156
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Advances in the treatment of neuronal ceroid lipofuscinosis

, , , &
Pages 951-975 | Published online: 12 Nov 2013

Bibliography

  • Cooper JD. The neuronal ceroid lipofuscinoses: the same, but different? Biochem Soc Trans 2010;38:1448-52
  • Glees P, Hasan M. Lipofuscin in neuronal aging and diseases. Norm Pathol Anat (Stuttg) 1976;32:1-68
  • Jalanko A, Braulke T. Neuronal ceroid lipofuscinoses. Biochim Biophys Acta 2009;1793:697-709
  • Palmer DN, Martinus RD, Cooper SM, et al. Ovine ceroid lipofuscinosis. The major lipopigment protein and the lipid-binding subunit of mitochondrial ATP synthase have the same NH2-terminal sequence. J Biol Chem 1989;264:5736-40
  • Tyynela J, Palmer DN, Baumann M, Haltia M. Storage of saposins A and D in infantile neuronal ceroid-lipofuscinosis. FEBS Lett 1993;330:8-12
  • Zeman W, Dyken P. Neuronal ceroid-lipofuscinosis (Batten's disease): relationship to amaurotic family idiocy? Pediatrics 1969;44:570-83
  • Anderson GW, Goebel HH, Simonati A. Human pathology in NCL. Biochim Biophys Acta 2013;1832:1807-26
  • Cotman SL, Staropoli JF. The juvenile Batten disease protein, CLN3, and its role in regulating anterograde and retrograde post-Golgi trafficking. Clin Lipidol 2012;7:79-91
  • Levine AS, Lemieux B, Brunning R, et al. Ceroid accumulation in a patient with progressive neurological disease. Pediatrics 1968;42:583-91
  • Santavuori P. Neuronal ceroid-lipofuscinoses in childhood. Brain Dev 1988;10:80-3
  • Palmer DN, Barry LA, Tyynela J, Cooper JD. NCL disease mechanisms. Biochim Biophys Acta 2013;1832:1882-93
  • Haltia M. The neuronal ceroid-lipofuscinoses. J Neuropathol Exp Neurol 2003;62:1-13
  • Kmoch S, Stranecky V, Emes RD, Mitchison HM. Bioinformatic perspectives in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta 2013;1832:1831-41
  • Kohan R, Cismondi IA, Oller-Ramirez AM, et al. Therapeutic approaches to the challenge of neuronal ceroid lipofuscinoses. Curr Pharm Biotechnol 2011;12:867-83
  • Hobert JA, Dawson G. Neuronal ceroid lipofuscinoses therapeutic strategies: past, present and future. Biochim Biophys Acta 2006;1762:945-53
  • Schulz A, Kohlschutter A, Mink J, et al. NCL diseases - clinical perspectives. Biochim Biophys Acta 2013;1832:1801-6
  • Augestad LB, Flanders WD. Occurrence of and mortality from childhood neuronal ceroid lipofuscinoses in norway. J Child Neurol 2006;21:917-22
  • Cardona F, Rosati E. Neuronal ceroid-lipofuscinoses in Italy: an epidemiological study. Am J Med Genet 1995;57:142-3
  • Mole SE, Williams RE, Goebel HH. The neuronal ceroid lipofucinosis. 2nd edition. Oxford University Press; USA: 2011
  • Zeman W. The neuronal ceroid lipofuscinoses. In: Zimmerman H, editor. Progress in neuropathology. Grune and Stratton; New York: 1976. p. 203-23
  • Warrier V, Vieira M, Mole SE. Genetic basis and phenotypic correlations of the neuronal ceroid lipofusinoses. Biochim Biophys Acta 2013;1832:1827-30
  • Kousi M, Lehesjoki AE, Mole SE. Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Hum Mutat 2012;33:42-63
  • Kyttala A, Lahtinen U, Braulke T, Hofmann SL. Functional biology of the neuronal ceroid lipofuscinoses (NCL) proteins. Biochim Biophys Acta 2006;1762:920-33
  • Haltia M, Goebel HH. The neuronal ceroid-lipofuscinoses: a historical introduction. Biochim Biophys Acta 2013;1832:1795-800
  • Mole SE, Williams RE, Goebel HH. Correlations between genotype, ultrastructural morphology and clinical phenotype in the neuronal ceroid lipofuscinoses. Neurogenetics 2005;6:107-26
  • Getty AL, Pearce DA. Interactions of the proteins of neuronal ceroid lipofuscinosis: clues to function. Cell Mol Life Sci 2011;68:453-74
  • Poet M, Kornak U, Schweizer M, et al. Lysosomal storage disease upon disruption of the neuronal chloride transport protein ClC-6. Proc Natl Acad Sci USA 2006;103:13854-9
  • Pangrazio A, Pusch M, Caldana E, et al. Molecular and clinical heterogeneity in CLCN7-dependent osteopetrosis: report of 20 novel mutations. Hum Mutat 2010;31:E1071-80
  • Kasper D, Planells-Cases R, Fuhrmann JC, et al. Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J 2005;24:1079-91
  • Frattini A, Pangrazio A, Susani L, et al. Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis. J Bone Miner Res 2003;18:1740-7
  • Mole SE, Williams RE, Cooper JD. Special issue: molecular basis of the NCLs. Biochim Biophys Acta 2013;1832:1793-4
  • Williams RE, Mole SE. New nomenclature and classification scheme for the neuronal ceroid lipofuscinoses. Neurology 2012;79:183-91
  • Sleat DE, Wiseman JA, El-Banna M, et al. A mouse model of classical late-infantile neuronal ceroid lipofuscinosis based on targeted disruption of the CLN2 gene results in a loss of tripeptidyl-peptidase I activity and progressive neurodegeneration. J Neurosci 2004;24:9117-26
  • Shacka JJ. Mouse models of neuronal ceroid lipofuscinoses: useful pre-clinical tools to delineate disease pathophysiology and validate therapeutics. Brain Res Bull 2012;88:43-57
  • Cotman SL, Vrbanac V, Lebel LA, et al. Cln3(Deltaex7/8) knock-in mice with the common JNCL mutation exhibit progressive neurologic disease that begins before birth. Hum Mol Genet 2002;11:2709-21
  • Bond M, Holthaus SM, Tammen I, et al. Use of model organisms for the study of neuronal ceroid lipofuscinosis. Biochim Biophys Acta 2013;1832:1842-65
  • Staropoli JF, Haliw L, Biswas S, et al. Large-scale phenotyping of an accurate genetic mouse model of JNCL identifies novel early pathology outside the central nervous system. PLoS ONE 2012;7:e38310
  • Vaquer G, Riviere F, Mavris M, et al. Animal models for metabolic, neuromuscular and ophthalmological rare diseases. Nat Rev Drug Discov 2013;12:287-305
  • Abbott NJ, Patabendige AA, Dolman DE, et al. Structure and function of the blood-brain barrier. Neurobiol Dis 2010;37:13-25
  • Abbott NJ. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 2013;36:437-49
  • Beck M. Therapy for lysosomal storage disorders. IUBMB Life 2010;62:33-40
  • Hawkins-Salsbury JA, Cooper JD, Sands MS. Pathogenesis and therapies for infantile neuronal ceroid lipofuscinosis (infantile CLN1 disease). Biochim Biophys Acta 2013;1832:1906-9
  • Cialone J, Augustine EF, Newhouse N, et al. Quantitative telemedicine ratings in Batten disease: implications for rare disease research. Neurology 2011;77:1808-11
  • Dyke JP, Sondhi D, Voss HU, et al. Assessment of disease severity in late infantile neuronal ceroid lipofuscinosis using multiparametric MR imaging. AJNR Am J Neuroradiol 2013;34:884-9
  • Kwon JM, Adams H, Rothberg PG, et al. Quantifying physical decline in juvenile neuronal ceroid lipofuscinosis (Batten disease). Neurology 2011;77:1801-7
  • Steinfeld R, Heim P, von GH, et al. Late infantile neuronal ceroid lipofuscinosis: quantitative description of the clinical course in patients with CLN2 mutations. Am J Med Genet 2002;112:347-54
  • Worgall S, Kekatpure MV, Heier L, et al. Neurological deterioration in late infantile neuronal ceroid lipofuscinosis. Neurology 2007;69:521-35
  • Desnick RJ, Schuchman EH. Enzyme replacement therapy for lysosomal diseases: lessons from 20 years of experience and remaining challenges. Annu Rev Genomics Hum Genet 2012;13:307-35
  • Kollmann K, Uusi-Rauva K, Scifo E, et al. Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochim Biophys Acta 2013;1832:1866-81
  • Byrne BJ, Falk DJ, Clement N, Mah CS. Gene therapy approaches for lysosomal storage disease: next-generation treatment. Hum Gene Ther 2012;23:808-15
  • van Gelder CM, Vollebregt AA, Plug I, et al. Treatment options for lysosomal storage disorders: developing insights. Expert Opin Pharmacother 2012;13:2281-99
  • Lu JY, Hu J, Hofmann SL. Human recombinant palmitoyl-protein thioesterase-1 (PPT1) for preclinical evaluation of enzyme replacement therapy for infantile neuronal ceroid lipofuscinosis. Mol Genet Metab 2010;99:374-8
  • Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature 2006;441:1094-6
  • Aboody K, Capela A, Niazi N, et al. Translating stem cell studies to the clinic for CNS repair: current state of the art and the need for a Rosetta stone. Neuron 2011;70:597-613
  • Chaudhuri A, Bhattacharya N. Human neural stem cell transplants in neurological disorders: current trends and future options. In: Bhattacharya N, Stubblefield P, editors. Human fetal tissue transplantation. Springer-Verlag; London: 2013. p. 265-8
  • Jin HK, Carter JE, Huntley GW, Schuchman EH. Intracerebral transplantation of mesenchymal stem cells into acid sphingomyelinase-deficient mice delays the onset of neurological abnormalities and extends their life span. J Clin Invest 2002;109:1183-91
  • Heldermon CD, Ohlemiller KK, Herzog ED, et al. Therapeutic efficacy of bone marrow transplant, intracranial AAV-mediated gene therapy, or both in the mouse model of MPS IIIB. Mol Ther 2010;18:873-80
  • Buchet D, Serguera C, Zennou V, et al. Long-term expression of beta-glucuronidase by genetically modified human neural progenitor cells grafted into the mouse central nervous system. Mol Cell Neurosci 2002;19:389-401
  • Biffi A, De PM, Quattrini A, et al. Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J Clin Invest 2004;113:1118-29
  • Bowers WJ, Breakefield XO, Sena-Esteves M. Genetic therapy for the nervous system. Hum Mol Genet 2011;20:R28-41
  • Tyynela J, Cooper JD, Khan MN, et al. Hippocampal pathology in the human neuronal ceroid-lipofuscinoses: distinct patterns of storage deposition, neurodegeneration and glial activation. Brain Pathol 2004;14:349-57
  • Tsuji D, Itoh K. Molecular therapy for lysosomal storage diseases. In: Molina FM, editor. Gene therapy - tools and potential applications. InTech, Rijeka, Croatia; 2013. p. 591-607
  • Gray SJ. Gene therapy and neurodevelopmental disorders. Neuropharmacology 2013;68:136-42
  • Chtarto A, Bockstael O, Tshibangu T, et al. A next step in adeno-associated virus (AAV)-mediated gene therapy for neurological diseases: regulation and targeting. Br J Clin Pharmacol 2013;76:217-32
  • Weinberg MS, Samulski RJ, McCown TJ. Adeno-associated virus (AAV) gene therapy for neurological disease. Neuropharmacology 2013;69:82-8
  • Cearley CN, Wolfe JH. Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol Ther 2006;13:528-37
  • Cearley CN, Vandenberghe LH, Parente MK, et al. Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain. Mol Ther 2008;16:1710-18
  • Fu H, Dirosario J, Killedar S, et al. Correction of neurological disease of mucopolysaccharidosis IIIB in adult mice by rAAV9 trans-blood-brain barrier gene delivery. Mol Ther 2011;19:1025-33
  • Foust KD, Nurre E, Montgomery CL, et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009;27:59-65
  • Chen YH, Claflin K, Geoghegan JC, Davidson BL. Sialic acid deposition impairs the utility of AAV9, but not peptide-modified AAVs for brain gene therapy in a mouse model of lysosomal storage disease. Mol Ther 2012;20:1393-9
  • High KA. The gene therapy journey for hemophilia: are we there yet? Blood 2012;120:4482-7
  • Gray SJ, Nagabhushan KS, McCown TJ, Jude SR. Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Ther 2013;20:450-9
  • Sondhi D, Hackett NR, Kaminsky SM, Crystal RG. Setting back the clock: adenoviral-mediated gene therapy for lysosomal storage disorders. In: Barranger JA, Cabrera-Salazar MA, editors. Lysosomal storage disorders. Springer Science and Business Media, LLC; New York: 2007. p. 81-95
  • Shevtsova Z, Garrido M, Weishaupt J, et al. CNS-expressed cathepsin D prevents lymphopenia in a murine model of congenital neuronal ceroid lipofuscinosis. Am J Pathol 2010;177:271-9
  • Griffey MA, Wozniak D, Wong M, et al. CNS-directed AAV2-mediated gene therapy ameliorates functional deficits in a murine model of infantile neuronal ceroid lipofuscinosis. Mol Ther 2006;13:538-47
  • Cabrera-Salazar MA, Roskelley EM, Bu J, et al. Timing of therapeutic intervention determines functional and survival outcomes in a mouse model of late infantile batten disease. Mol Ther 2007;15:1782-8
  • Boutin S, Monteilhet V, Veron P, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther 2010;21:704-12
  • Hofmann SL, Lee LA, Lu JY, Verkruyse LA. Palmitoyl-protein thioesterase and the molecular pathogenesis of infantile neuronal ceroid lipofuscinosis. Neuropediatrics 1997;28:27-30
  • Zeidman R, Jackson CS, Magee AI. Protein acyl thioesterases (Review). Mol Membr Biol 2009;26:32-41
  • Zhang Z, Butler JD, Levin SW, et al. Lysosomal ceroid depletion by drugs: therapeutic implications for a hereditary neurodegenerative disease of childhood. Nat Med 2001;7:478-84
  • Russo E, Gitto R, Citraro R, et al. New AMPA antagonists in epilepsy. Expert Opin Investig Drugs 2012;21:1371-89
  • Zarate CA Jr, Manji HK. The role of AMPA receptor modulation in the treatment of neuropsychiatric diseases. Exp Neurol 2008;211:7-10
  • Klawe C, Maschke M. Flupirtine: pharmacology and clinical applications of a nonopioid analgesic and potentially neuroprotective compound. Expert Opin Pharmacother 2009;10:1495-500
  • Harish S, Bhuvana K, Bengalorkar GM, Kumar T. Flupirtine: clinical pharmacology. J Anaesthesiol Clin Pharmacol 2012;28:172-7
  • Riikonen R, Vanhanen SL, Tyynela J, et al. CSF insulin-like growth factor-1 in infantile neuronal ceroid lipofuscinosis. Neurology 2000;54:1828-32
  • Cialone J, Augustine EF, Newhouse N, et al. Parent-reported benefits of flupirtine in juvenile neuronal ceroid lipofuscinosis (Batten disease; CLN3) are not supported by quantitative data. J Inherit Metab Dis 2011;34:1075-81
  • Mitchison HM, Lim MJ, Cooper JD. Selectivity and types of cell death in the neuronal ceroid lipofuscinoses. Brain Pathol 2004;14:86-96
  • Zeman RJ, Peng H, Etlinger JD. Clenbuterol retards loss of motor function in motor neuron degeneration mice. Exp Neurol 2004;187:460-7
  • Semkova I, Schilling M, Henrich-Noack P, et al. Clenbuterol protects mouse cerebral cortex and rat hippocampus from ischemic damage and attenuates glutamate neurotoxicity in cultured hippocampal neurons by induction of NGF. Brain Res 1996;717:44-54
  • Frerichs O, Fansa H, Ziems P, et al. Regeneration of peripheral nerves after clenbuterol treatment in a rat model. Muscle Nerve 2001;24:1687-91
  • Aberg L, Talling M, Harkonen T, et al. Intermittent prednisolone and autoantibodies to GAD65 in juvenile neuronal ceroid lipofuscinosis. Neurology 2008;70:1218-20
  • Lim MJ, Alexander N, Benedict JW, et al. IgG entry and deposition are components of the neuroimmune response in Batten disease. Neurobiol Dis 2007;25:239-51
  • Chattopadhyay S, Ito M, Cooper JD, et al. An autoantibody inhibitory to glutamic acid decarboxylase in the neurodegenerative disorder Batten disease. Hum Mol Genet 2002;11:1421-31
  • Pearce DA, Atkinson M, Tagle DA. Glutamic acid decarboxylase autoimmunity in Batten disease and other disorders. Neurology 2004;63:2001-5
  • Nangia S, Caraballo RH, Kang HC, et al. Is the ketogenic diet effective in specific epilepsy syndromes? Epilepsy Res 2012;100:252-7
  • Neal EG, Chaffe H, Schwartz RH, et al. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol 2008;7:500-6
  • Clausen J, Jensen GE, Nielsen SA. Selenium in chronic neurologic diseases. Multiple sclerosis and Batten's disease. Biol Trace Elem Res 1988;15:179-203
  • Naidu S, Maumanee I, Olson J, et al. Selenium treatment in neuronal ceroid-lipofuscinosis. Am J Med Genet Suppl 1988;5:283-9
  • Westermarck T. Selenium content of tissues in Finnish infants and adults with various diseases, and studies on the effects of selenium supplementation in neuronal ceroid lipofuscinosis patients. Acta Pharmacol Toxicol (Copenh) 1977;41:121-8
  • Westermarck T, Sandholm M. Decreased erythrocyte glutathione peroxidase activity in neuronal lipofuscinosis (NCL) - corrected with selenium supplementation. Acta Pharmacol Toxicol (Copenh) 1977;40:70-4
  • Macauley SL, Roberts MS, Wong AM, et al. Synergistic effects of central nervous system-directed gene therapy and bone marrow transplantation in the murine model of infantile neuronal ceroid lipofuscinosis. Ann Neurol 2012;71:797-804
  • Roberts MS, Macauley SL, Wong AM, et al. Combination small molecule PPT1 mimetic and CNS-directed gene therapy as a treatment for infantile neuronal ceroid lipofuscinosis. J Inherit Metab Dis 2012;35:847-57
  • Hu J, Lu JY, Wong AM, et al. Intravenous high-dose enzyme replacement therapy with recombinant palmitoyl-protein thioesterase reduces visceral lysosomal storage and modestly prolongs survival in a preclinical mouse model of infantile neuronal ceroid lipofuscinosis. Mol Genet Metab 2012;107:213-21
  • Tamaki SJ, Jacobs Y, Dohse M, et al. Neuroprotection of host cells by human central nervous system stem cells in a mouse model of infantile neuronal ceroid lipofuscinosis. Cell Stem Cell 2009;5:310-19
  • Selden NR, Al-Uzri A, Huhn SL, et al. Central nervous system stem cell transplantation for children with neuronal ceroid lipofuscinosis. J Neurosurg Pediatr 2013;11:643-52
  • Lonnqvist T, Vanhanen SL, Vettenranta K, et al. Hematopoietic stem cell transplantation in infantile neuronal ceroid lipofuscinosis. Neurology 2001;57:1411-16
  • Lake BD, Steward CG, Oakhill A, et al. Bone marrow transplantation in late infantile Batten disease and juvenile Batten disease. Neuropediatrics 1997;28:80-1
  • Shaw G. Neural stem cells appear to produce myelin in brains of boys with rare genetic disorder. Neurology Today 2012;12: 1, 10-12
  • Griffey M, Bible E, Vogler C, et al. Adeno-associated virus 2-mediated gene therapy decreases autofluorescent storage material and increases brain mass in a murine model of infantile neuronal ceroid lipofuscinosis. Neurobiol Dis 2004;16:360-9
  • Griffey M, Macauley SL, Ogilvie JM, Sands MS. AAV2-mediated ocular gene therapy for infantile neuronal ceroid lipofuscinosis. Mol Ther 2005;12:413-21
  • Gavin M, Wen GY, Messing J, et al. Substrate reduction therapy in four patients with milder CLN1 mutations and juvenile-onset Batten disease using cysteamine bitartrate. JIMD Rep 2013;11:87-92
  • Dhar S, Bitting RL, Rylova SN, et al. Flupirtine blocks apoptosis in batten patient lymphoblasts and in human postmitotic. Ann Neurol 2002;51:448-66
  • Kim SJ, Zhang Z, Hitomi E, et al. Endoplasmic reticulum stress-induced caspase-4 activation mediates apoptosis and neurodegeneration in INCL. Hum Mol Genet 2006;15:1826-34
  • Wei H, Kim SJ, Zhang Z, et al. ER and oxidative stresses are common mediators of apoptosis in both neurodegenerative and non-neurodegenerative lysosomal storage disorders and are alleviated by chemical chaperones. Hum Mol Genet 2008;17:469-77
  • Kim SJ, Zhang Z, Saha A, et al. Omega-3 and omega-6 fatty acids suppress ER- and oxidative stress in cultured neurons and neuronal progenitor cells from mice lacking PPT1. Neurosci Lett 2010;479:292-6
  • Yoon DH, Kwon OY, Mang JY, et al. Protective potential of resveratrol against oxidative stress and apoptosis in Batten disease lymphoblast cells. Biochem Biophys Res Commun 2011;414:49-52
  • Chang M, Cooper JD, Sleat DE, et al. Intraventricular enzyme replacement improves disease phenotypes in a mouse model of late infantile neuronal ceroid lipofuscinosis. Mol Ther 2008;16:649-56
  • Xu S, Wang L, El-Banna M, et al. Large-volume intrathecal enzyme delivery increases survival of a mouse model of late infantile neuronal ceroid lipofuscinosis. Mol Ther 2011;19:1842-8
  • Vuillemenot BR, Katz ML, Coates JR, et al. Intrathecal tripeptidyl-peptidase 1 reduces lysosomal storage in a canine model of late infantile neuronal ceroid lipofuscinosis. Mol Genet Metab 2011;104:325-37
  • Vuillemenot BR, Kennedy D, Tsuruda LS, et al. Nonclinical development of TPP1 enzyme replacement therapy for NCL2. Eurpean Paediatric Neurology Society 2013; Brussels, September 25-28, 2013
  • Meng Y, Sohar I, Wang L, et al. Systemic administration of tripeptidyl peptidase I in a mouse model of late infantile neuronal ceroid lipofuscinosis: effect of glycan modification. PLoS ONE 2012;7:e40509
  • Haskell RE, Hughes SM, Chiorini JA, et al. Viral-mediated delivery of the late-infantile neuronal ceroid lipofuscinosis gene, TPP-I to the mouse central nervous system. Gene Ther 2003;10:34-42
  • Sondhi D, Hackett NR, Peterson DA, et al. Enhanced survival of the LINCL mouse following CLN2 gene transfer using the rh.10 rhesus macaque-derived adeno-associated virus vector. Mol Ther 2007;15:481-91
  • Sondhi D, Peterson DA, Edelstein AM, et al. Survival advantage of neonatal CNS gene transfer for late infantile neuronal ceroid lipofuscinosis. Exp Neurol 2008;213:18-27
  • Passini MA, Dodge JC, Bu J, et al. Intracranial delivery of CLN2 reduces brain pathology in a mouse model of classical late infantile neuronal ceroid lipofuscinosis. J Neurosci 2006;26:1334-42
  • Sondhi D, Johnson L, Purpura K, et al. Long-term expression and safety of administration of AAVrh.10hCLN2 to the brain of rats and nonhuman primates for the treatment of late infantile neuronal ceroid lipofuscinosis. Hum Gene Ther Methods 2012;23:324-35
  • Souweidane MM, Fraser JF, Arkin LM, et al. Gene therapy for late infantile neuronal ceroid lipofuscinosis: neurosurgical considerations. J Neurosurg Pediatr 2010;6:115-22
  • Sondhi D, Hackett NR, Scott E, et al. Correction of the lysosomal storage defect in mouse model of juvenile neuronal ceroid lipofuscinosis by neonatal injection of AAV serotype rh.10 vector expressing the human CLN3 gene. Mol Ther 2011;19:S78
  • Kovacs AD, Weimer JM, Pearce DA. Selectively increased sensitivity of cerebellar granule cells to AMPA receptor-mediated excitotoxicity in a mouse model of Batten disease. Neurobiol Dis 2006;22:575-85
  • Kovacs AD, Pearce DA. Attenuation of AMPA receptor activity improves motor skills in a mouse model of juvenile Batten disease. Exp Neurol 2008;209:288-91
  • Kovacs AD, Saje A, Wong A, et al. Temporary inhibition of AMPA receptors induces a prolonged improvement of motor performance in a mouse model of juvenile Batten disease. Neuropharmacology 2011;60:405-9
  • Hawkins-Salsbury JA, Reddy AS, Sands MS. Combination therapies for lysosomal storage disease: is the whole greater than the sum of its parts? Hum Mol Genet 2011;20:R54-60
  • Marshall FJ, de Blieck EA, Mink JW, et al. A clinical rating scale for Batten disease: reliable and relevant for clinical trials. Neurology 2005;65:275-9
  • Downing HJ, Pirmohamed M, Beresford MW, Smyth RL. Paediatric use of mycophenolate mofetil. Br J Clin Pharmacol 2013;75:45-59
  • Bennett MJ, Gayton AR, Rittey CD, Hosking GP. Juvenile neuronal ceroid-lipofuscinosis: developmental progress after supplementation with polyunsaturated fatty acids. Dev Med Child Neurol 1994;36:630-8
  • Santavuori P, Westermarck T, Rapola J, et al. Antioxidant treatment in Spielmeyer-Sjogren's disease. Acta Neurol Scand 1985;71:136-45
  • Santavuori P, Moren R. Experience of antioxidant treatment in neuronal ceroid-lipofuscinosis of Spielmeyer-Sjogren type. Neuropadiatrie 1977;8:333-44
  • Linterman KS, Palmer DN, Kay GW, et al. Lentiviral-mediated gene transfer to the sheep brain: implications for gene therapy in Batten disease. Hum Gene Ther 2011;22:1011-20
  • Deeg HJ, Shulman HM, Albrechtsen D, et al. Batten's disease: failure of allogeneic bone marrow transplantation to arrest disease progression in a canine model. Clin Genet 1990;37:264-70
  • Lipman RD, Donohue LR, Hoppe P, Bronson RT. Evidence that lysosomal storage of proteolipids is a cell autonomous process in the motor neuron degeneration (mnd) mouse, a model of neuronal ceroid lipofuscinosis. Neurosci Lett 1996;219:111-14
  • Elger B, Schneider M, Winter E, et al. Optimized synthesis of AMPA receptor antagonist ZK 187638 and neurobehavioral activity in a mouse model of neuronal ceroid lipofuscinosis. ChemMedChem 2006;1:1142-8
  • Cooper JD, Messer A, Feng AK, et al. Apparent loss and hypertrophy of interneurons in a mouse model of neuronal ceroid lipofuscinosis: evidence for partial response to insulin-like growth factor-1 treatment. J Neurosci 1999;19:2556-67
  • Taylor JM, Main BS, Crack PJ. Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkinson's disease. Neurochem Int 2013;62:803-19
  • Bertamini M, Marzani B, Guarneri R, et al. Mitochondrial oxidative metabolism in motor neuron degeneration (mnd) mouse central nervous system. Eur J Neurosci 2002;16:2291-6
  • Siakotos AN, Hutchins GD, Farlow MR, Katz ML. Assessment of dietary therapies in a canine model of Batten disease. Eur J Paediatr Neurol 2001;5 Suppl A:151-6
  • Saftig P, Hetman M, Schmahl W, et al. Mice deficient for the lysosomal proteinase cathepsin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells. EMBO J 1995;14:3599-608
  • Pike LS, Tannous BA, Deliolanis NC, et al. Imaging gene delivery in a mouse model of congenital neuronal ceroid lipofuscinosis. Gene Ther 2011;18:1173-8
  • Freedman R, Sahhar M, Curnow L, et al. Receiving enzyme replacement therapy for a lysosomal storage disorder: a preliminary exploration of the experiences of young patients and their families. J Genet Couns 2013;22:517-32
  • Lindvall O. Why is it taking so long to develop clinically competitive stem cell therapies for CNS disorders? Cell Stem Cell 2012;10:660-2
  • Kim SU, Lee HJ, Kim YB. Neural stem cell-based treatment for neurodegenerative diseases. Neuropathology 2013
  • Kirkegaard T. Emerging therapies and therapeutic concepts for lysosomal storage diseases. Exp Opin Orphan Drugs 2013;1:385-404
  • Wang J, Lozier J, Johnson G, et al. Neutralizing antibodies to therapeutic enzymes: considerations for testing, prevention and treatment. Nat Biotechnol 2008;26:901-8
  • Hess P. Intracranial stem cell-based transplantation:reconsidering the ethics of phase 1 clinical trials in light of irreversible interventions in the brain. AJOB Neuroscience 2012;3:3-13
  • Wong AM, Rahim AA, Waddington SN, Cooper JD. Current therapies for the soluble lysosomal forms of neuronal ceroid lipofuscinosis. Biochem Soc Trans 2010;38:1484-8
  • Shihabuddin LS, Aubert I. Stem cell transplantation for neurometabolic and neurodegenerative diseases. Neuropharmacology 2010;58:845-54
  • Miller N. Glybera and the future of gene therapy in the European Union. Nat Rev Drug Discov 2012;11:419
  • Lebrun AH, Moll-Khosrawi P, Pohl S, et al. Analysis of potential biomarkers and modifier genes affecting the clinical course of CLN3 disease. Mol Med 2011;17:1253-61
  • Dawson G, Schroeder C, Dawson PE. Palmitoyl:protein thioesterase (PPT1) inhibitors can act as pharmacological chaperones in infantile Batten disease. Biochem Biophys Res Commun 2010;395:66-9
  • Sleat DE, El-Banna M, Sohar I, et al. Residual levels of tripeptidyl-peptidase I activity dramatically ameliorate disease in late-infantile neuronal ceroid lipofuscinosis. Mol Genet Metab 2008;94:222-33
  • Seehafer SS, Ramirez-Montealegre D, Wong AM, et al. Immunosuppression alters disease severity in juvenile Batten disease mice. J Neuroimmunol 2011;230:169-72
  • Sarkar S, Floto RA, Berger Z, et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 2005;170:1101-11
  • Mattson MP, Chan SL, Duan W. Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev 2002;82:637-72
  • Katz ML, Rice LM, Gao CL. Dietary carnitine supplements slow disease progression in a putative mouse model for hereditary ceroid-lipofuscinosis. J Neurosci Res 1997;50:123-32

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.