33
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Cancer stem cell markers: what is their diagnostic value?

, PhD, , MD, , MD, , MD & , MD
Pages 473-481 | Published online: 10 Nov 2010

Bibliography

  • Liu R, Wang XH, Chen GY, The prognostic role of a gene signature from tumorigenic breast-cancer cells. N J Med 2007;356:217-26
  • Rasheed ZA, Yang J, Wang QJ, Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst 2010;102:340-51
  • Clarke MF, Dick JE, Dirks PB, Cancer stem cells – perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 2006;66:9339-44
  • Pearce DJ, Taussig D, Simpson C, Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells 2005;23:752-60
  • Reya T, Morrison SJ, Clarke MF, Stem cells, cancer, and cancer stem cells. Nature 2001;414:105-11
  • Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005;5:275-84
  • Passegue E, Jamieson CH, Ailles LE, Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA 2003;100(Suppl 1):11842-9
  • Santini MT, Rainaldi G. Three-dimensional spheroid model in tumor biology. Pathobiology 1999;67:148-57
  • Holtfreter J. A study of the mechanics of gastrulation, Part II. J Exp Zool 1944;95:171-212
  • Holtfreter J. Neural induction in explants which have passed through a sublethal cytolysis. J Exp Zool 1947;106:197-222
  • Moscona A. Cell suspensions from organ rudiments of chick embryos. Exp Cell Res 1952;3:535-9
  • Moscona H, Moscona A. The development in vitro of the anterior lobe of the embryonic chick pituitary. J Anat 1952;86:278-86
  • Halpern B, Pejsacho B, Febvre HL, Differences in patterns of aggregation of malignant and non-malignant mammalian cells. Nature 1966;209:157-9
  • Schleich A. Studies on aggregation of human ascites tumor cells. Eur J Cancer 1967;3:243-6
  • Knudsen KA, Horwitz AF. Tandem events in myoblast fusion. Dev Biol 1977;58:328-38
  • Santini MT, Bonincontro A, Cametti C, Cesium ions delay membrane-fusion of chick-embryo myoblasts in vitro – a conductivity study. Biochim Biophys Acta 1988;945:56-64
  • Santini MT, Indovina PL, Hausman RE. Changes in myoblast membrane order during differentiation as measured by electron-paramagnetic-res. Biochim Biophys Acta 1987;896:19-25
  • Galli R, Binda E, Orfanelli U, Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004;64:7011-21
  • Laks DR, Masterman-Smith M, Visnyei K, Neurosphere formation is an independent predictor of clinical outcome in malignant glioma. Stem Cells 2009;27:980-7
  • Dontu G, Abdallah WM, Foley JM, In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003;17:1253-70
  • Ponti D, Costa A, Zaffaroni N, Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 2005;65:5506-11
  • Gibbs CP, Kukekov VG, Reith JD, Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia 2005;7:967-76
  • Wang L, Park P, Lin CY. Characterization of stem cell attributes in human osteosarcoma cell lines. Cancer Biol Ther 2009;8:543-52
  • Donnenberg VS, Donnenberg AD. Multiple drug resistance in cancer revisited: The cancer stem cell hypothesis. J Clin Pharmacol 2005;45:872-7
  • Biedler JL, Riehm H. Cellular resistance to actinomycin-D in Chinese hamster cells in-vitro - cross-resistance, radioautographic, and cytogenetic studies. Cancer Res 1970;30:1174-84
  • Ling V, Thompson LH. Reduced permeability in cho-cells as a mechanism of resistance to colchicine. J Cell Physiol 1974;83:103-16
  • Doyle LA, Yang WD, Abruzzo LV, A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 1998;95:15665-70
  • Harker WG, Slade DL, Dalton WS, Multidrug resistance in mitoxantrone-selected Hl-60 leukemia-cells in the absence of p-glycoprotein overexpression. Cancer Res 1989;49:4542-9
  • Goodell MA, Brose K, Paradis G, Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996;183:1797-806
  • Arai F, Hirao A, Ohmura M, Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004;118:149-61
  • Zhang JW, Niu C, Ye L, Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003;425:836-41
  • Jin LQ, Lee EM, Ramshaw HS, Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell 2009;5:31-42
  • Majeti R, Chao MP, Alizadeh AA, CD47 Is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009;138:286-99
  • Jin LQ, Hope KJ, Zhai QL, Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006;12:1167-74
  • Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008;8:755-68
  • Ginestier C, Liu SL, Diebel ME, CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Investig 2010;120:485-97
  • Kosodo Y, Roper K, Haubensak W, Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J 2004;23:2314-24
  • Bauer N, Fonseca AV, Florek M, New insights into the cell biology of hematopoietic progenitors by studying prominin-1 (CD133). Cells Tissues Organs 2008;188:127-38
  • Ferrandina G, Petrillo M, Bonanno G, Targeting CD133 antigen in cancer. Expert Opin Ther Targets 2009;13:823-37
  • Wu A, Wiesner S, Xiao J, Expression of MHC I and NK ligands on human CD133+ glioma cells: possible targets of immunotherapy. J Neurooncol 2007;83:121-31
  • Zeppernick F, Ahmadi R, Campos B, Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 2008;14:123-9
  • Song W, Li H, Tao K, Expression and clinical significance of the stem cell marker CD133 in hepatocellular carcinoma. Int J Clin Pract 2008;62:1212-18
  • Lin EH, Hassan M, Li Y, Elevated circulating endothelial progenitor marker CD133 messenger RNA levels predict colon cancer recurrence. Cancer 2007;110:534-42
  • Liu GT, Yuan XP, Zeng ZH, Analysis of gene expression and chemoresistance of CDI33(+) cancer stem cells in glioblastoma. Mol Cancer 2006;5:67
  • Ma S, Lee TK, Zheng BJ, CD133(+) HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 2008;27:1749-58
  • Bao SD, Wu QL, McLendon RE, Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006;444:756-60
  • Blazek ER, Foutch JL, Maki G. Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133-cells, and the CD133+ sector is enlarged by hypoxia. Int J Radiat Oncol Biol Phys 2007;67:1-5
  • Chiou SH, Kao CL, Chen YW, Identification of CD133-positive radioresistant cells in atypical teratoid/rhabdoid tumor. Plos One 2008;3:e2090
  • Clement V, Sanchez P, de Tribolet N, HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 2007;17:165-72
  • Fan X, Matsui W, Khaki L, Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 2006;66:7445-52
  • Berman DM, Karhadkar SS, Hallahan AR, Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 2002;297:1559-61
  • Romer JT, Kimura H, Magdaleno S, Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/-)p53(-/-) mice. Cancer Cell 2004;6:229-40
  • Xie J, Johnson RL, Zhang X, Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Res 1997;57:2369-72
  • Grommes C, Landreth GE, Sastre M, Inhibition of in vivo glioma growth and invasion by peroxisome proliferator-activated receptor gamma agonist treatment. Mol Pharmacol 2006;70:1524-33
  • Chearwae W, Bright JJ. PPARgamma agonists inhibit growth and expansion of CD133+ brain tumour stem cells. Br J Cancer 2008;99:2044-53
  • Kubohara Y. Effects of differentiation-inducing factors of Dictyostelium discoideum on human leukemia K562 cells: DIF-3 is the most potent anti-leukemic agent. Eur J Pharmacol 1999;381:57-62
  • Takahashi-Yanaga F, Sasaguri T. Drug development targeting the glycogen synthase kinase-3beta (GSK-3beta)-mediated signal transduction pathway: inhibitors of the Wnt/beta-catenin signaling pathway as novel anticancer drugs. J Pharmacol Sci 2009;109:179-83
  • Smith LM, Nesterova A, Ryan MC, CD133/prominin-1 is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers. Br J Cancer 2008;99:100-9
  • Schwemmlein M, Peipp M, Barbin K, A CD33-specific single-chain immunotoxin mediates potent apoptosis of cultured human myeloid leukaemia cells. Br J Haematol 2006;133:141-51
  • Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med 2006;355:1253-61
  • Zhang H, Wang ZZ. Mechanisms that mediate stem cell self-renewal and differentiation. J Cell Biochem 2008;103:709-18
  • Ezeh UI, Turek PJ, Reijo RA, Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer 2005;104:2255-65
  • Hanna LA, Foreman RK, Tarasenko IA, Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev 2002;16:2650-61
  • Rodda DJ, Chew JL, Lim LH, Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 2005;280:24731-7
  • Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003;3:895-902
  • Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 2000;24:372-6
  • Pesce M, Scholer HR. Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 2001;19:271-8
  • Gidekel S, Pizov G, Bergman Y, Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 2003;4:361-70
  • Hochedlinger K, Yamada Y, Beard C, Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 2005;121:465-77
  • Chang CC, Shieh GS, Wu P, Oct-3/4 expression reflects tumor progression and regulates motility of bladder cancer cells. Cancer Res 2008;68:6281-91
  • Chen YC, Hsu HS, Chen YW, Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One 2008;3:e2637
  • Looijenga LH, Stoop H, de Leeuw HP, POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Res 2003;63:2244-50
  • Peng S, Maihle NJ, Huang Y. Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene 2010;29:2153-9
  • Seigel GM, Hackam AS, Ganguly A, Human embryonic and neuronal stem cell markers in retinoblastoma. Mol Vis 2007;13:823-32
  • Tai MH, Chang CC, Kiupel M, Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 2005;26:495-502
  • Levings PP, McGarry SV, Currie TP, Expression of an exogenous human Oct-4 promoter identifies tumor-initiating cells in osteosarcoma. Cancer Res 2009;69:5648-55
  • Darr H, Mayshar Y, Benvenisty N. Overexpression of NANOG in human ES cells enables feeder-free growth while inducing primitive ectoderm features. Development 2006;133:1193-201
  • Zaehres H, Lensch MW, Daheron L, High-efficiency RNA interference in human embryonic stem cells. Stem Cells 2005;23:299-305
  • Chiou SH, Yu CC, Huang CY, Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res 2008;14:4085-95
  • Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006;7:131-42
  • Hollier BG, Evans K, Mani SA. The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. J Mammary Gland Biol Neoplasia 2009;14:29-43
  • Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009;9:265-73
  • Shook D, Keller R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev 2003;120:1351-83
  • Mani SA, Guo W, Liao MJ, The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008;133:704-15
  • Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 2010 [Epub ahead of print]
  • Vasiliou V, Pappa A, Petersen DR. Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism. Chem Biol Interact 2000;129:1-19
  • Duester G. Families of retinoid dehydrogenases regulating vitamin A function: production of visual pigment and retinoic acid. Eur J Biochem 2000;267:4315-24
  • Sophos NA, Vasiliou V. Aldehyde dehydrogenase gene superfamily: the 2002 update. Chem Biol Interact 2003;143-144:5-22
  • Jones RJ, Barber JP, Vala MS, Assessment of aldehyde dehydrogenase in viable cells. Blood 1995;85:2742-6
  • Jones RJ, Collector MI, Barber JP, Characterization of mouse lymphohematopoietic stem cells lacking spleen colony-forming activity. Blood 1996;88:487-91
  • Storms RW, Trujillo AP, Springer JB, Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci USA 1999;96:9118-23
  • Armstrong L, Stojkovic M, Dimmick I, Phenotypic characterization of murine primitive hematopoietic progenitor cells isolated on basis of aldehyde dehydrogenase activity. Stem Cells 2004;22:1142-51
  • Corti S, Locatelli F, Papadimitriou D, Identification of a primitive brain-derived neural stem cell population based on aldehyde dehydrogenase activity. Stem Cells 2006;24:975-85
  • Hess DA, Wirthlin L, Craft TP, Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood 2006;107:2162-9
  • Cheung AM, Wan TS, Leung JC, Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia 2007;21:1423-30
  • Charafe-Jauffret E, Ginestier C, Iovino F, Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 2009;69:1302-13
  • Ginestier C, Hur MH, Charafe-Jauffret E, ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007;1:555-67
  • Huang EH, Hynes MJ, Zhang T, Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 2009;69:3382-9
  • Ma S, Chan KW, Lee TK, Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol Cancer Res 2008;6:1146-53
  • Burger PE, Gupta R, Xiong X, High aldehyde dehydrogenase activity: a novel functional marker of murine prostate stem/progenitor cells. Stem Cells 2009;27:2220-8
  • Ucar D, Cogle CR, Zucali JR, Aldehyde dehydrogenase activity as a functional marker for lung cancer. Chem Biol Interact 2009;178:48-55
  • Wang L, Park P, Zhang H, Prospective identification of tumorigenic osteosarcoma cancer stem cells in OS99-1 cells based on high aldehyde dehydrogenase activity. Int J Cancer 2010 [Epub ahead of print]
  • Bidlingmaier S, Zhu X, Liu B. The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells. J Mol Med 2008;86:1025-32

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.