65
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Advances in longitudinal MRI diagnostic tests

&
Pages 309-321 | Published online: 09 May 2012

Bibliography

  • MacKay Altman R, Petkau AJ, Vrecko D, Smith A: A longitudinal model for magnetic resonance imaging lesion count data in multiple sclerosis patients. Stat Med 2012;31:449-69
  • Kumari V, Fannon D, Peters ER, Neural changes following cognitive behaviour therapy for psychosis: a longitudinal study. Brain 2011;134:2396-407
  • Buschkuehl M, Jaeggi SM, Jonides J. Neuronal effects following working memory training. Dev Cogn Neurosci 2012;2(Suppl 1):S167-79
  • Koolschijn PCMP, Schel MA, de Rooij M, A three-year longitudinal functional magnetic resonance imaging study of performance monitoring and test-retest reliability from childhood to early adulthood. J Neurosci 2011;31:4204-12
  • Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 1990;87:9868-72
  • Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci 2004;5:347-60
  • Logothetis NK, Wandell BA. Interpreting the BOLD signal. Annu Rev Physiol 2004;66:735-69
  • Pauling L, Coryell CD. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci USA 1936;22:210-16
  • Duong TQ, Yacoub E, Adriany G, High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T. Magn Reson Med 2002;48:589-93
  • Logothetis NK, Pauls J, Augath M, Neurophysiological investigation of the basis of the fMRI signal. Nature 2001;412:150-7
  • Logothetis NK, Pfeuffer J. On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging 2004;22:1517-31
  • van der Zwaag W, Francis S, Head K, fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes. Neuroimage 2009;47:1425-34
  • Vazquez AL, Noll DC. Nonlinear aspects of the BOLD response in functional MRI. Neuroimage 1998;7:108-18
  • Haller S, Wetzel SG, Radue EW, Bilecen D. Mapping continuous neuronal activation without an ON-OFF paradigm: initial results of BOLD ceiling fMRI. Eur J Neurosci 2006;24:2672-8
  • Bandettini PA, Wong EC, Hinks RS, Time course EPI of human brain function during task activation. Magn Reson Med 1992;25:390-7
  • Kwong KK, Belliveau JW, Chesler DA, Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 1992;89:5675-9
  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995;34:537-41
  • Aguirre GK, Detre JA, Alsop DC. Experimental design and the relative sensitivity of BOLD and perfusion fMRI. Neuroimage 2002;15:488-500
  • Smith AM, Lewis BK, Ruttimann UE, Investigation of low frequency drift in fMRI signal. Neuroimage 1999;9:526-33
  • Wang J, Aguirre GK, Kimberg DY, Arterial spin labeling perfusion fMRI with very low task frequency. Magn Reson Med 2003;49:796-802
  • Yan L, Zhuo Y, Ye Y, Physiological origin of low-frequency drift in blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI). Magn Reson Med 2009;61:819-27
  • Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 2003;100:253-8
  • Peltier SJ, Noll DC. T(2)(*) dependence of low frequency functional connectivity. Neuroimage 2002;16:985-92
  • Bhattacharyya PK, Lowe MJ. Cardiac-induced physiologic noise in tissue is a direct observation of cardiac-induced fluctuations. Magn Reson Imaging 2004;22:9-13
  • Frank LR, Buxton RB, Wong EC. Estimation of respiration-induced noise fluctuations from undersampled multislice fMRI data. Magn Reson Med 2001;45:635-44
  • McGonigle DJ, Howseman AM, Athwal BS, Variability in fMRI: an examination of intersession differences. Neuroimage 2000;11:708-34
  • Davis TL, Kwong KK, Weisskoff RM, Rosen BR. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 1998;95:1834-9
  • Hoge RD, Atkinson J, Gill B, Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn Reson Med 1999;42:849-63
  • Chiarelli PA, Bulte DP, Wise R, A calibration method for quantitative BOLD fMRI based on hyperoxia. Neuroimage 2007;37:808-20
  • Friedman L, Stern H, Brown GG, Test-retest and between-site reliability in a multicenter fMRI study. Hum Brain Mapp 2008;29:958-72
  • Aron AR, Gluck MA, Poldrack RA. Long-term test-retest reliability of functional MRI in a classification learning task. Neuroimage 2006;29:1000-6
  • Genovese CR, Noll DC, Eddy WF. Estimating test-retest reliability in functional MR imaging. I: statistical methodology. Magn Reson Med 1997;38:497-507
  • Gonzalez-Castillo J, Talavage TM. Reproducibility of fMRI activations associated with auditory sentence comprehension. Neuroimage 2011;54:2138-55
  • Rombouts SA, Barkhof F, Hoogenraad FG, Test-retest analysis with functional MR of the activated area in the human visual cortex. AJNR Am J Neuroradiol 1997;18:1317-22
  • Manoach DS, Halpern EF, Kramer TS, Test-retest reliability of a functional MRI working memory paradigm in normal and schizophrenic subjects. Am J Psychiatry 2001;158:955-8
  • Loubinoux I, Carel C, Alary F, Within-session and between-session reproducibility of cerebral sensorimotor activation: a test–retest effect evidenced with functional magnetic resonance imaging. J Cereb Blood Flow Metab 2001;21:592-607
  • Bennett CM, Miller MB. How reliable are the results from functional magnetic resonance imaging? Ann NY Acad Sci 2010;1191:133-55
  • Balduzzi D, Riedner BA, Tononi G. A BOLD window into brain waves. Proc Natl Acad Sci USA 2008;105:15641-2
  • Li K, Guo L, Nie J, Review of methods for functional brain connectivity detection using fMRI. Comput Med Imaging Graph 2009;33:131-9
  • Hyvarinen A, Oja E. Independent component analysis: algorithms and applications. Neural Netw 2000;13:411-30
  • van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 2010;20:519-34
  • Raichle ME, MacLeod AM, Snyder AZ, A default mode of brain function. Proc Natl Acad Sci USA 2001;98:676-82
  • Goebel R, Roebroeck A, Kim D-S, Formisano E. Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn Reson Imaging 2003;21:1251-61
  • Roebroeck A, Formisano E, Goebel R. Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 2005;25:230-42
  • Friston KJ, Harrison L, Penny W. Dynamic causal modelling. Neuroimage 2003;19:1273-302
  • Penny WD, Stephan KE, Mechelli A, Friston KJ. Modelling functional integration: a comparison of structural equation and dynamic causal models. Neuroimage 2004;23(Suppl 1):S264-74
  • Penny W, Ghahramani Z, Friston K. Bilinear dynamical systems. Philos Trans R Soc Lond B Biol Sci 2005;360:983-93
  • Smith SM, Miller KL, Salimi-Khorshidi G, Network modelling methods for FMRI. Neuroimage 2011;54:875-91
  • Taubert M, Lohmann G, Margulies DS, Long-term effects of motor training on resting-state networks and underlying brain structure. Neuroimage 2011;57:1492-8
  • Cerullo MA, Fleck DE, Eliassen JC, A longitudinal functional connectivity analysis of the amygdala in bipolar I disorder across mood states. Bipolar Disord 2012;14:175-84
  • Zuo X-N, Kelly C, Adelstein JS, Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach. Neuroimage 2010;49:2163-77
  • Jahanian H, Noll DC, Hernandez-Garcia L: B0 field inhomogeneity considerations in pseudo-continuous arterial spin labeling (pCASL): effects on tagging efficiency and correction strategy. NMR Biomed 2011, 24:1202-1209.
  • Shehzad Z, Kelly AMC, Reiss PT, The resting brain: unconstrained yet reliable. Cereb Cortex 2009;19:2209-29
  • Thomason ME, Dennis EL, Joshi AA, Resting-state fMRI can reliably map neural networks in children. Neuroimage 2011;55:165-75
  • Hernandez-Garcia L, Lewis DP, Moffat B, Branch CA. Magnetization transfer effects on the efficiency of flow-driven adiabatic fast passage inversion of arterial blood. NMR Biomed 2007;20:733-42
  • Jahanian H, Noll DC, Hernandez-Garcia L. B0 field inhomogeneity considerations in pseudo-continuous arterial spin labeling (pCASL): effects on tagging efficiency and correction strategy. NMR Biomed 2011;24:1202-09
  • Zhang W, Silva AC, Williams DS, Koretsky AP. NMR measurement of perfusion using arterial spin labeling without saturation of macromolecular spins. Magn Reson Med 1995;33:370-6
  • Wang J, Alsop DC, Song HK, Arterial transit time imaging with flow encoding arterial spin tagging (FEAST). Magn Reson Med 2003;50:599-607
  • Alsop DC, Detre JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 1996;16:1236-49
  • Wang J, Alsop DC, Li L, Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 Tesla. Magn Reson Med 2002;48:242-54
  • Lee GR, Hernandez-Garcia L, Noll DC. Functional imaging with Turbo-CASL: transit time and multislice imaging considerations. Magn Reson Med 2007;57:661-9
  • Hernandez-Garcia L, Lee GR, Vazquez AL, Quantification of perfusion fMRI using a numerical model of arterial spin labeling that accounts for dynamic transit time effects. Magn Reson Med 2005;54:955-64
  • Kazan SM, Chappell MA, Payne SJ. Modeling the effects of flow dispersion in arterial spin labeling. IEEE Trans Biomed Eng 2009;56:1635-43
  • Hrabe J, Lewis DP. Two analytical solutions for a model of pulsed arterial spin labeling with randomized blood arrival times. J Magn Reson 2004;167:49-55
  • Jiang Q, Ewing JR, Ding GL, Quantitative evaluation of BBB permeability after embolic stroke in rat using MRI. J Cereb Blood Flow Metab 2005;25:583-92
  • Cao Y, Shen Z, Chenevert TL, Ewing JR. Estimate of vascular permeability and cerebral blood volume using Gd-DTPA contrast enhancement and dynamic T2*-weighted MRI. J Magn Reson Imaging 2006;24:288-96
  • Ewing JR, Brown SL, Lu M, Model selection in magnetic resonance imaging measurements of vascular permeability: gadomer in a 9L model of rat cerebral tumor. J Cereb Blood Flow Metab 2006;26:310-20
  • Perthen JE, Bydder M, Restom K, Liu TT. SNR and functional sensitivity of BOLD and perfusion-based fMRI using arterial spin labeling with spiral SENSE at 3 T. Magn Reson Imaging 2008;26:513-22
  • Yang Y, Gu H, Stein EA. Simultaneous MRI acquisition of blood volume, blood flow, and blood oxygenation information during brain activation. Magn Reson Med 2004;52:1407-17
  • van Osch MJP, Teeuwisse WM, van Walderveen MAA, Can arterial spin labeling detect white matter perfusion signal? Magn Reson Med 2009;62:165-73
  • Miller KL, Luh WM, Liu TT, Nonlinear temporal dynamics of the cerebral blood flow response. Hum Brain Mapp 2001;13:1-12
  • Hernandez-Garcia L, Buschkuehl M, Jaeggi SM, Jonides J. Longitudinal, pseudo-continuous ASL imaging of perfusion during a working memory task: How does training change the activation pattern? Presented at the 16th Annual Meeting of the Organization for Human Brain Mapping, Barcelona (Spain), 2010
  • Jaeggi SM, Buschkuehl M, Hernandez-Garcia L, Bernard J, Jonides J. Neural Correlates of N-back Training - A Pseudo-Continuous Arterial Spin Labeling (pCASL) Study. Presented at the 17th Annual Cognitive Neuroscience Society Meeting, Montreal (Canada), 2010
  • Jaeggi SM, Buschkuehl M, Jonides J, Perrig WJ. Improving fluid intelligence with training on working memory. Proc Natl Acad Sci USA 2008;105:6829-33
  • Jaeggi SM, Studer-Luethi B, Buschkuehl M, The relationship between n-back performance and matrix reasoning – implications for training and transfer. Intelligence 2010;38:625-35
  • Jaeggi SM, Buschkuehl M, Jonides J, Shah P. Short- and long-term benefits of cognitive training. Proc Natl Acad Sci USA 2011;108:10081-6
  • Mumford JA, Hernandez-Garcia L, Lee GR, Nichols TE. Estimation efficiency and statistical power in arterial spin labeling fMRI. Neuroimage 2006;33:103-14
  • Mumford JA, Nichols TE. Power calculation for group fMRI studies accounting for arbitrary design and temporal autocorrelation. Neuroimage 2008;39:261-8
  • Liu TT, Wong EC. A signal processing model for arterial spin labeling functional MRI. Neuroimage 2005;24:207-15
  • Wang J, Aguirre GK, Kimberg DY, Detre JA. Empirical analyses of null-hypothesis perfusion FMRI data at 1.5 and 4 T. Neuroimage 2003;19:1449-62
  • Petersen ET, Mouridsen K, Golay X. The QUASAR reproducibility study, part II: results from a multi-center Arterial Spin Labeling test-retest study. Neuroimage 2010;49:104-13
  • Xu G, Rowley HA, Wu G, Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0 T and comparison with 15O-water PET in elderly subjects at risk for Alzheimer's disease. NMR Biomed 2010;23:286-93
  • Raoult H, Petr J, Bannier E, Arterial spin labeling for motor activation mapping at 3T with a 32-channel coil: reproducibility and spatial accuracy in comparison with BOLD fMRI. Neuroimage 2011;58:157-67
  • Wang Y, Saykin AJ, Pfeuffer J, Regional reproducibility of pulsed arterial spin labeling perfusion imaging at 3T. Neuroimage 2011;54:1188-95
  • Chen Y, Wang DJJ, Detre JA. Test-retest reliability of arterial spin labeling with common labeling strategies. J Magn Reson Imaging 2011;33:940-9
  • Asllani I, Borogovac A, Wright C, An investigation of statistical power for continuous arterial spin labeling imaging at 1.5 T. Neuroimage 2008;39:1246-56
  • Hoge RD, Atkinson J, Gill B, Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc Natl Acad Sci USA 1999;96:9403-8
  • Haacke EM, Brown RW, Thompson MR, Venkatesan R. Magnetic Resonance Imaging: Physical Principles and Sequence Design (1st ed.). Wiley-Liss, New York, NY, USA; 1999
  • Olafsson VT, Noll DC, Fessler JA. Fast joint reconstruction of dynamic R2* and field maps in functional MRI. IEEE Trans Med Imaging 2008;27:1177-88
  • Krafnick AJ, Flowers DL, Napoliello EM, Eden GF. Gray matter volume changes following reading intervention in dyslexic children. Neuroimage 2011;57:733-41
  • Steinmetz H, Rademacher J, Huang YX, Cerebral asymmetry: MR planimetry of the human planum temporale. J Comput Assist Tomogr 1989;13:996-1005
  • Frackowiak RSJ, Ashburner JT, Penny WD, Zeki S. Human Brain Function, Second Edition (2nd ed.). Academic Press, San Diego, CA, USA; 2004
  • Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Mazziotta JC. Human Brain Function (1st ed.). Academic Press, San Diego, CA, USA; 1997
  • Toga AW. Brain Warping (1st ed.). Academic Press, San Diego, CA, USA; 1998
  • Ashburner J, Friston KJ. Voxel-based morphometry – the methods. Neuroimage 2000;11:805-21
  • Good CD, Johnsrude IS, Ashburner J, A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 2001;14:21-36
  • Chung MK, Worsley KJ, Paus T, A unified statistical approach to deformation-based morphometry. Neuroimage 2001;14:595-606
  • Chung MK, Worsley KJ, Robbins S, Deformation-based surface morphometry applied to gray matter deformation. Neuroimage 2003;18:198-213
  • Thompson PM, Giedd JN, Woods RP, Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature 2000;404:190-3
  • Kulynych JJ, Vladar K, Jones DW, Weinberger DR. Three-dimensional surface rendering in MRI morphometry: a study of the planum temporale. J Comput Assist Tomogr 1993;17:529-35
  • Xu L, Groth KM, Pearlson G, Source-based morphometry: the use of independent component analysis to identify gray matter differences with application to schizophrenia. Hum Brain Mapp 2009;30:711-24
  • Bookstein FL. “Voxel-based morphometry” should not be used with imperfectly registered images. Neuroimage 2001;14:1454-62
  • Jones DK, Symms MR, Cercignani M, Howard RJ. The effect of filter size on VBM analyses of DT-MRI data. Neuroimage 2005;26:546-54
  • Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 2002;15:1–25
  • Rorden C, Bonilha L, Nichols TE. Rank-order versus mean based statistics for neuroimaging. Neuroimage 2007;35:1531-7
  • Li X, Messe A, Marrelec G, An enhanced voxel-based morphometry method to investigate structural changes: application to Alzheimer's disease. Neuroradiology 2010;52:203-13
  • Le Bihan D, Breton E, Lallemand D, MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986;161:401-7
  • Kucharczyk J, Mintorovitch J, Asgari HS, Moseley M. Diffusion/perfusion MR imaging of acute cerebral ischemia. Magn Reson Med 1991;19:311-15
  • Warach S, Chien D, Li W, Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 1992;42:1717-23
  • Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J 1994;66:259-67
  • Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 1994;103:247-54
  • Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 1996;111:209-19
  • Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design and data analysis – a technical review. NMR Biomed 2002;15:456-67
  • Mattiello J, Basser PJ, Le Bihan D. The b matrix in diffusion tensor echo-planar imaging. Magn Reson Med 1997;37:292-300
  • Pierpaoli C, Jezzard P, Basser PJ, Diffusion tensor MR imaging of the human brain. Radiology 1996;201:637-48
  • van den Heuvel MP, Sporns O. Rich-club organization of the human connectome. J Neurosci 2011;31:15775-86
  • Davenport ND, Lim KO, Armstrong MT, Sponheim SR. Diffuse and spatially variable white matter disruptions are associated with blast-related mild traumatic brain injury. Neuroimage 2012;59:2017-24
  • Yu C, Zhu C, Zhang Y, A longitudinal diffusion tensor imaging study on Wallerian degeneration of corticospinal tract after motor pathway stroke. Neuroimage 2009;47:451-8
  • Goto T, Saitoh Y, Hashimoto N, Diffusion tensor fiber tracking in patients with central post-stroke pain; correlation with efficacy of repetitive transcranial magnetic stimulation. Pain 2008;140:509-18
  • Tournier J-D, Calamante F, King MD, Limitations and requirements of diffusion tensor fiber tracking: an assessment using simulations. Magn Reson Med 2002;47:701-8
  • Dyrby TB, Søgaard LV, Parker GJ, Validation of in vitro probabilistic tractography. Neuroimage 2007;37:1267-77
  • Dauguet J, Peled S, Berezovskii V, Comparison of fiber tracts derived from in-vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain. Neuroimage 2007;37:530-8
  • Ordidge RJ, Helpern JA, Qing ZX, Correction of motional artifacts in diffusion-weighted MR images using navigator echoes. Magn Reson Imaging 1994;12:455-60
  • Turner R, Le Bihan D, Chesnick AS. Echo-planar imaging of diffusion and perfusion. Magn Reson Med 1991;19:247-53
  • Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-62
  • Griswold MA, Jakob PM, Heidemann RM, Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47:1202-10
  • Blaimer M, Breuer F, Mueller M, SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging 2004;15:223-36
  • Tuch DS. Q-ball imaging. Magn Reson Med 2004;52:1358-72
  • Berman JI, Chung S, Mukherjee P, Probabilistic streamline q-ball tractography using the residual bootstrap. Neuroimage 2008;39:215-22
  • Song AW, Harshbarger T, Li T, Functional activation using apparent diffusion coefficient-dependent contrast allows better spatial localization to the neuronal activity: evidence using diffusion tensor imaging and fiber tracking. Neuroimage 2003;20:955-61

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.