87
Views
1
CrossRef citations to date
0
Altmetric
Review

Prospects of gene and cell therapy for managing cardiac complications in Friedreich ataxia

, , , &

Bibliography

  • Pandolfo M. Iron and Friedreich ataxia. J Neural Transm Suppl 2006(70):143-6
  • Martelli A, Puccio H. Dysregulation of cellular iron metabolism in Friedreich ataxia: from primary iron-sulfur cluster deficit to mitochondrial iron accumulation. Front Pharmacol 2014;5:130-41
  • Corben LA, Lynch D, Pandolfo M, et al. Consensus clinical management guidelines for Friedreich ataxia. Orphanet J Rare Dis 2014;9(1):184-96
  • Harding AE. Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 1981;104(3):589-620
  • Lynch DR, Farmer JM, Balcer LJ, et al. Friedreich ataxia: effects of genetic understanding on clinical evaluation and therapy. Arch Neurol 2002;59(5):743-7
  • Corben LA, Ho M, Copland J, et al. Increased prevalence of sleep-disordered breathing in Friedreich ataxia. Neurology 2013;81(1):46-51
  • Tsou AY, Paulsen EK, Lagedrost SJ, et al. Mortality in Friedreich ataxia. J Neurol Sci 2011;307(1-2):46-9
  • Lynch DR, Regner SR, Schadt KA, et al. Management and therapy for cardiomyopathy in Friedreich’s ataxia. Expert Rev Cardiovasc Ther 2012;10(6):767-77
  • Payne RM, Wagner GR. Cardiomyopathy in Friedreich ataxia: clinical findings and research. J Child Neurol 2012;27(9):1179-86
  • Weidemann F, Rummey C, Bijnens B, et al. Mitochondrial Protection with Idebenone in Cardiac or Neurological Outcome (MICONOS) study group. The heart in Friedreich ataxia: definition of cardiomyopathy, disease severity, and correlation with neurological symptoms. Circulation 2012;125(13):1626-34
  • Moore S, Raman SV. Cardiac involvement in hereditary ataxias. J Child Neurol 2012;27(9):1174-8
  • Schadt KA, Friedman LS, Regner SR, et al. Cross-sectional analysis of electrocardiograms in a large heterogeneous cohort of Friedreich ataxia subjects. J Child Neurol 2012;27(9):1187-92
  • Koeppen AH, Ramirez RL, Becker AB, et al. The pathogenesis of cardiomyopathy in Friedreich ataxia. PLoS One 2015;10(3):e0116396
  • Lagedrost SJ, Sutton MS, Cohen MS, et al. Idebenone in Friedreich ataxia cardiomyopathy—results from a 6-month phase III study (IONIA). Am Heart J 2011;161(3):639-45
  • Mariotti C, Solari A, Torta D, et al. Idebenone treatment in Friedreich patients: one-year long randomized placebo-controlled trial. Neurology 2003;60(10):1676-9
  • Cooper JM, Korlipara LV, Hart PE, et al. Coenzyme Q10 and vitamin E deficiency in Friedreich’s ataxia: predictor of efficacy of vitamin E and coenzyme Q10 therapy. Eur J Neurol 2008;15(12):1371-9
  • Evans-Galea MV, Pebay A, Dottori M, et al. Cell and gene therapy for Friedreich ataxia: progress to date. Hum Gene Ther 2014;25(8):684-93
  • Strawser CJ, Schadt KA, Lynch DR. Therapeutic approaches for the treatment of Friedreich’s ataxia. Expert Rev Neurother 2014;14(8):949-57
  • Kim SU, Nagai A, Nakagawa E, et al. Production and characterization of immortal human neural stem cell line with multipotent differentiation property. Methods Mol Biol 2008;438:103-21
  • Zhang J, Wilson GF, Soerens AG, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 2009;104(4):e30-41
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126(4):663-76
  • Araki R, Uda M, Hoki Y, et al. Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature 2013;494(7435):100-4
  • Jang J, Quan Z, Yum YJ, et al. Induced pluripotent stem cells for modeling of pediatric neurological disorders. Biotechnol J 2014;9(7):871-81
  • Liu J, Verma PJ, Evans-Galea MV, et al. Generation of induced pluripotent stem cell lines from Friedreich ataxia patients. Stem Cell Rev 2011;7(3):703-13
  • Ku S, Soragni E, Campau E, et al. Friedreich’s ataxia induced pluripotent stem cells model intergenerational GAA-TCC triplet repeat instability. Cell Stem Cell 2010;7(5):631-7
  • Lee YK, Ho PW, Schick R, et al. Modeling of Friedreich ataxia-related iron overloading cardiomyopathy using patient-specific-induced pluripotent stem cells. Pflugers Arch 2014;466(9):1831-44
  • Hick A, Wattenhofer-Donzé M, Chintawar S, et al. Neurons and cardiomyocytes derived from induced pluripotent stem cells as a model for mitochondrial defects in Friedreich’s ataxia. Dis Model Mech 2013;6(3):608-21
  • Li Y, Polak U, Bhalla AD, et al. Excision of expanded GAA repeats alleviates the molecular phenotype of Friedreich’s ataxia. Mol Ther 2015;23(6):1055-65
  • Ousterout DG, Perez-Pinera P, Thakore PI, et al. Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol Ther 2013;21(9):1718-26
  • Tan G, Chen LS, Lonnerdal B, et al. Frataxin expression rescues mitochondrial dysfunctions in FRDA cells. Hum Mol Genet 2001;10(19):2099-107
  • Zaibak F, Kozlovski J, Vadolas J, et al. Integration of functional bacterial artificial chromosomes into human cord blood-derived multipotent stem cells. Gene Ther 2009;16(3):404-14
  • Malliaras K, Marbán E. Cardiac cell therapy: where we’ve been, where we are, and where we should be headed. Br Med Bull 2011;98:161-85
  • Nelson TJ, Martinez-Fernandez A, Yamada S, et al. Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 2009;120(5):408-16
  • Pfister O, Della Verde G, Liao R, et al. Regenerative therapy for cardiovascular disease. Transl Res 2014;163(4):307-20
  • Zwi-Dantsis L, Huber I, Habib M, et al. Derivation and cardiomyocyte differentiation of induced pluripotent stem cells from heart failure patients. Eur Heart J 2013;34(21):1575-86
  • Kawamura M, Miyagawa S, Miki K, et al. Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 2012;126(11 Suppl 1):S29-37
  • Miura K, Okada Y, Aoi T, et al. Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 2009;27(8):743-5
  • De Biase I, Rasmussen A, Endres D, et al. Progressive GAA expansions in dorsal root ganglia of Friedreich’s ataxia patients. Ann Neurol 2007;61(1):55-60
  • Sandi C, Al-Mahdawi S, Pook MA. Epigenetics in Friedreich’s Ataxia: challenges and opportunities for therapy. Genet Res Int 2013;2013:852080
  • Horwitz EM, Le Blanc K, Dominici M, et al. Clarification of the nomenclature for MSC: the international society for cellular therapy position statement. Cytotherapy 2005;7(5):393-5
  • Kim J, Shapiro L, Flynn A. The clinical application of mesenchymal stem cells and cardiac stem cells as a therapy for cardiovascular disease. Pharmacol Ther 2015;151:8-15
  • Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep 2015;35(2):e00191
  • Glenn JD, Whartenby KA. Mesenchymal stem cells: emerging mechanisms of immunomodulation and therapy. World J Stem Cells 2014;6(5):526-39
  • Karantalis V, Hare JM. Use of mesenchymal stem cells for therapy of cardiac disease. Circ Res 2015;116(8):1413-30
  • Jones J, Jaramillo-Merchán J, Bueno C, et al. Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis 2010;40(2):415-23
  • Parr AM, Tator CH, Keating A. Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 2007;40(7):609-19
  • Aleynik A, Gernavage KM, Mourad YSH, et al. Stem cell delivery of therapies for brain disorders. Clin Transl Med 2014;3(24):3-24
  • Jones J, Estirado A, Redondo C, et al. Human adipose stem cell-conditioned medium increases survival of Friedreich’s ataxia cells submitted to oxidative stress. Stem Cells Dev 2012;21(15):2817-26
  • Kemp K, Mallam E, Hares K, et al. Mesenchymal stem cells restore frataxin expression and increase hydrogen peroxide scavenging enzymes in Friedreich ataxia fibroblasts. PLoS One 2011;6(10):e26098
  • Dey R, Kemp K, Gray E, et al. Human mesenchymal stem cells increase anti-oxidant defences in cells derived from patients with Friedreich’s ataxia. Cerebellum 2012;11(4):861-71
  • Jones J, Estirado A, Redondo C, et al. Mesenchymal stem cells improve motor functions and decrease neurodegeneration in ataxic mice. Mol Ther 2015;23(1):130-8
  • Quevedo HC, Hatzistergos KE, Oskouei BN, et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci USA 2009;106(33):14022-7
  • Williams AR, Hatzistergos KE, Addicott B, et al. Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 2013;127(2):213-23
  • Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 2001;98(18):10344-9
  • Noiseux N, Gnecchi M, Lopez-Ilasaca M, et al. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther 2006;14(6):840-50
  • Jeevanantham V, Butler M, Saad A, et al. Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation 2012;126(5):551-68
  • Murry CE, Palpant NJ, MacLellan WR. Cardiopoietry in motion: primed mesenchymal stem cells for ischemic cardiomyopathy. J Am Coll Cardiol 2013;61(23):2339-40
  • Ju X, Zou H, Liu K, et al. Meta-analysis of the effect of mesenchymal stem cell transplantation on vascular remodeling after carotid balloon injury in animal models. PLoS One 2015;10(3):e0120082
  • Kordower JH, Emborg ME, Bloch J, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 2000;290(5492):767-73
  • Jessup M, Greenberg B. Mancini, D, et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID) a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 2011;124(3):304-13
  • Losordo DW, Vale PR, Symes JF, et al. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 1998;98(25):2800-4
  • Markert JM, Razdan SN, Kuo HC, et al. A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol Ther 2014;22(5):1048-55
  • Escors E, Breckpot K. Lentiviral vectors in gene therapy: their current status and future potential. Arch Immunol Ther Exp 2010;58(2):107-19
  • Yáñez-Muñoz RJ, Balaggan KS, MacNeil A, et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 2006;12(3):348-53
  • Lattanzi A, Salvagno C, Maderna C, et al. Therapeutic benefit of lentiviral-mediated neonatal intracerebral gene therapy in a mouse model of globoid cell leukodystrophy. Hum Mol Genet 2014;23(12):3250-68
  • Azzouz M, Ralph GS, Storkebaum E, et al. VEGF delivery with retrogradely transported lentivector prolongs survival in mouse ALS model. Nature 2004;27:413-17
  • Fleming J, Spinoulas A, Zheng M, et al. Partial correction of sensitivity to oxidant stress in Friedreich ataxia patient fibroblasts by frataxin-encoding adeno-associated virus and lentivirus vectors. Hum Gene Ther 2005;16(8):947-56
  • Sakoda T, Kasahara N, Hamamori Y, et al. A high-titer lentiviral production system mediates efficient transduction of differentiated cells including beating cardiac myocytes. J Mol Cell Cardiol 1999;31(11):2037-47
  • Di Domenico C, Di Napoli D, Gonzalez Y, et al. Limited transgene immune response and long-term expression of human alpha-L-iduronidase in young adult mice with mucopolysaccharidosis type I by liver-directed gene therapy. Hum Gene Ther 2006;17(11):1112-21
  • Fleming J, Ginn SL, Weinberger RP, et al. Adeno-associated virus and lentivirus vectors mediate efficient and sustained transduction of cultured mouse and human dorsal root ganglia sensory neurons. Hum Gene Ther 2001;12(1):77-86
  • Modlich U, Navarro S, Zychlinski D, et al. Insertional trandformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors. Mol Ther 2009;17(11):1919-28
  • Howe SJ, Mansour MR, Schwarzwaelder K, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 2008;118(9):3143-50
  • Zhou S, Mody D, DeRayin SS, et al. A self-inactivating lentiviral vector for SCID-X1 gene therapy that does not activate LMO2 expression in human T cells. Blood 2010;116(6):900-8
  • Sinn PL, Sauter SL, McCray PBJr. Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors—design, biosafety, and production. Gene Ther 2005;12(14):1089-98
  • Yamada K, McCarty DM, Madden VJ, et al. Lentivirus vector purification using anion exchange HPLC leads to improved gene transfer. Biotechniques 2003;34(5):1074-8
  • Pauwels K, Gijsbers R, Toelen J, et al. State-of-the-art lentiviral vectors for research use: risk assessment and biosafety recommendations. Curr Gene Ther 2009;9(6):459-74
  • Palmer JA, Branston RH, Lilley CE, et al. Development and optimization of herpes simplex virus vectors for multiple long-term gene delivery to the peripheral nervous system. J Virol 2000;74(12):5604-18
  • Gomez-Sebastian S, Giminez-Cassina A, Diaz-Nido J, et al. Infectious delivery and expression of a 135 kb human FRDA genomic DNA locus complements Friedreich’s ataxia deficiency in human cells. Mol Ther 2007;15(2):248-54
  • Quigg M, Mairs RJ, Brown SM, et al. Assessment in vitro of a novel therapeutic strategy for glioma, combining herpes simplex virus HSV1716-mediated oncolysis with gene transfer and targeted radiotherapy. Med Chem 2005;1(5):423-9
  • Paradiso B, Marconi P, Zucchini S, et al. Localized delivery of fibroblast growth factor-2 and brain-derived neurotrophic factor reduces spontaneous seizures in an epilepsy model. Proc Natl Acad Sci USA 2009;106(17):7191-6
  • Furlan R, Poliani PL, Marconi PC, et al. Central nervous system gene therapy with interleukin-4 inhibits progression of ongoing relapsing-remitting autoimmune encephalomyelitis in Biozzi AB/H mice. Gene Ther 2001;8(1):13-19
  • Lim F, Palomo GM, Mauritz C, et al. Functional recovery in a Friedreich’s ataxia mouse model by frataxin gene transfer using an HSV-1 amplicon vector. Mol Ther 2007;15(6):1072-8
  • Lim F, Khalique H, Ventosa M, et al. Biosafety of gene therapy vectors derived from herpes simplex virus type 1. Curr Gene Ther 2013;13(6):478-91
  • Manservigi R, Argnani R, Marconi P. HSV recombinant vectors for gene therapy. Open Virol J 2010;4:123-56
  • Kramer MF, Cook WJ, Roth FP, et al. Latent herpes simplex virus infection of sensory neurons alters neuronal gene expression. J Virol 2003;77(17):9533-41
  • Verma IM, Somia N. Gene therapy—promises, problems and prospects. Nature 1997;389(6648):239-42
  • Wang Q, Dong B, Firrman J, et al. Efficient production of dual recombinant adeno-associated viral vectors for factor VIII delivery. Hum Gene Ther Methods 2014;25(4):261-8
  • Zsebo K, Yaroshinky A, Rudy JJ, et al. Long-term effects of AAV1/SERCA2a gene transfer in patients with severe heart failure: analysis of recurrent cardiovascular events and mortality. Circ Res 2014;114(1):101-8
  • Bajgelman MC, dos Santos L, Silva GJ, et al. Preservation of cardiac function in left ventricle cardiac hypertrophy using an AAV vectors which provides VEGF-A expression in response to p53. Virology 2015;476:106-14
  • Zincarelli C, Soltys S, Rengo G, et al. Comparative cardiac gene delivery of adeno-associated virus serotypes 1-9 reveals that AAV6 mediates the most efficient transduction in mouse heart. Clin Transl Sci 2010;3(3):81-90
  • Perdomini M, Belbellaa B, Monassier L, et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich’s ataxia. Nat Med 2014;20(5):542-7
  • Hordeaux J, Dubreil L, Denjaud J, et al. Efficient central nervous system AAVrh10-mediated intrathecal gene transfer in adult and neonate rats. Gene Ther 2015;22(4):316-24
  • Haas MJ. Reversing (heart) failure in Friedreich’s ataxia. SciBX 2014;7(16):10.1038/scibx.2014.448
  • Gao GP, Alvira MR, Wang L, et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002;99(18):11854-9
  • Mingozzi F, Buning H. Adeno-associated viral vectors at the frontier between tolerance and immunity. Front Immunol 2015;6:120
  • Brasner-Tschakarian E, Mingozzi F. Cell-mediated immunity to AAV vectors, evolving concepts and potential solutions. Front Immunol 2014;5:350
  • Calcedo R, Morizono H, Wang L, et al. Adeno-associated virus antibody profiles in newborns, children, and adolescents. Clin Vaccine Immunol 2011;18(9):1586-8
  • Boutin S, Monteilhet V, Veron P, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther 2010;21(6):704-12
  • Wilson JM. Adenoviruses as gene-delivery vehicles. N Engl J Med 1996;334(18):1185-7
  • Hareendran S, Balakrishnan B, Sen D, et al. Adeno-associated virus (AAV) vectors in gene therapy: immune challenges and strategies to circumvent them. Rev Med Vir 2013;23(6):399-413
  • Deyle DR, Li Y, Olson EM, et al. Nonintegrating foamy virus vectors. J Virol 2010;84(18):9341-9
  • Bell P, Wang L, Lebherz C, et al. No evidence for tumorigenesis of AAV vectors in a large-scale study in mice. Mol Ther 2005;12(2):299-306
  • Li H, Malani N, Hamilton SR. Assessing the potential for AAV vector genotoxicity in a murine model. Blood 2011;117(12):3311-19
  • Chandler RJ, LaFave MC, Varshney GK. Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. J Clin Invest 2015;125(2):870-80
  • Fargnoli AS, Katz MG, Williams RD, et al. A needleless liquid jet injection delivery method for cardiac gene therapy: a comparative evaluation versus standard routes of delivery reveals enhanced therapeutic retention and cardiac specific gene expression. J Cardiovasc Transl Res 2014;7(8):756-67
  • Wolfram JA, Donahue JK. Gene therapy to treat cardiovascular disease. J Am Heart Assoc 2013;2(4):e0000119

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.