70
Views
8
CrossRef citations to date
0
Altmetric
Reviews

What makes a prognostic biomarker in CNS diseases: strategies for targeted biomarker discovery? Part 1: acute and monophasic diseases

, MD & , MD PhD
Pages 333-346 | Published online: 27 May 2011

Bibliography

  • Martin R, Bielekova B, Hohlfeld R, Utz U. Biomarkers in multiple sclerosis. Dis.Markers 2006;22:183-5
  • Kuhle J, Petzold A. What makes a prognostic biomarker in CNS diseases: strategies for targeted biomarker discovery Part 2: chronic progressive and relapsing disease. Expert Opin Med Diagn; In press
  • Brainin M, Barnes M, Baron JC, Guidance for the preparation of neurological management guidelines by EFNS scientific task forces–revised recommendations 2004. Eur J Neurol 2004;11:577-81
  • Griffin JW, Li CY, Ho TW, Guillain-Barre syndrome in northern China. The spectrum of neuropathological changes in clinically defined cases. Brain 1995;118(Pt 3):577-95
  • Hughes RA, Cornblath DR. Guillain-Barre syndrome. Lancet 2005;366:1653-66
  • Kruger H, Englert D, Pflughaupt KW. Demonstration of oligoclonal immunoglobulin G in Guillain-Barre syndrome and lymphocytic meningoradiculitis by isoelectric focusing. J Neurol 1981;226:15-24
  • Segurado OG, Kruger H, Mertens HG. Clinical significance of serum and CSF findings in the Guillain-Barre syndrome and related disorders. J Neurol 1986;233:202-8
  • Lyu RK, Tang LM, Cheng SY, Guillain-Barre syndrome in Taiwan: a clinical study of 167 patients. J Neurol Neurosurg Psychiatry 1997;63:494-500
  • Singh NK, Jaiswal AK, Misra S, Srivastava PK. Prognostic factors in Guillain-Barre syndrome. J Assoc Physicians India 1994;42:777-9
  • Asbury AK, Cornblath DR. Assessment of current diagnostic criteria for Guillain-Barre syndrome. Ann Neurol 1990;27(Suppl):S21-4
  • van der Meche FG, van Doorn PA, Meulstee J, Jennekens FG. Diagnostic and classification criteria for the Guillain-Barre syndrome. Eur Neurol 2001;45:133-9
  • Hughes RA, Swan AV, Raphael JC, Immunotherapy for Guillain-Barre syndrome: a systematic review. Brain 2007;130:2245-57
  • Koningsveld R, van Doorn PA, Schmitz PI, Mild forms of Guillain-Barre syndrome in an epidemiologic survey in The Netherlands. Neurology 2000;54:620-5
  • Chio A, Cocito D, Leone M, Guillain-Barre syndrome: a prospective, population-based incidence and outcome survey. Neurology 2003;60:1146-50
  • Visser LH, Schmitz PI, Meulstee J, Prognostic factors of Guillain-Barre syndrome after intravenous immunoglobulin or plasma exchange. Dutch Guillain-Barre Study Group. Neurology 1999;53:598-604
  • Petzold A, Hinds N, Murray NM, CSF neurofilament levels: a potential prognostic marker in Guillain-Barre syndrome. Neurology 2006;67:1071-3
  • Petzold A, Brettschneider J, Jin K, CSF protein biomarkers for proximal axonal damage improve prognostic accuracy in the acute phase of Guillain-Barre syndrome. Muscle Nerve 2009;40:42-9
  • Brettschneider J, Petzold A, Sussmuth S, Tumani H. Cerebrospinal fluid biomarkers in Guillain-Barre syndrome–where do we stand? J Neurol 2009;256:3-12
  • Binder LI, Frankfurter A, Rebhun LI. The distribution of tau in the mammalian central nervous system. J Cell Biol 1985;101:1371-8
  • Jin K, Takeda A, Shiga Y, CSF tau protein: a new prognostic marker for Guillain-Barre syndrome. Neurology 2006;67:1470-2
  • Willison HJ, Yuki N. Peripheral neuropathies and anti-glycolipid antibodies. Brain 2002;125:2591-625
  • Yuki N, Koga M, Hirata K. Isolated internal ophthalmoplegia associated with immunoglobulin G anti-GQ1b antibody. Neurology 1998;51:1515-16
  • Yuki N, Odaka M, Hirata K. Acute ophthalmoparesis (without ataxia) associated with anti-GQ1b IgG antibody: clinical features. Ophthalmology 2001;108:196-200
  • Yuki N. Ganglioside mimicry and peripheral nerve disease. Muscle Nerve 2007;35:691-711
  • Carpo M, Pedotti R, Allaria S, Clinical presentation and outcome of Guillain-Barre and related syndromes in relation to anti-ganglioside antibodies. J Neurol Sci 1999;168:78-84
  • Koga M, Yuki N, Hirata K, Anti-GM1 antibody IgG subclass: a clinical recovery predictor in Guillain-Barre syndrome. Neurology 2003;60:1514-18
  • Annunziata P, Figura N, Galli R, Association of anti-GM1 antibodies but not of anti-cytomegalovirus, Campylobacter jejuni and Helicobacter pylori IgG, with a poor outcome in Guillain-Barre syndrome. J Neurol Sci 2003;213:55-60
  • Dourado ME, Duarte RC, Ferreira LC, Anti-ganglioside antibodies and clinical outcome of patients with Guillain-Barre Syndrome in northeast Brazil. Acta Neurol Scand 2003;108:102-8
  • Kuwabara S, Yuki N, Koga M, IgG anti-GM1 antibody is associated with reversible conduction failure and axonal degeneration in Guillain-Barre syndrome. Ann Neurol 1998;44:202-8
  • Vermuyten K, Lowenthal A, Karcher D. Detection of neuron specific enolase concentrations in cerebrospinal fluid from patients with neurological disorders by means of a sensitive enzyme immunoassay. Clin Chim Acta 1990;187:69-78
  • Mokuno K, Kiyosawa K, Sugimura K, Prognostic value of cerebrospinal fluid neuron-specific enolase and S-100b protein in Guillain-Barre syndrome. Acta Neurol.Scand 1994;89:27-30
  • Petzold A, Rosengren L, Verbeek MM, Glial fibrillary acidic protein in Guillain-Barre syndrome: methodological issues. Muscle Nerve 2009;39:711-12
  • Fleminger S, Ponsford J. Long term outcome after traumatic brain injury. BMJ 2005;331:1419-20
  • Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol 2008;7:728-41
  • Styrke J, Stalnacke BM, Sojka P, Bjornstig U. Traumatic brain injuries in a well-defined population: epidemiological aspects and severity. J Neurotrauma 2007;24:1425-36
  • Perel P, Arango M, Clayton T, Predicting outcome after traumatic brain injury: practical prognostic models based on large cohort of international patients. BMJ 2008;336:425-9
  • Hoge CW, McGurk D, Thomas JL, Mild traumatic brain injury in U.S. Soldiers returning from Iraq. N Engl J Med 2008;358:453-63
  • Hukkelhoven CW, Steyerberg EW, Rampen AJ, Patient age and outcome following severe traumatic brain injury: an analysis of 5600 patients. J Neurosurg 2003;99:666-73
  • Murray GD, Butcher I, McHugh GS, Multivariable prognostic analysis in traumatic brain injury: results from the IMPACT study. J Neurotrauma 2007;24:329-37
  • Hiler M, Czosnyka M, Hutchinson P, Predictive value of initial computerized tomography scan, intracranial pressure, and state of autoregulation in patients with traumatic brain injury. J Neurosurg 2006;104:731-7
  • Kirkness CJ, Burr RL, Cain KC, Relationship of cerebral perfusion pressure levels to outcome in traumatic brain injury. Acta Neurochir Suppl 2005;95:13-6
  • Vik A, Nag T, Fredriksli OA, Relationship of ‘dose’ of intracranial hypertension to outcome in severe traumatic brain injury. J Neurosurg 2008;109:678-84
  • Lew HL, Dikmen S, Slimp J, Use of somatosensory-evoked potentials and cognitive event-related potentials in predicting outcomes of patients with severe traumatic brain injury. Am J Phys Med Rehabil 2003;82:53-61
  • Carter BG, Butt W. Review of the use of somatosensory evoked potentials in the prediction of outcome after severe brain injury. Crit Care Med 2001;29:178-86
  • Pleines UE, Morganti-Kossmann MC, Rancan M, S-100 beta reflects the extent of injury and outcome, whereas neuronal specific enolase is a better indicator of neuroinflammation in patients with severe traumatic brain injury. J Neurotrauma 2001;18:491-8
  • Hayakata T, Shiozaki T, Tasaki O, Changes in CSF S100B and cytokine concentrations in early-phase severe traumatic brain injury. Shock 2004;22:102-7
  • Kay AD, Petzold A, Kerr M, Alterations in cerebrospinal fluid apolipoprotein E and amyloid beta-protein after traumatic brain injury. J Neurotrauma 2003;20:943-52
  • Kay AD, Petzold A, Kerr M, Cerebrospinal fluid apolipoprotein E concentration decreases after traumatic brain injury. J Neurotrauma 2003;20:243-50
  • Lima JE, Takayanagui OM, Garcia LV, Leite JP. Use of neuron-specific enolase for assessing the severity and outcome in patients with neurological disorders. Braz J Med Biol Res 2004;37:19-26
  • Ross SA, Cunningham RT, Johnston CF, Rowlands BJ. Neuron-specific enolase as an aid to outcome prediction in head injury. Br J Neurosurg 1996;10:471-6
  • Savola O, Pyhtinen J, Leino TK, Effects of head and extracranial injuries on serum protein S100B levels in trauma patients. J Trauma 2004;56:1229-34
  • Vos PE, van Gils M, Beems T, Increased GFAP and S100beta but not NSE serum levels after subarachnoid haemorrhage are associated with clinical severity. Eur J Neurol 2006;13:632-8
  • Petzold A, Green AJ, Keir G, Role of serum S100B as an early predictor of high intracranial pressure and mortality in brain injury: a pilot study. Crit Care Med 2002;30:2705-10
  • Vos PE, Jacobs B, Andriessen TM, GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study. Neurology 2010;75:1786-93
  • Rainey T, Lesko M, Sacho R, Predicting outcome after severe traumatic brain injury using the serum S100B biomarker: results using a single (24h) time-point. Resuscitation 2009;80:341-5
  • Murillo-Cabezas F, Munoz-Sanchez MA, Rincon-Ferrari MD, The prognostic value of the temporal course of S100beta protein in post-acute severe brain injury: a prospective and observational study. Brain Inj 2010;24:609-19
  • Berger RP, Pierce MC, Wisniewski SR, Neuron-specific enolase and S100B in cerebrospinal fluid after severe traumatic brain injury in infants and children. Pediatrics 2002;109:E31-7
  • Honda M, Tsuruta R, Kaneko T, Serum glial fibrillary acidic protein is a highly specific biomarker for traumatic brain injury in humans compared with S-100B and neuron-specific enolase. J Trauma 2010;69:104-9
  • Noseworthy TW, Anderson BJ, Noseworthy AF, Cerebrospinal fluid myelin basic protein as a prognostic marker in patients with head injury. Crit Care Med 1985;13:743-6
  • Garcia-Alix A, Cabanas F, Pellicer A, Neuron-specific enolase and myelin basic protein: relationship of cerebrospinal fluid concentrations to the neurologic condition of asphyxiated full-term infants. Pediatrics 1994;93:234-40
  • Zemlan FP, Rosenberg WS, Luebbe PA, Quantification of axonal damage in traumatic brain injury: affinity purification and characterization of cerebrospinal fluid tau proteins. J Neurochem 1999;72:741-50
  • Zemlan FP, Jauch EC, Mulchahey JJ, C-tau biomarker of neuronal damage in severe brain injured patients: association with elevated intracranial pressure and clinical outcome. Brain Res 2002;947:131-9
  • Ost M, Nylen K, Csajbok L, Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology 2006;67:1600-4
  • Liliang PC, Liang CL, Weng HC, Tau proteins in serum predict outcome after severe traumatic brain injury. J Surg Res 2010;160:302-7
  • Kay A, Petzold A, Kerr M, Temporal alterations in cerebrospinal fluid amyloid beta-protein and apolipoprotein E after subarachnoid hemorrhage. Stroke 2003;34:e240-3
  • Franz G, Beer R, Kampfl A, Amyloid beta 1-42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology 2003;60:1457-61
  • Raby CA, Morganti-Kossmann MC, Kossmann T, Traumatic brain injury increases beta-amyloid peptide 1-42 in cerebrospinal fluid. J Neurochem 1998;71:2505-9
  • Emmerling MR, Morganti-Kossmann MC, Kossmann T, Traumatic brain injury elevates the Alzheimer's amyloid peptide A beta 42 in human CSF. A possible role for nerve cell injury. Ann NY Acad Sci 2000;903:118-22
  • Cardali S, Maugeri R. Detection of alphaII-spectrin and breakdown products in humans after severe traumatic brain injury. J Neurosurg Sci 2006;50:25-31
  • Farkas O, Polgar B, Szekeres-Bartho J, Spectrin breakdown products in the cerebrospinal fluid in severe head injury–preliminary observations. Acta Neurochir (Wien) 2005;147:855-61
  • Brophy GM, Pineda JA, Papa L, AlphaII-Spectrin breakdown product cerebrospinal fluid exposure metrics suggest differences in cellular injury mechanisms after severe traumatic brain injury. J Neurotrauma 2009;26:471-9
  • Pineda JA, Lewis SB, Valadka AB, Clinical significance of alphaII-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury. J Neurotrauma 2007;24:354-66
  • Mondello S, Robicsek SA, Gabrielli A, AlphaII-spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patients. J Neurotrauma 2010;27:1203-13
  • Palmer AM, Marion DW, Botscheller ML, Increased transmitter amino acid concentration in human ventricular CSF after brain trauma. Neuroreport 1994;6:153-6
  • Zhang H, Zhang X, Zhang T, Chen L. Excitatory amino acids in cerebrospinal fluid of patients with acute head injuries. Clin Chem 2001;47:1458-62
  • Ruppel RA, Kochanek PM, Adelson PD, Excitatory amino acid concentrations in ventricular cerebrospinal fluid after severe traumatic brain injury in infants and children: the role of child abuse. J Pediatr 2001;138:18-25
  • Darwish RS, Amiridze NS. Detectable levels of cytochrome C and activated caspase-9 in cerebrospinal fluid after human traumatic brain injury. Neurocrit Care 2010;12:337-41
  • Wagner AK, Bayir H, Ren D, Relationships between cerebrospinal fluid markers of excitotoxicity, ischemia, and oxidative damage after severe TBI: the impact of gender, age, and hypothermia. J Neurotrauma 2004;21:125-36
  • Papa L, Akinyi L, Liu MC, Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Crit Care Med 2010;38:138-44
  • Petzold A, Rejdak K, Belli A, Axonal pathology in subarachnoid and intracerebral hemorrhage. J Neurotrauma 2005;22:407-14
  • Hop JW, Rinkel GJ, Algra A, van Gijn J. Changes in functional outcome and quality of life in patients and caregivers after aneurysmal subarachnoid hemorrhage. J Neurosurg 2001;95:957-63
  • van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet 2007;369:306-18
  • Rinkel GJ, Djibuti M, Algra A, van GJ. Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke 1998;29:251-6
  • van der Wee N, Rinkel GJ, Hasan D, van Gijn J. Detection of subarachnoid haemorrhage on early CT: is lumbar puncture still needed after a negative scan? J Neurol Neurosurg Psychiatry 1995;58:357-9
  • Vermeulen M, van GJ. The diagnosis of subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 1990;53:365-72
  • Petzold A, Keir G, Sharpe LT. Spectrophotometry for xanthochromia. N Engl J Med 2004;351:1695-6
  • Taylor TN, Davis PH, Torner JC, Lifetime cost of stroke in the United States. Stroke 1996;27:1459-66
  • Hoh BL, Topcuoglu MA, Singhal AB, Effect of clipping, craniotomy, or intravascular coiling on cerebral vasospasm and patient outcome after aneurysmal subarachnoid hemorrhage. Neurosurgery 2004;55:779-86
  • Rosengart AJ, Schultheiss KE, Tolentino J, Macdonald RL. Prognostic factors for outcome in patients with aneurysmal subarachnoid hemorrhage. Stroke 2007;38:2315-21
  • Mocco J, Ransom ER, Komotar RJ, Preoperative prediction of long-term outcome in poor-grade aneurysmal subarachnoid hemorrhage. Neurosurgery 2006;59:529-38
  • Nylen K, Csajbok LZ, Ost M, CSF -neurofilament correlates with outcome after aneurysmal subarachnoid hemorrhage. Neurosci Lett 2006;404:132-6
  • Petzold A, Keir G, Kay A, Axonal damage and outcome in subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 2006;77:753-9
  • Lewis SB, Wolper RA, Miralia L, Detection of phosphorylated NF-H in the cerebrospinal fluid and blood of aneurysmal subarachnoid hemorrhage patients. J Cereb Blood Flow Metab 2008;28:1261-71
  • van Geel WJ, Rosengren LE, Verbeek MM. An enzyme immunoassay to quantify neurofilament light chain in cerebrospinal fluid. J Immunol Methods 2005;296:179-85
  • Takayasu M, Shibuya M, Kanamori M, S-100 protein and calmodulin levels in cerebrospinal fluid after subarachnoid hemorrhage. J Neurosurg 1985;63:417-20
  • Persson L, Hardemark HG, Gustafsson J, S-100 protein and neuron-specific enolase in cerebrospinal fluid and serum: markers of cell damage in human central nervous system. Stroke 1987;18:911-18
  • Persson L, Hardemark H, Edner G, S-100 protein in cerebrospinal fluid of patients with subarachnoid haemorrhage: a potential marker of brain damage. Acta Neurochir (Wien) 1988;93:116-22
  • Hardemark HG, Almqvist O, Johansson T, S-100 protein in cerebrospinal fluid after aneurysmal subarachnoid haemorrhage: relation to functional outcome, late CT and SPECT changes, and signs of higher cortical dysfunction. Acta Neurochir (Wien) 1989;99:135-44
  • Oertel M, Schumacher U, McArthur DL, S-100B and NSE: markers of initial impact of subarachnoid haemorrhage and their relation to vasospasm and outcome. J Clin Neurosci 2006;13:834-40
  • Wiesmann M, Missler U, Hagenstrom H, Gottmann D. S-100 protein plasma levels after aneurysmal subarachnoid haemorrhage. Acta Neurochir (Wien) 1997;139:1155-60
  • Moritz S, Warnat J, Bele S, The prognostic value of NSE and S100B from serum and cerebrospinal fluid in patients with spontaneous subarachnoid hemorrhage. J Neurosurg Anesthesiol 2010;22:21-31
  • Kacira T, Kemerdere R, Atukeren P, Detection of caspase-3, neuron specific enolase, and high-sensitivity C-reactive protein levels in both cerebrospinal fluid and serum of patients after aneurysmal subarachnoid hemorrhage. Neurosurgery 2007;60:674-9
  • Mabe H, Suzuki S, Mase M, Serum neuron-specific enolase levels after subarachnoid hemorrhage. Surg Neurol 1991;36:170-4
  • Kaneda K, Fujita M, Yamashita S, Prognostic value of biochemical markers of brain damage and oxidative stress in post-surgical aneurysmal subarachnoid hemorrhage patients. Brain Res Bull 2010;81:173-7
  • Lewis SB, Wolper R, Chi YY, Identification and preliminary characterization of ubiquitin C terminal hydrolase 1 (UCHL1) as a biomarker of neuronal loss in aneurysmal subarachnoid hemorrhage. J Neurosci Res 2010;88:1475-84
  • Feigin VL, Lawes CM, Bennett DA, Anderson CS. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2003;2:43-53
  • van der Worp HB, van GJ. Clinical practice. Acute ischemic stroke. N Engl J Med 2007;357:572-9
  • Norrving B. Lacunar infarcts. Ther Umsch 2003;60:535-40
  • Hacke W, Schwab S, Horn M, ‘Malignant’ middle cerebral artery territory infarction: clinical course and prognostic signs. Arch Neurol 1996;53:309-15
  • Rothermundt M, Peters M, Prehn JH, Arolt V. S100B in brain damage and neurodegeneration. Microsc Res Tech 2003;60:614-32
  • Foerch C, Otto B, Singer OC, Serum S100B predicts a malignant course of infarction in patients with acute middle cerebral artery occlusion. Stroke 2004;35:2160-4
  • Jauch EC, Lindsell C, Broderick J, Association of serial biochemical markers with acute ischemic stroke: the National Institute of Neurological Disorders and Stroke recombinant tissue plasminogen activator Stroke Study. Stroke 2006;37:2508-13
  • Foerch C, Wunderlich MT, Dvorak F, Elevated serum S100B levels indicate a higher risk of hemorrhagic transformation after thrombolytic therapy in acute stroke. Stroke 2007;38:2491-5
  • Aurell A, Rosengren LE, Karlsson B, Determination of S-100 and glial fibrillary acidic protein concentrations in cerebrospinal fluid after brain infarction. Stroke 1991;22:1254-8
  • Herrmann M, Vos P, Wunderlich MT, Release of glial tissue-specific proteins after acute stroke: a comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke 2000;31:2670-7
  • Anand N, Stead LG. Neuron-specific enolase as a marker for acute ischemic stroke: a systematic review. Cerebrovasc Dis 2005;20:213-19
  • Fassbender K, Schmidt R, Schreiner A, Leakage of brain-originated proteins in peripheral blood: temporal profile and diagnostic value in early ischemic stroke. J Neurol Sci 1997;148:101-5
  • Missler U, Wiesmann M, Friedrich C, Kaps M. S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke 1997;28:1956-60
  • Cunningham RT, Young IS, Winder J, Serum neurone specific enolase (NSE) levels as an indicator of neuronal damage in patients with cerebral infarction. Eur J Clin Invest 1991;21:497-500
  • Wunderlich MT, Lins H, Skalej M, Neuron-specific enolase and tau protein as neurobiochemical markers of neuronal damage are related to early clinical course and long-term outcome in acute ischemic stroke. Clin Neurol Neurosurg 2006;108:558-63
  • Hill MD, Jackowski G, Bayer N, Biochemical markers in acute ischemic stroke. CMAJ 2000;162:1139-40
  • Hesse C, Rosengren L, Andreasen N, Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci Lett 2001;297:187-90
  • Arenillas JF, Alvarez-Sabin J, Molina CA, Progression of symptomatic intracranial large artery atherosclerosis is associated with a proinflammatory state and impaired fibrinolysis. Stroke 2008;39:1456-63
  • Montaner J, Alvarez-Sabin J, Barbera G, Correlation between the expression of proinflammatory cytokines and matrix metalloproteinases in the acute phase of an ischemic stroke. Rev Neurol 2001;33:115-18
  • Montaner J, Rovira A, Molina CA, Plasmatic level of neuroinflammatory markers predict the extent of diffusion-weighted image lesions in hyperacute stroke. J Cereb Blood Flow Metab 2003;23:1403-7
  • Emsley HC, Smith CJ, Gavin CM, An early and sustained peripheral inflammatory response in acute ischaemic stroke: relationships with infection and atherosclerosis. J Neuroimmunol 2003;139:93-101
  • Vila N, Castillo J, Davalos A, Levels of anti-inflammatory cytokines and neurological worsening in acute ischemic stroke. Stroke 2003;34:671-5
  • Smith CJ, Emsley HC, Gavin CM, Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome. BMC Neurol 2004;4:2
  • Montaner J, Fernandez-Cadenas I, Molina CA, Poststroke C-reactive protein is a powerful prognostic tool among candidates for thrombolysis. Stroke 2006;37:1205-10
  • Elkind MS, Tai W, Coates K, High-sensitivity C-reactive protein, lipoprotein-associated phospholipase A2, and outcome after ischemic stroke. Arch Intern Med 2006;166:2073-80
  • Katan M, Fluri F, Morgenthaler NG, Copeptin: a novel, independent prognostic marker in patients with ischemic stroke. Ann Neurol 2009;66:799-808
  • Urwyler SA, Schuetz P, Fluri F, Prognostic value of copeptin: one-year outcome in patients with acute stroke. Stroke 2010;41:1564-7
  • Teunissen CE, Petzold A, Bennett JL, A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology 2009;73:1914-22
  • Petzold A, Verwey NA, van Uffelen K, Batch prepared protein standards for cerebrospinal fluid (CSF) biomarkers for neurodegeneration. J Neurosci Methods 2010;193:296-9
  • Petzold A, Altintas A, Andreoni L, Neurofilament ELISA validation. J Immunol Methods 2010;352:23-31
  • Xu BJ. Combining laser capture microdissection and proteomics: methodologies and clinical applications. Proteomics Clin Appl 2010;4:116-23
  • Petzold A, Tisdall MM, Girbes AR, In vivo monitoring of neuronal loss in traumatic brain injury: a microdialysis study. Brain 2011;134:464-83
  • Lazzarino G, Amorini AM, Eikelenboom MJ, Cerebrospinal fluid ATP metabolites in multiple sclerosis. Mult Scler 2010;16:549-54
  • Trapp BD, Stys PK. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol 2009;8:280-91
  • Blennow K, Nellgard B. Amyloid beta 1-42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology 2004;62:159-60
  • Brouns R, De VB, Cras P, Neurobiochemical markers of brain damage in cerebrospinal fluid of acute ischemic stroke patients. Clin Chem 2010;56:451-8
  • Olivecrona M, Rodling-Wahlstrom M, Naredi S, Koskinen LO. S-100B and neuron specific enolase are poor outcome predictors in severe traumatic brain injury treated by an intracranial pressure targeted therapy. J Neurol Neurosurg Psychiatry 2009;80:1241-7
  • Chiaretti A, Barone G, Riccardi R, NGF, DCX, and NSE upregulation correlates with severity and outcome of head trauma in children. Neurology 2009;72:609-16
  • Petzold A, Michel P, Stock M, Schluep M. Glial and axonal body fluid biomarkers are related to infarct volume, severity, and outcome. J Stroke Cerebrovasc Dis 2008;17:196-203
  • Shore PM, Berger RP, Varma S, Cerebrospinal fluid biomarkers versus Glasgow coma scale and Glasgow outcome scale in pediatric traumatic brain injury: the role of young age and inflicted injury. J Neurotrauma 2007;24:75-86
  • Sellner J, Petzold A, Sadikovic S, The value of the serum neurofilament protein heavy chain as a biomarker for peri-operative brain injury after carotid endarterectomy. Neurochem Res 2009;34:1969-74
  • Singh P, Yan J, Hull R, Levels of phosphorylated axonal neurofilament subunit H (pNfH) are increased in acute ischemic stroke. J Neurol Sci 2011;304(1-2):117-21
  • Notturno F, Luciani M, Caporale CM, Antibodies to ganglioside complexes in Guillain-Barre syndrome: clinical correlates, fine specificity and complement activation. Int J Immunopathol Pharmacol 2009;22:437-45

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.