174
Views
16
CrossRef citations to date
0
Altmetric
Reviews

Understanding molecular mechanisms in propionic acidemia and investigated therapeutic strategies

, PhD (Associate Professor) , , PhD (Associate Professor) , , PhD & , PhD (Associate Professor)

Bibliography

  • Pena L, Burton BK. Survey of health status and complications among propionic acidemia patients. Am J Med Genet A 2012;158A(7):1641-6
  • Pena L, Franks J, Chapman KA, et al. Natural history of propionic acidemia. Mol Genet Metab 2012;105(1):5-9
  • Chalmers RA, Roe CR, Stacey TE, Hoppel CL. Urinary excretion of l-carnitine and acylcarnitines by patients with disorders of organic acid metabolism: evidence for secondary insufficiency of l-carnitine. Pediatr Res 1984;18(12):1325-8
  • Stenson PD, Mort M, Ball EV, et al. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet 2014;133(1):1-9
  • Desviat LR, Sanchez-Alcudia R, Perez B, et al. High frequency of large genomic deletions in the PCCA gene causing propionic acidemia. Mol Genet Metab 2009;96(4):171-6
  • Perez-Cerda C, Merinero B, Rodriguez-Pombo P, et al. Potential relationship between genotype and clinical outcome in propionic acidaemia patients. Eur J Hum Genet 2000;8(3):187-94
  • Kraus JP, Spector E, Venezia S, et al. Mutation analysis in 54 propionic acidemia patients. J Inherit Metab Dis 2012;35(1):51-63
  • Tuchman M, Caldovic L, Daikhin Y, et al. N-carbamylglutamate markedly enhances ureagenesis in N-acetylglutamate deficiency and propionic acidemia as measured by isotopic incorporation and blood biomarkers. Pediatr Res 2008;64(2):213-17
  • Gebhardt B, Dittrich S, Parbel S, et al. N-carbamylglutamate protects patients with decompensated propionic aciduria from hyperammonaemia. J Inherit Metab Dis 2005;28(2):241-4
  • Ah Mew N, McCarter R, Daikhin Y, et al. N-carbamylglutamate augments ureagenesis and reduces ammonia and glutamine in propionic acidemia. Pediatrics 2010;126(1):e208-14
  • de Baulny HO, Benoist JF, Rigal O, et al. Methylmalonic and propionic acidaemias: management and outcome. J Inherit Metab Dis 2005;28(3):415-23
  • Rela M, Battula N, Madanur M, et al. Auxiliary liver transplantation for propionic acidemia: a 10-year follow-up. Am J Transplant 2007;7(9):2200-3
  • Charbit-Henrion F, Lacaille F, McKiernan P, et al. Early and late complications after liver transplantation for propionic acidemia in children: a two centers study. Am J Transplant 2015;15(3):786-91
  • Romano S, Valayannopoulos V, Touati G, et al. Cardiomyopathies in propionic aciduria are reversible after liver transplantation. J Pediatr 2010;156(1):128-34
  • Nagao M, Tanaka T, Morii M, et al. Improved neurologic prognosis for a patient with propionic acidemia who received early living donor liver transplantation. Mol Genet Metab 2013;108(1):25-9
  • Barshes NR, Vanatta JM, Patel AJ, et al. Evaluation and management of patients with propionic acidemia undergoing liver transplantation: a comprehensive review. Pediatr Transplant 2006;10(7):773-81
  • de Keyzer Y, Valayannopoulos V, Benoist JF, et al. Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Pediatr Res 2009;66(1):91-5
  • Fragaki K, Cano A, Benoist JF, et al. Fatal heart failure associated with CoQ10 and multiple OXPHOS deficiency in a child with propionic acidemia. Mitochondrion 2011;11(3):533-6
  • Mardach R, Verity MA, Cederbaum SD. Clinical, pathological, and biochemical studies in a patient with propionic acidemia and fatal cardiomyopathy. Mol Genet Metab 2005;85(4):286-90
  • Schwab MA, Sauer SW, Okun JG, et al. Secondary mitochondrial dysfunction in propionic aciduria: a pathogenic role for endogenous mitochondrial toxins. Biochem J 2006;398(1):107-12
  • Brock M, Buckel W. On the mechanism of action of the antifungal agent propionate. Eur J Biochem 2004;271(15):3227-41
  • Horswill AR, Dudding AR, Escalante-Semerena JC. Studies of propionate toxicity in Salmonella enterica identify 2-methylcitrate as a potent inhibitor of cell growth. J Biol Chem 2001;276(22):19094-101
  • Fontella FU, Pulrolnik V, Gassen E, et al. Propionic and L-methylmalonic acids induce oxidative stress in brain of young rats. Neuroreport 2000;11(3):541-4
  • Rigo FK, Pasquetti L, Malfatti CR, et al. Propionic acid induces convulsions and protein carbonylation in rats. Neurosci Lett 2006;408(2):151-4
  • Pettenuzzo LF, Schuck PF, Fontella F, et al. Ascorbic acid prevents cognitive deficits caused by chronic administration of propionic acid to rats in the water maze. Pharmacol Biochem Behav 2002;73(3):623-9
  • Nakao S, Moriya Y, Furuyama S, et al. Propionic acid stimulates superoxide generation in human neutrophils. Cell Biol Int 1998;22(5):331-7
  • Gallego-Villar L, Perez-Cerda C, Perez B, et al. Functional characterization of novel genotypes and cellular oxidative stress studies in propionic acidemia. J Inherit Metab Dis 2013;36(5):731-40
  • Mc Guire PJ, Parikh A, Diaz GA. Profiling of oxidative stress in patients with inborn errors of metabolism. Mol Genet Metab 2009;98(1-2):173-80
  • Moyano D, Vilaseca MA, Pineda M, et al. Tocopherol in inborn errors of intermediary metabolism. Clin Chim Acta 1997;263(2):147-55
  • Salmi H, Leonard JV, Lapatto R. Patients with organic acidaemias have an altered thiol status. Acta Paediatr 2012;101(11):e505-8
  • Morath MA, Okun JG, Muller IB, et al. Neurodegeneration and chronic renal failure in methylmalonic aciduria--a pathophysiological approach. J Inherit Metab Dis 2008;31(1):35-43
  • Yano S, Li L, Le TP, et al. Infantile mitochondrial DNA depletion syndrome associated with methylmalonic aciduria and 3-methylcrotonyl-CoA and propionyl-CoA carboxylase deficiencies in two unrelated patients: a new phenotype of mtDNA depletion syndrome. J Inherit Metab Dis 2003;26(5):481-8
  • Elpeleg O, Miller C, Hershkovitz E, et al. Deficiency of the ADP-forming succinyl-CoA synthase activity is associated with encephalomyopathy and mitochondrial DNA depletion. Am J Hum Genet 2005;76(6):1081-6
  • Hackenbrock CR. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol 1966;30(2):269-97
  • Hackenbrock CR. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport-linked ultrastructural transformations in mitochondria. J Cell Biol 1968;37(2):345-69
  • Chandler RJ, Zerfas PM, Shanske S, et al. Mitochondrial dysfunction in mut methylmalonic acidemia. Faseb J 2009;23(4):1252-61
  • Pham NA, Richardson T, Cameron J, et al. Altered mitochondrial structure and motion dynamics in living cells with energy metabolism defects revealed by real time microscope imaging. Microsc Microanal 2004;10(2):247-60
  • Baruteau J, Hargreaves I, Krywawych S, et al. Successful reversal of propionic acidaemia associated cardiomyopathy: evidence for low myocardial coenzyme Q10 status and secondary mitochondrial dysfunction as an underlying pathophysiological mechanism. Mitochondrion 2014;17:150-6
  • Gallego-Villar L, Perez B, Ugarte M, et al. Antioxidants successfully reduce ROS production in propionic acidemia fibroblasts. Biochem Biophys Res Commun 2014;452(3):457-61
  • Brunengraber H, Roe CR. Anaplerotic molecules: current and future. J Inherit Metab Dis 2006;29(2-3):327-31
  • Roe CR, Mochel F. Anaplerotic diet therapy in inherited metabolic disease: therapeutic potential. J Inherit Metab Dis 2006;29(2-3):332-40
  • Phillips MI, Burns AB. The emergence of gene therapy for rare diseases. Expert Opinion on Orphan Drugs 2014;2(11):1197-209
  • Miyazaki T, Ohura T, Kobayashi M, et al. Fatal propionic acidemia in mice lacking propionyl-CoA carboxylase and its rescue by postnatal, liver-specific supplementation via a transgene. J Biol Chem 2001;276(38):35995-9
  • Hofherr SE, Senac JS, Chen CY, et al. Short-term rescue of neonatal lethality in a mouse model of propionic acidemia by gene therapy. Hum Gene Ther 2009;20(2):169-80
  • Chandler RJ, Venditti CP. Adenovirus-mediated gene delivery rescues a neonatal lethal murine model of mut(0) methylmalonic acidemia. Hum Gene Ther 2008;19(1):53-60
  • Guenzel AJ, Hofherr SE, Hillestad M, et al. Generation of a hypomorphic model of propionic acidemia amenable to gene therapy testing. Mol Ther 2013;21(7):1316-23
  • Guenzel AJ, Hillestad ML, Matern D, Barry MA. Effects of adeno-associated virus serotype and tissue-specific expression on circulating biomarkers of propionic acidemia. Hum Gene Ther 2014;25(9):837-43
  • Guenzel AJ, Collard R, Kraus JP, et al. Long-term sex-biased correction of circulating propionic acidemia disease markers by adeno-associated virus vectors. Hum Gene Ther 2015;26(3):153-60
  • Gregersen N, Bross P, Vang S, Christensen JH. Protein misfolding and human disease. Annu Rev Genomics Hum Genet 2006;7:103-24
  • Loo TW, Clarke DM. Chemical and pharmacological chaperones as new therapeutic agents. Expert Rev Mol Med 2007;9(16):1-18
  • Parenti G. Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics. EMBO Mol Med 2009;1(5):268-79
  • Muntau AC, Leandro J, Staudigl M, et al. Innovative strategies to treat protein misfolding in inborn errors of metabolism: pharmacological chaperones and proteostasis regulators. J Inherit Metab Dis 2014;37(4):505-23
  • Clavero S, Martinez MA, Perez B, et al. Functional characterization of PCCA mutations causing propionic acidemia. Biochim Biophys Acta 2002;1588(2):119-25
  • Perez-Cerda C, Clavero S, Perez B, et al. Functional analysis of PCCB mutations causing propionic acidemia based on expression studies in deficient human skin fibroblasts. Biochim Biophys Acta 2003;1638(1):43-9
  • Kelson TL, Ohura T, Kraus JP. Chaperonin-mediated assembly of wild-type and mutant subunits of human propionyl-CoA carboxylase expressed in Escherichia coli. Hum Mol Genet 1996;5:331-7
  • Chloupkova M, Maclean KN, Alkhateeb A, Kraus JP. Propionic acidemia: analysis of mutant propionyl-CoA carboxylase enzymes expressed in Escherichia coli. Hum Mutat 2002;19(6):629-40
  • Chloupkova M, Ravn K, Schwartz M, Kraus JP. Changes in the carboxyl terminus of the beta subunit of human propionyl-CoA carboxylase affect the oligomer assembly and catalysis: expression and characterization of seven patient-derived mutant forms of PCC in Escherichia coli. Mol Genet Metab 2000;71(4):623-32
  • Desviat LR, Perez B, Perez-Cerda C, et al. Propionic acidemia: mutation update and functional and structural effects of the variant alleles. Mol Genet Metab 2004;83(1-2):28-37
  • Ohura T, Kraus JP, Rosenberg LE. Unequal synthesis and differential degradation of propionyl CoA carboxylase subunits in cells from normal and propionic acidemia patients. Amp J Hum Genet 1989;45:33-40
  • Bedwell DM, Kaenjak A, Benos DJ, et al. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med 1997;3(11):1280-4
  • Howard M, Frizzell RA, Bedwell DM. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med 1996;2(4):467-9
  • Du L, Damoiseaux R, Nahas S, et al. Nonaminoglycoside compounds induce readthrough of nonsense mutations. J Exp Med 2009;206(10):2285-97
  • Welch EM, Barton ER, Zhuo J, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 2007;447(7140):87-91
  • Keeling KM, Xue X, Gunn G, Bedwell DM. Therapeutics based on stop codon readthrough. Annu Rev Genomics Hum Genet 2014;15:371-94
  • Haas M, Vlcek V, Balabanov P, et al. European Medicines Agency review of ataluren for the treatment of ambulant patients aged 5 years and older with Duchenne muscular dystrophy resulting from a nonsense mutation in the dystrophin gene. Neuromuscul Disord 2015;25(1):5-13
  • Sanchez-Alcudia R, Perez B, Ugarte M, Desviat LR. Feasibility of nonsense mutation readthrough as a novel therapeutical approach in propionic acidemia. Hum Mutat 2012;33(6):973-80
  • Roy B, Leszyk JD, Mangus DA, Jacobson A. Nonsense suppression by near-cognate tRNAs employs alternative base pairing at codon positions 1 and 3. Proc Natl Acad Sci USA 2015;112(10):3038-43
  • Ward AJ, Cooper TA. The pathobiology of splicing. J Pathol 2009;220(2):152-63
  • Lim KH, Ferraris L, Filloux ME, et al. Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes. Proc Natl Acad Sci USA 2011;108(27):11093-8
  • Krawczak M, Thomas NS, Hundrieser B, et al. Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum Mutat 2007;28(2):150-8
  • Dhir A, Buratti E. Alternative splicing: role of pseudoexons in human disease and potential therapeutic strategies. Febs J 2010;277(4):841-55
  • Gillis E, Kempers M, Salemink S, et al. An FBN1 Deep Intronic Mutation in a Familial Case of Marfan Syndrome: An Explanation for Genetically Unsolved Cases? Hum Mutat 2014;35(5):571-4
  • Vezain M, Gerard B, Drunat S, et al. A leaky splicing mutation affecting SMN1 exon 7 inclusion explains an unexpected mild case of spinal muscular atrophy. Hum Mutat 2011;32(9):989-94
  • Hammond SM, Wood MJ. Genetic therapies for RNA mis-splicing diseases. Trends Genet 2011;27(5):196-205
  • Fernandez Alanis E, Pinotti M, Dal Mas A, et al. An exon-specific U1 small nuclear RNA (snRNA) strategy to correct splicing defects. Hum Mol Genet 2012;21(11):2389-98
  • Dal Mas A, Rogalska ME, Bussani E, Pagani F. Improvement of SMN2 pre-mRNA processing mediated by exon-specific U1 small nuclear RNA. Am J Hum Genet 2015;96(1):93-103
  • Spitali P, Aartsma-Rus A. Splice modulating therapies for human disease. Cell 2012;148(6):1085-8
  • Kole R, Krainer AR, Altman S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 2012;11(2):125-40
  • Sanchez-Alcudia R, Perez B, Perez-Cerda C, et al. Overexpression of adapted U1snRNA in patients’ cells to correct a 5’ splice site mutation in propionic acidemia. Mol Genet Metab 2011;102(2):134-8
  • Rincon A, Aguado C, Desviat LR, et al. Propionic and Methylmalonic Acidemia: Antisense Therapeutics for Intronic Variations Causing Aberrantly Spliced Messenger RNA. Am J Hum Genet 2007;81(6):1262-70
  • Pinotti M, Rizzotto L, Balestra D, et al. U1-snRNA-mediated rescue of mRNA processing in severe factor VII deficiency. Blood 2008;111(5):2681-4
  • Schmid F, Hiller T, Korner G, et al. A gene therapeutic approach to correct splice defects with modified U1 and U6 snRNPs. Hum Gene Ther 2013;24(1):97-104
  • Dal Mas A, Fortugno P, Donadon I, et al. Exon-Specific U1s Correct SPINK5 Exon 11 Skipping Caused by a Synonymous Substitution that Affects a Bifunctional Splicing Regulatory Element. Hum Mutat 2015;36(5):504-12
  • Disterer P, Kryczka A, Liu Y, et al. Development of therapeutic splice-switching oligonucleotides. Hum Gene Ther 2014;25(7):587-98
  • Guiraud S, Aartsma-Rus A, Vieira NM, et al. The pathogenesis and therapy of muscular dystrophies. Annu Rev Genomics Hum Genet 2015
  • Brooks PJ, Tagle DA, Groft S. Expanding rare disease drug trials based on shared molecular etiology. Nat Biotechnol 2014;32(6):515-18
  • Gahl WA. The battlefield of rare diseases: where uncommon insights are common. Sci Transl Med 2012;4(154):154ed7
  • Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013;339(6121):823-6
  • E-IMD: European registry and network for intoxication type metabolic diseases. Available from: https://www.eimd-registry.org/ [Last accessed 29 August 2014]
  • Organic Acidemia Association. Available from: http://www.oaanews.org/ [Last accessed 05 2014]
  • Dionisi-Vici C, Deodato F, Roschinger W, et al. ‘Classical’ organic acidurias, propionic aciduria, methylmalonic aciduria and isovaleric aciduria: long-term outcome and effects of expanded newborn screening using tandem mass spectrometry. J Inherit Metab Dis 2006;29(2-3):383-9
  • Grunert SC, Mullerleile S, de Silva L, et al. Propionic acidemia: neonatal versus selective metabolic screening. J Inherit Metab Dis 2011;35(1):41-9
  • Sperl W, Murr C, Skladal D, et al. Odd-numbered long-chain fatty acids in propionic acidaemia. Eur J Pediatr 2000;159(1-2):54-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.