49
Views
0
CrossRef citations to date
0
Altmetric
Drug Evaluations

Dasatinib for acute lymphoblastic leukemia

Bibliography

  • Ottmann O, Wassmann B. Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2005;1:111–122.
  • Fielding AK. Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia in adults: a broader range of options, improved outcomes, and more therapeutic dilemmas. Am Soc Clin Oncol Educ Book. 2015;35:e352–9.
  • Thomas DA, Faderl S, Cortes J, et al. Treatment of Philadelphia chromosome-positive acute lymphocytic leukemia with hyper-CVAD and imatinib mesylate. Blood. 2004;103:4396–4407.
  • Towatari M, Yanada M, Usui N, et al. Combination of intensive chemotherapy and imatinib can rapidly induce high-quality complete remission for a majority of patients with newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia. Blood. 2004;104:3507–3512.
  • Lee KH, Lee JH, Choi SJ, et al. Clinical effect of imatinib added to intensive combination chemotherapy for newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia. 2005;19:1509–1516.
  • Wassmann B, Pfeifer H, Goekbuget N, et al. Alternating versus concurrent schedules of imatinib and chemotherapy as front-line therapy for Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood. 2006;108:1469–1477.
  • De Labarthe A, Rousselot P, Huguet-Rigal F, et al. Imatinib combined with induction or consolidation chemotherapy in patients with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: results of the GRAAPH-2003 study. Blood. 2007;109:1408–1413.
  • Vignetti M, Fazi P, Cimino G, et al. Imatinib plus steroids induces complete remissions and prolonged survival in elderly Philadelphia chromosome-positive patients with acute lymphoblastic leukemia without additional chemotherapy: results from the Gruppo Italiano Malattie dell’Adulto (GIMEMA) LAL 0201-B protocol. Blood. 2007;109:3676–3678.
  • Ottmann OG, Wassmann B, Pfeifer H,et al. Imatinib compared with chemotherapy as front-line treatment of elderly patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph + ALL).Cancer.2007;109:2068–2076
  • Yanada M, Sugiura I, Takeuchi J, et al. Prospective monitoring of BCR-ABL1 transcript levels in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia undergoing imatinib- combined chemotherapy. Br J Haematol. 2008;120:145–153.
  • Bassan R, Rossi G, Pogliani EM, et al. Chemotherapy-phased imatinib pulses improve long-term outcome of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: Northern Italy Leukemia Group protocol 09/00. J Clin Oncol. 2010;28:3644–3652.
  • Ribera JM, Oriol A, Gonzalez M, et al. Concurrent intensive chemotherapy and imatinib before and after stem cell transplantation in newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Final results of the CSTIBES02 trial. Haematologica. 2010;95:87–95.
  • Daver N, Thomas D, Ravandi F, et al. Final report of a phase II study of imatinib mesylate with hyper-CVAD for the front-line treatment of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Haematologica. 2015;100:653–661.
  • Tanguy-Schmidt A, Rousselot P, Chalandon Y, et al. Long-term follow-up of the imatinib GRAAPH-2003 study in newly diagnosed patients with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: a GRAALL study. Biol Blood Marrow Transplant. 2013;19:150–155.
  • Chalandon Y, Thomas X, Hayette S, et al. Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia. Blood. 2015;125:3711–3719.
  • Jing Y, Chen H, Liu M, et al. Susceptibility of Ph-positive all to TKI therapy associated with Bcr-Abl rearrangement patterns: a retrospective analysis. PLoS One. 2014;9:e110431. DOI:10.1371/journal.pone.0110431.eCollection2014.
  • Fielding AK, Rowe JM, Buck G, et al. UKALLXII/ECOG2993: addition of imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia. Blood. 2014;123:843–850.
  • Wetzler M, Dodge RK, Mrozek K, et al. Additional cytogenetics abnormalities in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia: a study of Cancer and Leukeemia Group B. Br J Haematol. 2004;124:275–288.
  • Yanada M, Takeuchi J, Sugiura I, et al. Karyotype at diagnosis is the major prognostic factor predicting relapse-free survival for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia treated with imatinib-combined chemotherapy. Haematologica. 2008;93:287–290.
  • Aldoss I, Stiller T, Cao TM. et al. Impact of Additional Cytogenetic Abnormalities in Adults with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia Undergoing Allogeneic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant. 2015;21:1326–1329.
  • Rousselot P, Coudé MM, Huguet F, et al. Dasatinib (Sprycel®) and Low Intensity Chemotherapy for First-Line Treatment in Patients with De Novo Philadelphia Positive ALL Aged 55 and Over: Final Results of the EWALL-Ph-01 Study. Blood (ASH Annual Meeting Abstracts). 2012;120:666.
  • Martinelli G, Iacobucci I, Storlazzi CT, et al. IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J Clin Oncol. 2009;27:5202–5207.
  • Chien WW, Catallo R, Chebel A, et al. The p16(INK4A)/pRb pathway and telomerase activity define a subgroup of Ph+ adult Acute Lymphoblastic Leukemia associated with inferior outcome. Leuk Res. 2015;39:453–461.
  • Mullighan CG. The molecular genetic makeup of acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2012;1:389–396.
  • Lee S, Kim YJ, Chung NG, et al. The extent of minimal disease reduction after the first 4-week imatinib determines outcome of allogeneic stem cell transplantation in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia. Cancer. 2009;115:561–570.
  • Ravandi F, Jorgensen J, Thomas DA, et al. Detection of MRD may predict the outcome of patients with Philadelphia chromosome-positive ALL treated with tyrosine kinase inhibitors plus chemotherapy. Blood. 2013;122:12214–12221.
  • Ottmann O, Dombret H, Martinelli G, et al. Dasatinib induces rapid hematologic and cytogenetic responses in adults patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study. Blood. 2007;110:2309–2315.
  • Cortes J, Kim W, Raffoux E, et al. Efficacy and safety of dasatinib in imatinib-resistant or –intolerant patients with chronic myeloid leukemia in blastic phase. Leukemia. 2008;22:2176–2183.
  • Kantarjian H, Giles F, Wunderle L, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med. 2006;354:2542–2551.
  • Gambacorti-Passerini C, Kantarjian HM, Baccarani M, et al. Activity and tolerance of bosutinib in patients with AP and BP CML and Ph+ ALL. J Clin Oncol. 2008;26:7049.
  • Brummendorf TH, Gambacorti-Passerini C, Schafhausen P, et al. Efficacy and safety of bosutinib (BOS) for Philadelphia (Ph+) leukemia in older versus younger patients. J Clin Oncol. 2012;30:6511.
  • Cortes J, Kim DW, Pinilla-Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive acute lymphoblastic leukemias. N Engl J Med. 2013;369:1783–1796.
  • Cortes J, Kim DW, Pinilla-Ibarz J, et al. Ponatinib efficacy and safety in heavily pretreated leukemia patients : 3-year results of the PACE trial. Haematologica. 2015;100(P234):61.
  • Ravandi F, O’Brien S, Thomas D, et al. First report of phase 2 study of dasatinib with hyper-CVAD for the frontline treatment of patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia. Blood. 2010;116:2070–2077. ** This paper describes what can be considered as a standard of care for Ph+ ALL, combination of intensive chemotherapy and a potent tyrosine kinase inhibitor such as dasatinib..
  • Jabbour E, Kantarjian HM, Thomas DA, et al. Phase II Study of Combination of Hypercvad with Ponatinib in Front Line Therapy of Patients (pts) with Philadelphia Chromosome (Ph) Positive Acute Lymphoblastic Leukemia (ALL). Blood. 2014;124:2289.
  • Rousselot P, Cayuela JM, Hayette S, et al. Dasatinib (SprycelR) and low-intensity chemotherapy fort first-line treatment in elderly patients with de novo Philadelphia positive ALL (EWALL-PH-01): kinetic of response, resistance and prognostic significance. Blood. 2010;116:172.
  • Pfeifer H, Rousselot P, Cayuela JM, et al. Nilotinib in combination with chemotherapy for first-line treatment in elderly patients with Philadelphia-positive ALL : results of the European Working Group for Adult ALL (EWALL-PH-02). Haematologica. 2015;100:S113.
  • Kim DY, Joo YD, Kim SD, et al. Nilotinib Combined With Multi-Agent Chemotherapy For Adult Patients With Newly Diagnosed Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: final Results Of Prospective Multicenter Phase 2 Study. Blood. 2013;122:55.
  • Cai J, Zhang S, Zheng M, et al. Design, synthesis, and in vitro antiproliferative activity of novel Dasatinib derivatives. Bioorg Med Chem Lett. 2012;22:806–810.
  • Schenone S, Brullo C, Musumeci F, et al. Novel dual Src/Abl inhibitors for hematologic and solid malignancies. Expert Opin Investig Drugs. 2010;19:931–945.
  • Mian AA, Rafiei A, Haberbosch I, et al. PF-114, a potent and selective inhibitor of native and mutated BCR/ABL is active against Philadelphia chromosome-positive (Ph+) leukemias harboring the T315I mutation. Leukemia. 2015;29:1104–1114.
  • Radi M, Schenone S, Botta M. Allosteric inhibitors of Bcr-Abl: towards novel myristate-pocket binders. Curr Pharm Biotechnol. 2013;14:477–487.
  • Fabbro D, Manley PW, Jahnke W, et al. Inhibitors of the Abl kinase directed at either the ATP- or myristate-binding site. Biochim Biophys Acta. 2010;1804:454–462.
  • Iacob RE, Zhang J, Gray NS, et al. Allosteric interactions between the myristate- and ATP-site of the Abl kinase. PLoS One. 2011;6(1):e15929. DOI:10.1371/journal.pone.0015929.
  • Appelmann I, Rillahan CD, De Stanchina E, et al. Janus kinase inhibition by ruxolitinib extends dasatinib- and dexamethasone-induced remissions in a mouse model of Ph+ ALL. Blood. 2015;125:1444–1451.
  • Dewar R, Chen ST, Yeckes-Rodin H, et al. Bortezomib treatment causes remission in a Ph+ ALL and reveals FoxO as a theranostic marker. Cancer Biol Ther 2011Mar15;11(6):552–558
  • Bucur O, Stancu AL, Goganau I, et al. Combination of bortezomib and mitotic inhibitors down-modulate Bcr-Abl and efficiently eliminates tyrosine-kinase inhibitor sensitive and resistant Bcr-Abl-positive leukemic cells. PLoS One. 2013;8(10):e77390. eCollection 2013: DOI:10.1371/journal.pone.0077390.
  • Robinson S, Levy Y, Maisel C, et al. Haematological complete remission by ponatinib and bortezomib in a patient with relapsed, Ph+ pre-B acute lymphoblastic leukaemia. BMJ Case Rep. 2014 Apr 12. pii: bcr2014203894. doi:10.1136/bcr-2014-203894.
  • Chevallier P, Huguet F, Raffoux E, et al. Vincristine, dexamethasone and epratuzumab for older relapsed/refractory CD22+ B-acute lymphoblastic leukemia patients: a phase II study. Haematologica. 2015;100(4):e128–31.
  • Chevallier P, Bodet-Milin C, Robillard N, et al. BCR-ABL1 molecular remission after 90Y-epratuzumab tetraxetan radioimmunotherapy in CD22+ Ph+ B-ALL: proof of principle. Eur J Haematol. 2013;91:552–556.
  • Jabbour E, O’Brien S, Ravandi F, et al. Monoclonal antibodies in acute lymphoblastic leukemia. Blood. 2015;125:4010–4016.
  • Brentjens RJ, Curran KJ. Novel cellular therapies for leukemia: CAR-modified T cells targeted to the CD19 antigen. Hematology Am Soc Hematol Educ Program. 2012;1:143–151.
  • Hunault-Berger M, Leguay T, Thomas X, et al. A randomized study of pegylated liposomal doxorubicin versus continuous-infusion doxorubicin in elderly patients with acute lymphoblastic leukemia: the GRAALL-SA1 study. Haematologica. 2011;96:245–252.
  • Pathak P, Hess R, Weiss MA. Liposomal vincristine for relapsed or refractory Ph-negative acute lymphoblastic leukemia: a review of literature. Ther Adv Hematol. 2014;5:18–24.
  • Benjamini O, Dumlao TL, Kantarjian H, et al. Phase II trial of hyper CVAD and dasatinib in patients with relapsed Philadelphia chromosome positive acute lymphoblastic leukemia or blast phase chronic myeloid leukemia. Am J Hematol. 2014;89:282–287.
  • Huguet F, Leguay T, Raffoux E, et al. Clofarabine for the treatment of adult acute lymphoid leukemia: the Group for Research on Adult Acute Lymphoblastic Leukemia intergroup. Leuk Lymphoma. 2015;56:847–857.
  • Fei F, Stoddart S, Groffen J, et al. Activity of the Aurora kinase inhibitor VX-680 against Bcr/Abl-positive acute lymphoblastic leukemias. Mol Cancer Ther. 2010;9:1318–1327.
  • Fei F, Lim M, Schmidhuber S, et al., et al. Treatment of human pre-B acute lymphoblastic leukemia with the Aurora kinase inhibitor PHA-739358 (Danusertib). Mol Cancer. 2012;21(11):42.
  • Borthakur G, Dombret H, Schafhausen P, et al. A phase I study of Danusertib (PHA-739358) in adult patients with accelerated or blastic phase chronic myeloid leukemia and philadelphia chromosome-positive acute lymphoblastic leukemia resistant or intolerant to imatinib and/or other second generation c-ABL therapy. Haematologica. 2015;100:898–904.
  • Seymour JF, Kim DW, Rubin E, et al. A phase 2 study of MK-0457 in patients with BCR-ABL T315I mutant chronic myelogenous leukemia and philadelphia chromosome-positive acute lymphoblastic leukemia. Blood Cancer J. 2014; Aug 15 4:e238. DOI:10.1038/bcj.2014.60.
  • Mummery A, Narendran A, Lee KY. Targeting epigenetics through histone deacetylase inhibitors in acute lymphoblastic leukemia. Curr Cancer Drug Targets. 2011;11:882–893.
  • Yang X, He G, Gong Y, et al. Mammalian target of rapamycin inhibitor rapamycin enhances anti-leukemia effect of imatinib on Ph+ acute lymphoblastic leukemia cells. Eur J Haematol. 2014;92:111–120.
  • Liu S, Walker SR, Nelson EA, et al. Targeting STAT5 in hematologic malignancies through inhibition of the bromodomain and extra-terminal (BET) bromodomain protein BRD2. Mol Cancer Ther. 2014;13:1194–1205.
  • Lombardo LJ, Lee FY, Chen P, et al. Discovery of N-(2-Chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent activity in preclinical assays. J Med Chem. 2004;47:6658–6661. **This paper is the first description of dasatinib.
  • Brave M, Goodman V, Kaminskas E, et al. Sprycel for chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia resistant to or intolerant of imatinib mesylate. Clin Cancer Res. 2008;14:352–359.
  • O’Hare T, Walters DK, Stoffregen EP, et al. In vitro activity of Bcr-Abl inhibitors AMN-107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res. 2005;5:4500–4505. * This paper describes the in vitro potency of Dasatinib against wild and mutated forms of BCR-ABL.
  • Tokarski JS, Newitt JA, Chang CYJ, et al. The structure of DAS (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res. 2006;66:5790–5797.
  • Laurini E, Posocco P, Fermeglia M, et al. Through the open door: Preferential binding of dasatinib to the active form of BCR-ABL unveiled by in silico experiments. Mol Oncol. 2013;7:968–975.
  • Hu Y, Swerdlow S, Duffy TM, et al. Targeting multiple kinase pathways in leukemic progenitors and stem cells is essential for improved treatment of Ph+ leukemia in mice. Pnas. 2006;103:16870–16875.
  • Li S, Li D. Stem cell and kinase activity-independent pathway in resistance of leukemia to BCR-ABL kinase inhibitors. J.Cell.Mol.Med.. 2007;11:1251–1262.
  • Li S. SRC-family kinases in the development and therapy of Philadelphia-chromosome positive chronic myeloid leukemia and acute lymphoblastic leukemia. Leuk Lymphoma. 2008;49:19–26.
  • Donato NJ, Wu J, Kong LY, et al. Constitutive activation of SRC-family kinases in chronic myelogenous leukemia patients resistant to imatinib mesylate in the absence of BCR-ABL mutations: a rationale for use of SRC/ABL dual kinase inhibitor-based therapy. Blood. 2005;106:1087.
  • Rix U, Colinge J, Blatt K, et al. A target-disease network model of second-generation BCR-ABL inhibitor action in Ph+ ALL. PLoS One. 2013;8(10):e77155. eCollection 2013: DOI:10.1371/journal.pone.0077155.
  • Nunoda K, Tauchi T, Takaku T, et al. Identification and functional signature of genes regulated by structurally different ABL kinase inhibitors. Oncogene. 2007;26:4179–4188.
  • Rix U, Hantschel O, Dürnberger G, et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood. 2007;110:4055–4063.
  • Bantscheff M, Eberhard D, Abraham Y, et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL inhibitors. Nat Biotechnol. 2007;25:1035–1044.
  • Shah NP, Tran C, Lee FY, et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 2004;305:399–401.
  • Soverini S, Colarossi S, Gnani A, et al. Resistance to Dasatinib in Philadelphia-positive leukemia patients and the presence or the selection of mutations at residues 315 and 317 in the BCR-ABL kinase domain. Haematologica. 2007;92:401–404. * This paper describes a prominent way of resistance to Dasatinib, the selection of clones harboring the T315I mutation.
  • Cea M, Cirmena G, Garuti A, et al. A T315I mutation in e19a2 BCR/ABL1 chronic myeloid leukemia responding to dasatinib. Leuk Res. 2010;34:240–242.
  • Takahashi N, Miura M, Scott SA, et al. Pharmacokinetics of dasatinib for Philadelphia-positive acute lymphocytic leukemia with acquired T315I mutation. J Hematol Oncol. 2012;15:5–23.
  • Soverini S, Gnani A, Colarossi S, et al. Philadelphia-positive patients who already harbor imatinib-resistant Bcr-Abl kinase domain mutations have a higher likelihood of developing additional mutations associated with resistance to second- or third-line tyrosine kinase inhibitors. Blood. 2009;114:2168–2171.
  • Soverini S, Vitale A, Poerio A, et al. Philadelphia-positive acute lymphoblastic leukemia patients already harbor BCR-ABL kinase domain mutations at low levels at the time of diagnosis. Haematologica. 2011;96:552–557.
  • Jones D, Thomas D, Yin CC, et al. Kinase domain point mutation in Ph+ acute lymphoblastic leukemia (ALL) emerge following therapy with BCR-ABL kinase inhibitors. Cancer. 2008;113:985–994.
  • Redaelli S, Piazza R, Rostagno R, et al. Activity of bosutinib, dasatinib, and nilotinib against 18 imatinib-resistant BCR/ABL mutants. J Clin Oncol. 2009;27:469–471.
  • Olsson-Strömberg U, Hermansson M, Lundan T, et al. Molecular monitoring and mutation analysis of patients with advanced phase CML and Ph+ ALL receiving dasatinib. Eur J Hematol. 2010;85:399–404.
  • Soverini S, De Benedittis C, Papayannidis C, et al. Drug resistance and BCR-ABL kinase domain mutations in Philadelphia chromosome- positive acute lymphoblastic leukemia from the imatinib to the second-generation tyrosine kinase inhibitor era: the main changes are in the type of mutations, but not in the frequency of mutation involvement. Cancer. 2014;120:1002–1009.
  • Boulos N, Mulder HL, Cl C, et al. Chemotherapeutic agents circumvent emergence of dasatinib-resistant BCR-ABL kinase mutations in a precise mouse model of Philadelphia chromosome–positive acute lymphoblastic leukemia. Blood. 2011;117:3585–3595.
  • Porkka K, Koskenvesa P, Lundan T, et al. Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome-positive leukemia. Blood. 2008;112:1005–1012.
  • Abdelhalim A, Barcos M, Block AW, et al. Remission of Philadelphia chromosome-positive cenral nervous system leukemia after dasatinib therapy. Leuk Lymphoma. 2007;48:1053–1056.
  • Bhadri VA, Satharasinghe K, Sugo E, et al. Excellent response to dasatinib of childhood Philadelphia positive intracranial acute lymphoblastic leukaemia tumours. Br J Haematol. 2011;152:347–349.
  • Gutiérrez-Aguirre H, García-Rodríguez F, Cantú-Rodríguez O, et al Effectiveness of dasatinib in relapsed CNS, Ph+ ALL that is refractory to radiochemotherapy plus imatinib: a case report. Clin Adv Hematol Oncol. 2011;9:875–878.
  • Nishimoto M, Nakamae H, Koh KR, et al. Dasatinib maintenance therapy after allogeneic hematopoietic stem cell transplantation for an isolated central nervous system blast crisis in chronic myelogenous leukemia. Acta Haematol. 2013;130:111–114.
  • Zhou HS, Dai M, Wei Y, et al. Isolated central nervous system relapse in patient with blast-crisis chronic myeloid leukemia in durable complete cytogenetic remission on dasatinib treatment: pharmacokinetics and ABL mutation analysis in cerebrospinal fluid. Leuk Lymphoma. 2013;54:1557–1559.
  • Kondo T, Tasaka T, Matsumoto K, et al. Philadelphia chromosome-positive acute lymphoblastic leukemia with extramedullary and meningeal relapse after allogeneic hematopoietic stem cell transplantation that was successfully treated with dasatinib. Springerplus. 2014;5(3):177.
  • Frigeri F, Arcamone M, Luciano L, et al. Systemic dasatinib fails to prevent development of central nervous system progression in a patient with BCR-ABL unmutated Philadelphia chromosome–positive leukemia. Blood. 2009;113:5028–5029.
  • Satake A, Okada M, Asada T, et al. Dasatinib is effective against optic nerve infiltration of Philadelphia chromosome-positive acute lymphoblastic leukemia. Leuk Lymphoma. 2010;51:1920–1922.
  • Abruzzese E, Del Poeta G, Barbato R, et al. Complete regression of cutaneous lesions of refractory Ph+ ALL after 4 weeks of treatment with BMS-354825. Blood. 2006;107:4751–4752.
  • Mustjoki S, Auvinen K, Kreutzman A, et al. rapid mobilization of cytotoxic lymphocytes induced by dasatinb therapy. Leukemia. 2013;27:914–924.
  • Chisti MM, Kachani A, Bramanday GR, et al. Dasatinib-induced haemorrhagic colitis in chronic myeloid leukemia (CML) in blast crisis. BMJ Case Rep. 2013. DOI:10.1136/bcr-2013-200610.
  • Mustjoki S, Ekblom M, Arstila TP, et al. Clonal expansion of T/NK cells during tyrosine kinase inhibitor dasatinib therapy. Leukemia. 2009;23:1398–1405. * This is one of the most important papers on the immunologic effects of Dasatinib, unique among tyrosine-kinase inhibitors..
  • Tanaka H, Nakashima S, Usuda M. Rapid and sustained increase of large granular lymphocytes and rare cytomegalovirus reactivation during dasatinib treatment in chronic myelogenous leukemia patients. Int J Hematol. 2012;96:308–319.
  • Kim DH, Kamel-Reid S, Chang H, et al. Natural killer or natural killer/T cell lineage large granular lymphocytosis associated with dasatinib therapy for Philadelphia chromosome positive leukemia. Haematologica. 2009;94:135–139.
  • Nagata Y, Ohashi K, Fukuda S, et al. Clinical features of dasatinib-induced large granular lymphocytosis and pleural effusion. Int J Hematol. 2010;91:799–807.
  • Kreutzman A, Ladell K, Koechel C, et al. expansion of highly differenciated CD8+ T-cells or NK-cells in patients treated with dasatinib is associated with cytomegalovirus reactivation. Leukemia. 2011;25:1587–1597.
  • Imataki O, Arai T, Yamaoka G, et al. NKT cell-infiltrating aseptic meningitis on the central nervous system in Philadelphia chromosome-positive acute lymphoblastic leukemia treated with Dasatinib. Annals of Hematology. 2014;93:1935–1936.
  • Ito Y, Miyamoto T, Kamimura T, et al. Characteristics of patients with development of large granular lymphocyte expansion among dasatinib-treated patients with relapsed Philadelphia chromosome-positive acute lymphoblastic leukemia after allogeneic stem cell transplantation. Exp Hematol. 2014;42:773–782.
  • Nerreter T, Köchel C, Jesper D, et al. Dasatinib enhances migration of monocyte-derived dendritic cells by reducing phosphorylation of inhibitory immune receptors Siglec-9 and Siglec-3. Exp Hematol. 2014;42:773–782.
  • Fei F, Yu Y, Schmitt A, et al. Dasatinib exerts an immunosuppressive effect on CD8+ T-cell specific for viral and leukemia antigens. Exp Hematol. 2008;36:1297–1308.
  • Schade AE, Schieven GL, Townsend R, et al. Dasatinib, a small-molecule protein tyrosine kinase inhibitor, inhibits T-cell activation and proliferation. Blood. 2008;111:1366–1377.
  • Blake S, Hughes TP, Mayrhofer G, et al. The SRC/ABL kinase inhibitor Dasatinib (BMS-354825) inhibits function of normal human T-lymphocytes in vitro. Clin Immunol. 2008;127:330–339.
  • Blake S, Lyons AB, Fraser CK, et al. Dasatinib suppresses in vitro natural killer cell cytotoxicity. Blood. 2008;111:4415–4416.
  • Oksvold MP, Duyvestyn JM, Dagger SA, et al. The targeting of human and mouse B lymphocytes by dasatinib. Exp Hematol. 2015;43:352–363.
  • Salih J, Hilpert J, Placke T, et al., et al. The BCR/ABL-inhibitors imatinib, nilotinib and dasatinib differentially affect NK cell reactivity. Int J Cancer. 2010;127:2119–2128.
  • Lee KC, Ouwehand I, Giannini AL, et al. Lck is a key target of imatinib and dasatinib in T-cell activation. Leukemia. 2010;24:896–900.
  • Futosi K, Németh T, Pick R, et al. Dasatinib inhibits proinflammatory functions of mature human neutrophils. Blood. 2012;119:4981–4991.
  • Torres HA, Chemaly RF. Viral infection or reactivation in patients during treatment with dasatinib: a call for screening?. Leuk Lymphoma. 2007;48:2308–2309.
  • Weichsel R, Dix C, Wooldridge L, et al. Profound inhibition of antigen-specific T-cell effector functions by Dasatinib. Clin Cancer Res. 2008;14:2484–11.
  • Wölfl M, Langhammer F, Wiegering V, et al. Dasatinib medication causing profound immunosuppression in a patient after haploidentical SCT: functional assays from whole blood as diagnostic clues. Bone Marrow Transpl. 2013;48:875–877.
  • Qiu ZY, Xu W, Li JY. Large granular lymphocytosis during dasatinib therapy. Cancer Biol Ther. 2014;15:247–255.
  • Fei F, Stoddart S, Müschen M, et al. Development of resistance to dasatinb in BCR/ABL-positive acute lymphoblastic leukemia. Leukemia. 2010;24:813–820.
  • Iacobucci I, Lonetti A, Messa F, et al. Expression of spliced oncogenic Ikaros isoforms in Philadelphia-positive acute lymphoblastic leukemia patients treated with tyrosine-kinase inhibitors: implications for a new mechanism of resistance. Blood. 2008;112:3847–3855.
  • Mullighan CG, Miller CB, Radtke I, et al. BCR-ABL1 lymphoblastic leukemia is characterized by the deletion of Ikaros. Nature. 2008;453:110–114.
  • Kamath AV, Wang J, Lee FY, et al. Preclinical pharmacokinetics and in vitro metabolism of Dasatinib (BMS-354825):a potent oral multi-targeted kinase inhibitor against SRC and BCR-ABL. Cancer Chemother Pharmacol. 2008;61:365–376.
  • Furmanski BD, Hu S, Fujita K, et al. Contribution of Abcc4-mediated gastric transport to the absorption and efficacy of dasatinib. Clin Cancer Res. 2013;19:4359–4370.
  • Eley T, Fr L, Agrawal S, et al Phase I study of the effect of gastric acid pH modulators on the bioavailability of oral dasatinib in healthy subjects. J Clin Pharmacol. 2009;49:700–709.
  • Matsuoka A, Takahashi N, Miura M, et al. H2-receptor antagonist influences dasatinib pharmacokinetics in a patient with Philadelphia-positive acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 2012;70:351–352.
  • Shah NP, Kasap C, Weier C, et al. Transient potent BCR-ABL inhibition is sufficient to commit chronic myeloid leukemia cells irreversibly to apoptosis. Cancer Cell. 2008;14:485–13.
  • Christopher LJ, Cui D, Wu C, et al. Metabolism and disposition of dasatinib after oral administration to humans. Drug Metab Dispos. 2008;6:1357–1364.
  • Zwaan CM, Rizzari C, Mechinaud F, et al. Dasatinib in children and adolescents with relapsed or refractory leukemia: results of the CA180-018 phase I dose-escalation study of the Innovative Therapies for Children with Cancer Consortium. J Clin Oncol. 2013;31(19):2460–2468.
  • Wang L, Christopher LJ, Cui D, et al. Identification of the human enzymes involved in the oxidative metabolism of Dasatinib: an effective approach for determining metabolite formation kinetics. Drug Metab Dispos. 2008;36:1828–1839.
  • Wenying L, Jonathan L, Skiles JL, et al. Metabolite generation via microbial biotransformations with Actinomycetes: rapid screening for active strains and biosynthesis of important human metabolites of two development-stage compounds, 5-[(5S,9R)-9-(4-Cyanophenyl)-3-(3,5-dichlorophenyl)-1-methyl-2,4-dioxo-1,3,7-triazaspiro[4.4]non7-yl-methyl]-3-thiophenecarboxylic Acid (BMS-587101) and Dasatinib. Drug Metab Dispos. 2008;36:721–730.
  • Li X, He Y, Ruiz CH, et al. Characterization of dasatinib and its structural analogs as CYP3A4 mechanism-based inactivators and the proposed bioactivation pathways. Drug Metab Dispos. 2009;37:1242–1250.
  • Luo FR, Yang Z, Camuso A, et al. Dasatinib (BMS-354825) pharmacokinetics and pharmacodynamic biomarkers in animal models predict optimal clinical exposure. Clin Cancer Res. 2006;12:7180–7186.
  • Rousselot P, Mollica L, Guerci-Bresler A, et al. Dasatinib daily dose optimization based on residual drug levels results in reduced risk of pleural effusions and high molecular response rates: final results of the randomized Optim Dasatinib trial. Haematologica. 2014;99:S678.
  • Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 2006;354:2531–2541. * In this phase I trial conducted mostly in patients with chronic phase chronic myeloid leukemia, the interesting efficacy/tolerance profile of Dasatinib is demonstrated.
  • Aplenc R, Blaney SM, Lc S, et al Pediatric Phase I Trial and Pharmacokinetic Study of Dasatinib: A Report From the Children’s Oncology Group Phase I Consortium. J Clin Oncol. 2011;29:839–844.
  • Fava C, Katarjian HM, Jabbour E, et al. Failure to achieve a complete hematologic response at the time of a MaCyR with second-generation tyrosine kinase inhibitors is associated with a poor prognosis among patients with chronic myeloid leukemia in accelerated or blast phase. Blood. 2009;113:5058–5063.
  • Foa R, Vitale A, Vignetti M, et al. Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2011;118:6521–6528.
  • Sakamaki H, Ishizawa K, Taniwaki M, et al. Phase 1/2 clinical study of dasatinib in Japanese patients with chronic myeloid leukemia or Philadelphia chromosome-positive acute lymphoblastic leukemia. Int J Hematol. 2009;89:332–341.
  • Strati P, Kantarjian H, Thomas D, et al. HyperCVAD plus imatinib or dasatinib in lymphoid blastic phase chronic myeloid leukemia. Cancer. 2014;120:373–380.
  • Visani G, Piccaluga P, Malagola M, et al. Efficacy of dasatinib in conjunction with α-interferon for the treatment of imatinib-resistant and Dasatinib-resistant Ph+ acute lymphoblastic leukemia. Leukemia. 2009;23:1687–1688.
  • Ravandi F, O’Brien S, Garris R, et al. Final report of single-center study of chemotherapy plus Dasatinib for the initial treatment of patients with Philadelphia-chromosome positive acute lymphoblastic leukemia. Blood. 2013;122:3914.
  • Lee S, Kim DW, Kim YJ, et al. First-Line Dasatinib Plus Conventional Chemotherapy in Adults with Newly Diagnosed Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia (Ph+ ALL): interim Analysis of the Korean Prospective Phase II Study. Blood. 2011;118:1516.
  • Breccia M, Serrao A, Salaroli A, et al. Dasatinib combined with weekly administration of vincristine as effective therapy in sudden or resistant Ph+ lymphoid blast crisis of chronic myeloid leukaemia. Br J Haematol. 2012;159:612–613.
  • Pasquini R, Ottmann OG, Goh YT, et al. Dasatinib 140 mg QD compared to 70 mg BID in advanced-phase CML or Ph(+) ALL resistant or intolerant to imatinib: One-year results of CA180–035. J Clin Oncol. 2007;25:7025.
  • Lilly MB, Ottmann OG, Shah NP, et al. Dasatinib 140 mg once daily versus 70 mg twice daily in patients with Ph-positive acute lymphoblastic leukemia who failed imatinib: results of a phase 3 study. Am J Hematol. 2010;85:164–170. * The only phase III study of dasatinib in the ALL setting compares different schedules of administration, to conclude in favor of 140 mg once daily.
  • Saglio G, Hochhaus A, Goh YT, et al. Dasatinib in imatinib-resistant or imatinib-intolerant chronic myeloid leukemia in blast phase after 2 years of follow-up in a phase 3 study: efficacy and tolerability of 140 milligrams once daily and 70 milligrams twice daily. Cancer. 2010;116:3852–3861.
  • NCCN (National Comprehensive Cancer Network) guidelines version 1.2012 for acute lymphoblastic leukemia. Available from: http://www.nccn.org/professionals/physician_gls/f_guidelines.asp.
  • Couran S, Savoie L, Abou Mourad Y, et al. Evidence-based guidelines for the use of tyrosine kinase inhibitors in adults with Philadelphia chromosome-positive or BCR-ABL-positive acute lymphoblastic leukemia: a Canadian consensus. Curr Oncol. 2014;21(3):e434–40. DOI:10.3747/co.21.1846. * Unlike US (NCCN) recommendations, Canadian guidelines underline the theoretical advantage, if not the clear evidence of its superiority over other tyrosine-kinase inhibitors, as second-line therapy of Ph+ ALL.
  • Hehlmann R. How I treat CML blast crisis. Blood. 2012;120:737–747.
  • Shimoni A, Leiba M, Schleuning M, et al. Prior treatment with the tyrosine kinase inhibitors dasatinib and nilotinib allows stem cell transplantation (SCT) in a less advanced disease phase and does not increase SCT Toxicity in patients with chronic myelogenous leukemia and Philadelphia positive acute lymphoblastic leukemia. Leukemia. 2009;23:190–194.
  • Jeha S, Coustan-Smith E, Pei D, et al. Impact of tyrosine kinase inhibitors on minimal residual disease and outcome in childhood Philadephia chromosome-positive acute lymphoblastic leukemia. Cancer. 2014;120:1514–1519.
  • Tucunduva L, Ruggeri A, Sanz G, et al. Impact of minimal residual disease on outcomes after umbilical cord blood transplantation for adults with Philadelphia-positive acute lymphoblastic leukaemia: an analysis on behalf of Eurocord, Cord Blood Committee and the Acute Leukaemia working party of the European group for Blood and Marrow Transplantation. Br J Haematol. 2014;166:749–757.
  • Jiang H, Xu LP, Liu DH, et al. Allogeneic hematopoietic SCT in combination with tyrosine kinase inhibitor treatment compared with TKI treatment alone in CML blast crisis. Bone Marrow Transplant. 2014;49:1146–1154.
  • Reddiconto G, Chiusolo P, Fiorini A, et al. Dasatinib restores full donor chimerism in a patient with imatinib-resistant Ph+ ALL relapsing after unrelated cord blood transplantation. Leuk Lymphoma. 2007;48:2054–2057.
  • Conchon M, Sanabani SS, Bendit I, et al. Achievement of complete donor-type chimerism and remission with dasatinib in Philadelphia chromosome-positive ALL relapsing after allogeneic transplantation. Bone Marrow Transplant. 2010;45:1125–1126.
  • Tamamyan G, Chao YH, Wang CH, et al. Dasatinib plus chemotherapy to achieve full donor chimerism and complete molecular remission in a child with relapsed Philadelphia chromosome-positive acute lymphoblastic leukemia. Pediatr Blood Cancer. 2013;60:1727–1728.
  • Caocci G, Vacca A, Ledda A, et al. Prophylactic and preemptive therapy with dasatinib after hematopoietic stem cell transplantation for Philadelphia chromosome-positive acute lymphoblastic leukemia. Biol Bone Marrow Transplant. 2012;18:652–654.
  • Klyuchnikov E, Schafhausen P, Kröger N, et al. Second-generation tyrosine kinase inhibitors in the post-transplant period in patients with chronic myeloid leukemia or Philadelphia-positive acute lymphoblastic leukemia. Acta Haematol. 2009;122:6–10.
  • Teng CL, Yu JT, Chen HC, et al. Maintenance therapy with dasatinib after hematopoietic stem cell transplantation in Philadelphia chromosome-positive acute lymphoblastic leukemia. Ann Hematol. 2013;92:1137–1139.
  • Pulanic D, Cowen EW, Baird K, et al. Development of severe sclerotic chronic GVHD during treatment with dasatinib. Bone Marrow Transplant. 2010;45:1469–1470.
  • Sánchez-Ortega I, Servitje O, Arnan M, et al. Dasatinib as salvage therapy for steroid refractory and imatinib resistant or intolerant sclerotic chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2012;18:318–323.
  • Yu X, Li C, Wu X, et al. Second-generation tyrosine kinase inhibitors combined with allogeneic hematopoietic stem cell transplant for Philadelphia chromosome positive leukemia. Zhonghua Xue Ye Xue Za Zhi. 2014;35:129–133.
  • Tachibana T, Numata A, Tanaka M, et al. Successful treatment with dasatinib and allogeneic peripheral blood stem cell transplant for imatinib-resistant Philadelphia chromosome-positive acute lymphoblastic leukemia relapsing after bone marrow transplant and donor lymphocyte infusion. Leuk Lymphoma. 2011;52:1376–1379.
  • Yamamoto M, Kuroda J, Uchiyama H, et al. Allogenic bone marrow transplantation with fludarabine/busulfan16 conditioning regimen and dasatinib maintenance therapy for elderly Philadelphia-positive acute/advanced leukemia patients. Leuk Res. 2010;34:111–112.
  • Millot F, Cividin M, Brizard F, et al. Successful second allogeneic stem cell transplantation in second remission induced by dasatinib in a child with Philadelphia chromosome positive acute lymphoblastic leukemia. Pediatr Blood Cancer. 2009;52:891–892.
  • De Castro CG Jr, Gregianin LJ. Meneses CF, Brunetto AL. Dasatinib after allogeneic stem cell transplantation in a child with Philadelphia chromosome positive acute lymphoblastic leukemia. Pediatr Blood Cancer. 2009;53:1161.
  • Gardner LA, Klawitter J, Gregory MA, et al. Inhibition of calcineurin combined with dasatinib has direct and indirect anti-leukemia effects against BCR-ABL1(+) leukemia. Am J Hematol. 2014;89:896–903.
  • Roberts KG, Li Y, Payne-Turner D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;37:1005–1015. * This paper provides data suggesting a potential role of dasatinib in the treatment of some of the poor-prognostic BCR-ABL-like ALL.
  • Van Limbergen H, Beverloo HB, Van Drunen E, et al. Molecular cytogenetics and clinical findings in ETV6/ABL-positive leukemia. Genes Chromosomes Cancer. 2001;30:274–282.
  • Graux C, Cools J, Melotte C, et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet. 2004;36:1084–1089.
  • De Keersmaecker K, Graux C, Odero MD, et al. Fusion of EML1 to ABL1 in T-cell acute lymphoblastic leukemia with cryptic t(9;14) (q34;q32). Blood. 2005;105:4859–52.
  • Hidalgo-Curtis C, Chase A, Drachenberg M, et al. The t(1 ;9) (q34;q34) and t(8 ;12) (p11;q15) fuse pre-RNA processing proteins SFPQ (PSF) and CPSF6 to ABL and FGFR1. Genes Chromosomes Cancer. 2008;47:379–385.
  • Musjoki S, Hernesniemi S, Rauhala A, et al. A novel dasatinib-sensitive RCSD1-ABL1 fusion-transcript in chemotherapy refractory adult pre-B acute lymphoblastic leukemia with t(1;9) (q24;q34). Haematologica. 2009;94:1469–1471.
  • Yeung DT, Moulton DJ, Heatley SL, et al. Relapse of BCR-ABL1-like ALL mediated by the ABL1 kinase domain mutation T315I following initial response to dasatinib treatment. Leukemia. 2015;29:230–258.
  • Inokuchi K, Wakita S, Hirakawa T, et al RCSD1-ABL1-positive B lymphoblastic leukemia is sensitive to dexamethasone and tyrosine kinase inhibitors and rapidly evolves clonally by chromosomal translocations. Int J Hematol. 2011;94:255–260.
  • Masuzawa A, Kiyotani C, Osumi T, et al. Poor responses to tyrosine kinase inhibitors in a child with precursor B-cell acute lymphoblastic leukemia with SNX2-ABL1 chimeric transcript. Eur J Haematol. 2014;92:263–267.
  • Tomita O, Iijima K, Ishibashi T, et al. Sensitivity of SNX2-ABL1 toward tyrosine kinase inhibitors distinct from that of BCR-ABL1. Leuk Res. 2014;38:361–370.
  • Crombet O, Lastrapes K, Zieske A, et al. Complete morphologic and molecular remission after introduction of dasatinib in the treatment of a pediatric patient with T-cell acute lymphoblastic leukemia and ABL1 amplification. Pediatr Blood Cancer. 2012;59:333–334.
  • Glover JM, Loriaux M, Tyner J, et al. In vitro sensitivity to dasatinib in lymphoblasts from a patient with t(17;19)(q22;p13) gene rearrangement pre-B acute lymphoblastic leukemia. Pediatr Blood Cancer. 2012;59:576–579.
  • Wong S. New dosing schedules of Dasatinib for CML and adverse event management. Journal of Hematology and Oncology. 2009;2:10–18.
  • Kobayashi Y, Sakamaki H, Fujisawa S, et al. Lack of non-hematological cross intolerance of dasatinib to imatinib in imatinib-intolerant patients with Philadelphia chromosome positive chronic myeloid leukemia or acute lymphatic leukemia: a retrospective safety analysis. Int J Hematol. 2011;93:745–749.
  • Bergeron A, Rea D, Levy V, et al. Lung abnormalities after dasatinib treatment for chronic myeloid leukemia. Am J Respir Crit Care Med. 2007;176:814–818.
  • Quintas-Cardama A, Kantarjian H, O’Brien S, et al. Pleural effusions in patients with chronic myelogenous leukemia treated with dasatinib after imatinib-failure. J Clin Oncol. 2007;25:3908–3914.
  • Kim JC, Shin SH, Yi G, et al Rapid-onset pulmonary arterial hypertension in a patient with acute lymphoblastic leukemia treated with dasatinib H. Herz. 2013;38:931–933.
  • Taçoy G, Çengel A, Özkurt ZN, et al. Dasatinib-induced pulmonary hypertension in acute lymphoblastic leukemia: case report. Turk Kardiyol Dern Ars. 2015;43:78–81.
  • Assouline A, Laneuville P, Gambacorti-Passerini C, et al. Panniculitis during dasatinib therapy for imatinib-resistant chronic myelogenous leukemia. N Engl J Med. 2006;354:2623–2624.
  • Roux C, Nicolini FE, Rea D, et al. Reversible lymph node follicular hyperplasia associated with dasatinib treatment of chronic myeloid leukemia in chronic phase. Blood. 2013;122:3082–3084.
  • Rea D, Bergeron A, Fieschi C, et al. Dasatinib-induced lupus. Lancet. 2008;372:713–714.
  • Zhenshu X, Shundong C, Ting C, et al. Cardiotoxicity of tyrosine kinase inhibitors in chronic myelogenous leukemia therapy. Hematol Rev. 2009;1:17–21.
  • Holstein SA, Stokes JB, Hohl RJ. Renal failure and recovery associated with second-generation BCR-ABL kinase inhibitors in imatinib-resistant chronic myelogenous leukemia. Leuk Res. 2009;33:344–347.
  • Ozkurt S, Temiz G, Acikalin MF, et al. Acute renal failure under dasatinib therapy. Renal Failure. 2010;32:147–149.
  • Quintas-Cardama A, Kantarjian H, Ravandi F, et al. Bleeding diathesis in patients with chronic myelogenous leukemia receiving dasatinib therapy. Cancer. 2009;115:2482–2490. * Here is underlined the specific platelet antiplatelet effect of Dasatinib, of particular relevance in the setting of Ph+ ALL.
  • Yhim HY, Kim HS, Lee NR, et al. Bilateral subdural hemorrhage as a serious adverse event of dasatinib in a patient with Philadelphia chromosome-positive acute lymphoblastic leukemia. Int J Hematol. 2012;95:585–587.
  • Wang K, Schumacher W. BMS-Document Control No. 930004015. New York: Bristol-Myers Squibb Company; 2003. Effects of BMS-354825 on platelet function. Sprycel Scientific Discussion. [ cited 2007 Nov 17]; Available from: http://209.85.165.104/search?q=cache:KW1gSD1bwJQJ:www.emea.eu.int/humandocs/PDFs/EPAR/sprycel/H-709-en6.pdf+dasatinib+and+bleeding&hl=en&gl=us&ct=clnk&cd=1.
  • Quintas-Cardama A, Han X, Kantarjian H, et al. Dasatinib-induced platelet dysfunction. Blood. 2007;110:2941.
  • Gratacap MP, Martin V, Valera MC, et al. The new tyrosine-kinase inhibitor and anticancer drug dasatinib reversibly affects platelet activation in vitro and in vivo. Blood. 2009;114:1884–1892.
  • Cony-Makhoul P, Bergeron A, Cor S, et al. Guidelines for the management of Dasatinib (Sprycel)-induced side effects in chronic myelogenous leukemia and Philadelphia positive acute leukemias. Bull Cancer. 2008;95:805–811.
  • Galinsky I, Buchanan S. Practical management of dasatinib for maximum patient benefit. Clin J Oncol Nurs. 2009;13:329–335.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.