type 1 diabetes mellitus using serum and functional genomics. J Immunol 2008;180(3):1929-37
  • nPOD program. Available from: http://www.jdrfnpod.org/index.php [Last accessed July 9 2010]
  • Padmos RC, Hillegers MH, Knijff EM, A discriminating messenger RNA signature for bipolar disorder formed by an aberrant expression of inflammatory genes in monocytes. Arch Gen Psychiatry 2008;65(4):395-407
  • Beyan H, Drexhage RC, van der Heul NL, Monocyte gene-expression profiles associated with childhood-onset type 1 diabetes and disease risk: a study of identical twins. Diabetes 2010;59(7):1751-5
  • The TEDDY Group. The Environmental Determinants of Diabetes in the Young (TEDDY) study: study design. Pediatr Diabetes 2007;8(5):286-98
  • Randall SA, McKay MJ, Molloy MP. Evaluation of blood collection tubes using selected reaction monitoring MS: implications for proteomic biomarker studies. Proteomics 2010;10(10):2050-6
  • Borges CR, Rehder DS, Jarvis JW, Full-length characterization of proteins in human populations. Clin Chem 2010;56(2):202-11
  • Zhi W, Purohit S, Carey C, Proteomic technologies for the discovery of type 1 diabetes biomarkers. J Diabetes Sci Technol 2010;4(4):993-1003
  • Wang H, Hanash S. Intact-protein based sample preparation strategies for proteome analysis in combination with mass spectrometry. Mass Spectrom Rev 2005;24(3):413-26
  • Zhang X, Fang A, Riley CP, Multi-dimensional liquid chromatography in proteomics – a review. Anal Chim Acta 2010;664(2):101-13
  • Kakisaka T, Kondo T, Okano T, Plasma proteomics of pancreatic cancer patients by multi-dimensional liquid chromatography and two-dimensional difference gel electrophoresis (2D-DIGE): up-regulation of leucine-rich alpha-2-glycoprotein in pancreatic cancer. J Chromatogr B Analyt Technol Biomed Life Sci 2007;852(1-2):257-67
  • Okano T, Kondo T, Kakisaka T, Plasma proteomics of lung cancer by a linkage of multi-dimensional liquid chromatography and two-dimensional difference gel electrophoresis. Proteomics 2006;6(13):3938-48
  • Immler D, Greven S, Reinemer P. Targeted proteomics in biomarker validation: detection and quantification of proteins using a multi-dimensional peptide separation strategy. Proteomics 2006;6(10):2947-58
  • Wang H, Hanash S. Multi-dimensional liquid phase based separations in proteomics. J Chromatogr B Analyt Technol Biomed Life Sci 2003;787(1):11-18
  • Chatterjee NK, Haley TM, Nejman C. Functional alterations in pancreatic beta cells as a factor in virus-induced hyperglycemia in mice. J Biol Chem 1985;260(23):12786-91
  • Waanders LF, Chwalek K, Monetti M, Quantitative proteomic analysis of single pancreatic islets. Proc Natl Acad Sci USA 2009;106(45):18902-7
  • Sparre T, Bergholdt R, Nerup J, Application of genomics and proteomics in type 1 diabetes pathogenesis research. Expert Rev Mol Diagn 2003;3(6):743-57
  • Sparre T, Larsen MR, Heding PE, Unraveling the pathogenesis of type 1 diabetes with proteomics: present and future directions. Mol Cell Proteomics 2005;4(4):441-57
  • Suss C, Solimena M. Proteomic profiling of beta-cells using a classical approach–two-dimensional gel electrophoresis. Exp Clin Endocrinol Diabetes 2008;116(Suppl 1):S13-20
  • Winer S, Tsui H, Lau A, Autoimmune islet destruction in spontaneous type 1 diabetes is not beta-cell exclusive. Nat Med 2003;9(2):198-205
  • Hu L, Evers S, Lu ZH, Two-dimensional protein database of human pancreas. Electrophoresis 2004;25(3):512-18
  • Hohmeier HE, Newgard CB. Cell lines derived from pancreatic islets. Mol Cell Endocrinol 2004;228(1-2):121-8
  • Rossini AA, Handler ES, Mordes JP, Human autoimmune diabetes mellitus: lessons from BB rats and NOD mice – Caveat emptor. Clin Immunol Immunopathol 1995;74(1):2-9
  • Brunner Y, Schvartz D, Priego-Capote F, Glucotoxicity and pancreatic proteomics. J Proteomics 2009;71(6):576-91
  • Sundsten T, Ortsater H. Proteomics in diabetes research. Mol Cell Endocrinol 2009;297(1-2):93-103
  • Hedman M, Ludvigsson J, Faresjo MK. Nicotinamide reduces high secretion of IFN-gamma in high-risk relatives even though it does not prevent type 1 diabetes. J Interferon Cytokine Res 2006;26(4):207-13
  • Hussain MJ, Peakman M, Gallati H, Elevated serum levels of macrophage-derived cytokines precede and accompany the onset of IDDM. Diabetologia 1996;39(1):60-9
  • Karlsson MG, Lawesson SS, Ludvigsson J. Th1-like dominance in high-risk first-degree relatives of type I diabetic patients. Diabetologia 2000;43(6):742-9
  • Karlsson Faresjo MG, Ludvigsson J. Diminished Th1-like response to autoantigens in children with a high risk of developing type 1 diabetes. Scand J Immunol 2005;61(2):173-9
  • Karlsson Faresjo MG, Ernerudh J, Ludvigsson J. Cytokine profile in children during the first 3 months after the diagnosis of type 1 diabetes. Scand J Immunol 2004;59(5):517-26
  • Ryden A, Stechova K, Durilova M, Switch from a dominant Th1-associated immune profile during the pre-diabetic phase in favour of a temporary increase of a Th3-associated and inflammatory immune profile at the onset of type 1 diabetes. Diabetes Metab Res Rev 2009;25(4):335-43
  • Rubtsov YP, Rudensky AY. TGFbeta signalling in control of T-cell-mediated self-reactivity. Nat Rev Immunol 2007;7(6):443-53
  • Fujio K, Okamura T, Yamamoto K. The Family of IL-10-secreting CD4+ T cells. Adv Immunol 2010;105:99-130
  • Rubtsov YP, Rasmussen JP, Chi EY, Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 2008;28(4):546-58
  • Metz TO, Qian WJ, Jacobs JM, Application of proteomics in the discovery of candidate protein biomarkers in a diabetes autoantibody standardization program sample subset. J Proteome Res 2008;7(2):698-707
  • Purohit S, Podolsky R, Schatz D, Assessing the utility of SELDI-TOF and model averaging for serum proteomic biomarker discovery. Proteomics 2006;6(24):6405-15
  • Overgaard AJ, Hansen HG, Lajer M, Plasma proteome analysis of patients with type 1 diabetes with diabetic nephropathy. Proteome Sci 2010;8:4
  • Cooper JD, Walker NM, Smyth DJ, Follow-up of 1715 SNPs from the Wellcome Trust Case Control Consortium genome-wide association study in type I diabetes families. Genes Immun 2009;10(Suppl 1):S85-94
  • Wallace C, Smyth DJ, Maisuria-Armer M, The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nat Genet 2010;42(1):68-71
  • Chen R, Yi EC, Donohoe S, Pancreatic cancer proteome: the proteins that underlie invasion, metastasis, and immunologic escape. Gastroenterology 2005;129(4):1187-97
  • Coute Y, Brunner Y, Schvartz D, Early activation of the fatty acid metabolism pathway by chronic high glucose exposure in rat insulin secretory beta-cells. Proteomics 2010;10(1):59-71
  • Choi JS, Cho YK, Yoon SH, Proteomic analysis of porcine pancreas development. BMB Rep 2009;42(10):661-6
  • Alberti A, Karamessinis P, Peroulis M, ERp46 is reduced by high glucose and regulates insulin content in pancreatic beta-cells. Am J Physiol Endocrinol Metab 2009;297(3):E812-21
  • Song G, Cui Y, Zhong N, Proteomic characterisation of pancreatic islet beta-cells stimulated with pancreatic carcinoma cell conditioned medium. J Clin Pathol 2009;62(9):802-7
  • Nyblom HK, Bugliani M, Fung E, Apoptotic, regenerative, and immune-related signaling in human islets from type 2 diabetes individuals. J Proteome Res 2009;8(12):5650-6
  • Antwi K, Hanavan PD, Myers CE, Proteomic identification of an MHC-binding peptidome from pancreas and breast cancer cell lines. Mol Immunol 2009;46(15):2931-7
  • Lee HS, Jeong J, Lee KJ. Characterization of vesicles secreted from insulinoma NIT-1 cells. J Proteome Res 2009;8(6):2851-62
  • Jin J, Park J, Kim K, Detection of differential proteomes of human beta-cells during islet-like differentiation using iTRAQ labeling. J Proteome Res 2009;8(3):1393-403
  • Jeffrey KD, Alejandro EU, Luciani DS, Carboxypeptidase E mediates palmitate-induced beta-cell ER stress and apoptosis. Proc Natl Acad Sci USA 2008;105(24):8452-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.