308
Views
15
CrossRef citations to date
0
Altmetric
Review

Antisense oligonucleotide development for the treatment of muscular dystrophies

, , &
Pages 139-152 | Received 25 Sep 2015, Accepted 17 Nov 2015, Published online: 15 Dec 2015

Bibliography

  • Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.
  • Davies KE, Nowak KJ. Molecular mechanisms of muscular dystrophies: old and new players. Nat Rev Mol Cell Biol. 2006;7:762–773.
  • Pegoraro E, Hoffman EP. Limb-girdle muscular dystrophy overview. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2000 Jun 8. p. 1993–2015. [cited 2012 Aug 30]; Available from: http://www.ncbi.nlm.nih.gov/books/NBK1408/?report=classic.

• Basic concepts of limb-girdle myotonic dystrophy.

  • Van Deutekom JC, Wijmenga C, van Tienhoven EA, et al. FSHD associated DNA rearrangements are due to deletions of integral copies of a 3.2 kb tandemly repeated unit. Hum Molec Genet. 1993;2:2037–2042.
  • Cho DH, Tapscott SJ. Myotonic dystrophy: emerging mechanisms for DM1 and DM2. Biochim Biophys Acta. 2007;1772(2):195–204.

• Basic concepts of myotonic dystrophy.

  • Luo YB, Mastaglia FL, Wilton SD. Normal and aberrant splicing of LMNA. J Med Genet. 2014;51:215–223.
  • Mendell JR, Rodino-Klapac L, Sahenk Z, et al. Gene therapy for muscular dystrophy: lessons earned and path forward. Neurosci Lett. 2012;527(2):90–99.
  • Pichavant C, Aartsma-Rus A, Clemens PR, et al. Current status of pharmaceutical and genetic therapeutic approaches to treat DMD. Mol Ther. 2011;19(5):830–840.
  • Kinter J, Sinnreich M. Molecular targets to treat muscular dystrophies. Swiss Med Wkly. 2014;144:w13916.
  • Odom GL, Gregorevic P, Chamberlain JS. Viral-mediated gene therapy for the muscular dystrophies: successes, limitations and recent advances. Biochim Biophys Acta. 2007;1772(2):243–262.
  • Koppanati BM, Li J, Reay DP, et al. Improvement of the mdx mouse dystrophic phenotype by systemic in utero AAV8 delivery of a minidystrophin gene. Gene Ther. 2010;17(11):1355–1362.
  • Bowles DE, McPhee SW, Li C, et al. Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther. 2012;20(2):443–455.
  • Chan JHP, Lim S, Wong WSF. Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol P. 2006;33(5–6):533–540.

• Basic concepts and mechanisms of antisense oligonucleotides.

• Basic concepts and mechanisms of antisense oligonucleotides.

  • Kurreck J. Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem. 2003;270(8):1628–1644.
  • Geary RS, Norris D, Yu R, et al. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev. 2015;87:46–51.
  • Juliano RL, Carver K. Cellular uptake and intracellular trafficking of oligonucleotides. Adv Drug Deliv Rev. 2015;87:35–45.
  • DeVos SL, Miller TM. Antisense oligonucleotides: treating neurodegeneration at the level of RNA. Neurotherapeutics. 2013;10(3):486–497.
  • Eckstein F. Phosphorothioate oligodeoxynucleotides: what is their origin and what is unique about them? Antisense Nucleic Acid Drug Dev. 2000;10:117–121.
  • Deleavey GF, Damha MJ. Designing chemically modified oligonucleotides for targeted gene silencing. Chem Biol. 2012;19(8):937–954.

• This review is a guideline for designing chemically modified oligonucleotides for targeted therapy.

  • Chen JK, Schultz RG, Lloyd DH, et al. Synthesis of oligodeoxyribonucleotide N30—>P50 phosphoramidates. Nucleic Acids Res. 1995;23:2661–2668.
  • Iwase R, Miyao H, Toyama T, et al. Synthesis and properties of modified siRNA having amide-linked oligoribonucleosides at their 3ʹ overhang regions. Nucleic Acids Symp Ser. 2006;50:175–176.
  • Kawasaki AM1, Casper MD, Freier SM, et al. Uniformly modified 2ʹ-deoxy-2ʹ-fluoro phosphorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity for RNA targets. J Med Chem. 1993;36(7):831–841.
  • Damha M, Wilds C, Noronha A, et al. Hybrids of RNA and arabino nucleic acids (ANA and 2ʹF-ANA) are substrates of ribonuclease H. J Am Chem Soc. 1998;120:12976–12977.
  • Watts JK, Katolik A, Viladoms J, et al. Studies on the hydrolytic stability of 20-fluoroarabinonucleic acid (2ʹF-ANA). Org Biomol Chem. 2009;7:1904–1910.
  • Veedu RN, Wengel J. Locked nucleic acid as a novel class of therapeutic agents. RNA Biol. 2009;6:321–323.
  • Veedu RN, Wengel J. Locked nucleic acids: promising nucleic acid analogs for therapeutic applications. Chem Biodivers. 2010;7:536–542.
  • Nielsen P, Dreiøe LH, Wengel J. Synthesis and evaluation of oligodeoxynucleotides containing acyclic nucleosides: introduction of three novel analogues and a summary. Bioorg Med Chem. 1995;3:19–28.
  • Langkjær N, Pasternak A, Wengel J. UNA (unlocked nucleic acid): a flexible RNA mimic that allows engineering of nucleic acid duplex stability. Bioorg Med Chem. 2009;17:5420–5425.
  • Renneberg D, Leumann CJ. Watson-Crick base-pairing properties of tricyclo-DNA. J Am Chem Soc. 2002;124:5993–6002.
  • Van Aerschot A, Verheggen I, Hendrix C, et al. 1,5-Anhydrohexitol nucleic acids, a new promising antisense construct. Angew Chem. 1995;34:1338–1339.
  • Fisher M, Abramov M, Van Aerschot A, et al. Biological effects of hexitol and altritol-modified siRNAs targeting B-Raf. Eur J Pharmacol. 2009;606:38–44.
  • Herdewijn P. Heterocyclic modifications of oligonucleotides and antisense technology. Antisense Nucleic Acid Drug Dev. 2000;10:297–310.
  • Peacock H, Kannan A, Beal PA, et al. Chemical modification of siRNA bases to probe and enhance RNA interference. J Org Chem. 2011;76:7295–7300.
  • Schiaffino S, Dyar KA, Ciciliot S, et al. Mechanisms regulating skeletal muscle growth and atrophy. Febs J. 2013;280(17):4294–4314.
  • Kang JK, Malerba A, Popplewell L, et al. Antisense-induced myostatin exon skipping leads to muscle hypertrophy in mice following octa-guanidine morpholino oligomer treatment. Mol Ther. 2011;19(1):159–164.
  • Malerba A, Kang JK, McClorey G, et al. Dual myostatin and dystrophin exon skipping by morpholino nucleic acid oligomers conjugated to a cellpenetrating peptide is a promising therapeutic strategy for the treatment of Duchenne muscular dystrophy. Mol Ther Nucleic Acids. 2012;1:e62.
  • Roberts TC, Andaloussi SE, Morris KV, et al. Small RNA-mediated epigenetic myostatin silencing. Mol Ther Nucleic Acids. 2012;1:e23.
  • Wang JH, Newbury LJ, Knisely AS, et al. Antisense knockdown of Kras inhibits fibrosis in a rat model of unilateral ureteric obstruction. Am J Pathol. 2012;180(1):82–90.
  • Kemaladewi DU, Pasteuning S, van der Meulen JW, et al. Targeting TGF-β signaling by antisense oligonucleotide-mediated knockdown of TGF-β type I receptor. Mol Ther Nucleic Acids. 2014;3:e156.
  • Nigro V, Savarese M. Genetic basis of limb-girdle muscular dystrophies: the 2014 update. Acta Myologica. 2014;33(1):1–12.
  • Scharner J, Figeac N, Ellis JA, et al. Ameliorating pathogenesis by removing an exon containing a missense mutation: a potential exon-skipping therapy for laminopathies. Gene Ther. 2015;22(6):503–515.
  • Barthélémy F, Blouin C, Wein N, et al. Exon 32 skipping of dysferlin rescues membrane repair in patients’ cells. J Neuromus Dis. 2015;2(3):281–290.
  • Gao QQ, Wyatt E, Goldstein JA, et al. Reengineering a transmembrane protein to treat muscular dystrophy using exon skipping. J Clin Invest. 2015;125(11):4186–4195.
  • Richards M, Coppée F, Thomas N, et al. Facioscapulohumeral muscular dystrophy (FSHD): an enigma unravelled? Hum Genet. 2012;131(3):325–340.

• Basic concepts of facioscapulohumeral muscular dystrophy.

  • Upadhyaya M, Cooper DN. Facioscapulohumeral muscular dystrophy: clinical medicine and molecular cell biology. New York (NY): BIOS Scientific Publishers; 2004. p. 250.
  • De Greef JC, Lemmers RJ, Camaño P, et al. Clinical features of facioscapulohumeral muscular dystrophy 2(CME). Neurology. 2010;75(17):1548–1554.
  • Clapp J, Mitchell LM, Bolland DJ, et al. Evolutionary conservation of a coding function for D4Z4, the tandem DNA repeat mutated in facioscapulohumeral muscular dystrophy. Am J Hum Genet. 2007;81:264–279.
  • van Geel M, Dickson MC, Beck AF, et al. Genomic analysis of human chromosome 10q and 4q telomeres suggests a common origin. Genomics. 2002;79:210–217.
  • Tsumagari K, Chang SC, Lacey M, et al. Gene expression during normal and FSHD myogenesis. BMC Med Genomics. 2011;4:67.
  • Vanderplanck C, Ansseau E, Charron S, et al. The FSHD atrophic myotube phenotype is caused by DUX4 expression. PLoS One. 2011;6(10):e26820.
  • Dixit M, Ansseau E, Tassin A, et al. DUX4, a candidate gene of facioscapulohumeral muscular dystrophy, encodes a transcriptional activator of PITX1. Proc Nat Acad Sci. 2007;104:18157–18162.
  • Pandey SN, Lee Y-C, Yokota T, et al. Morpholino treatment improves muscle function and pathology of Pitx1 transgenic mice. Mol Ther. 2014;22(2):390–396.
  • Galderisi U, Cipollaro M, Melone MA, et al. Myotonic dystrophy: antisense oligonucleotide inhibition of DMPK gene expression in vitro. Biochem Biophys Res Commun. 1996;221(3):750–754.
  • Bhagavati S, Leung B, Shafiq SA, et al. Myotonic dystrophy: decreased levels of myotonin protein kinase (Mt-PK) leads to apoptosis in muscle cells. Exp Neurol. 1997;146(1):277–281.
  • Mulders SAM, van den Broek WJ, Wheeler TM, et al. Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy. Proc Natl Acad Sci USA. 2009;106(33):13915–13920.
  • Wheeler TM, Sobczak K, Lueck JD, et al. Reversal of RNA-dominance by displacement of protein sequestered on triplet repeat RNA. Science. 2009;325(5938):336–339.
  • Lee JE, Bennett CF, Cooper TA. RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1. Proc Natl Acad Sci USA. 2012;109(11):4221–4226.
  • Wojtkowiak-Szlachcic A, Taylor K, Stepniak-Konieczna E, et al. Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy. Nucleic Acids Res. 2015;43(6):3318–3331.
  • Kang PB, Morrison L, Iannaccone ST, et al. Evidence-based guideline summary: evaluation, diagnosis, and management of congenital muscular dystrophy: report of the Guideline Development Subcommittee of the American Academy of Neurology and the Practice Issues Review Panel of the American Association of Neuromuscular & Electrodiagnostic medicine. Neurology. 2015;84(13):1369–1378.
  • Reed UC. Congenital muscular dystrophy. Part II: a review of pathogenesis and therapeutic perspectives. Arq Neuropsiquiatr. 2009;67(2A):343–362.
  • Aoki Y, Nagata T, Yokota T, et al. Highly efficient in vivo delivery of PMO into regenerating myotubes and rescue in laminin-α2 chain-null congenital muscular dystrophy mice. Hum Mol Genet. 2013;22(24):4914–4928.
  • Taniguchi-Ikeda M, Kobayashi K, Kanagawa M, et al. Pathogenic exon-trapping by SVA retrotransposon and rescue in Fukuyama muscular dystrophy. Nature. 2011;478(7367):127–131.
  • Muntoni F, Torelli S, Ferlini A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol. 2003;2(12):731–740.
  • Wilton SD, Fall AM, Harding PL, et al. Antisense oligonucleotide-induced exon skipping across the human dystrophin gene transcript. Mol Ther. 2007;15(7):1288–1296.

• Guidelines for the design of exon-skipping antisense oligonucleotides for DMD.

•• Discussion on exon-skipping therapy for DMD.

  • Heald A, Anderson LV, Bushby KM, et al. Becker muscular dystrophy with onset after 60 years. Neurology. 1994;44(12):2388–2390.
  • Takeshima Y, Nishio H, Sakamoto H, et al. Modulation of in vitro splicing of the upstream intron by modifying an intra-exon sequence which is deleted from the dystrophin gene in dystrophin Kobe. J Clini Invest. 1995;95(2):515–520.
  • Pramono ZAD, Takeshima Y, Alimsardjono H, et al. Induction of exon skipping of the dystrophin transcript in lymphoblastoid cells by transfecting an antisense oligodeoxynucleotide complementary to an exon recognition sequence. Biochem Bioph Res Co. 1996;226(2):445–449.
  • Takeshima Y, Wada H, Yagi M, et al. Oligonucleotides against a splicing enhancer sequence led to dystrophin production in muscle cells from a Duchenne muscular dystrophy patient. Brain Dev. 2001;23(8):788–790.
  • Gebski BL, Errington SJ, Johnsen RD, et al. Terminal antisense oligonucleotide modifications can enhance induced exon skipping. Neuromuscul Disord. 2005;15(9–10):622–629.
  • Aartsma-Rus A, Kaman WE, Bremmer-Bout M, et al. Comparative analysis of antisense oligonucleotide analogs for targeted DMD exon 46 skipping in muscle cells. Gene Ther. 2004;11(18):1391–1398.
  • Fletcher S, Honeyman K, Fall AM, et al. Dystrophin expression in the mdx mouse after localised and systemic administration of a morpholino antisense oligonucleotide. J Gene Med. 2006;8(2):207–216.

• Guidelines for in vivo experiments using exon-skipping antisense oligonucleotides for DMD.

  • Shimo T, Tachibana K, Saito K, et al. Design and evaluation of locked nucleic acid-based splice-switching oligonucleotides in vitro. Nucleic Acids Res. 2014;42(12):8174–8187.
  • Yin H, Lu Q, Wood M. Effective exon skipping and restoration of dystrophin expression by peptide nucleic acid antisense oligonucleotides in mdx mice. Mol Ther. 2007;16(1):38–45.
  • Wilton SD, Lloyd F, Carville K, et al. Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides. Neuromuscul Disord. 1999;9(5):330–338.
  • Mann CJ, Honeyman K, Cheng AJ, et al. Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse. Proc Natl Acad Sci USA. 2001;98(1):42–47.
  • Mann CJ, Honeyman K, McClorey G, et al. Improved antisense oligonucleotide induced exon skipping in the mdx mouse model of muscular dystrophy. J Gene Med. 2002;4(6):644–654.
  • Gebski BL, Mann CJ, Fletcher S, et al. Morpholino antisense oligonucleotide induced dystrophin exon 23 skipping in mdx mouse muscle. Hum Mol Genet. 2003;12(15):1801–1811.

•• Guidelines for in vitro and in vivo experiments using exon-skipping antisense oligonucleotides for DMD.

  • Heemskerk HA, De Winter CL, De Kimpe SJ, et al. In vivo comparison of 2ʹ-O-methyl phosphorothioate and morpholino antisense oligonucleotides for Duchenne muscular dystrophy exon skipping. J Gene Med. 2009;11(3):257–266.
  • Lu QL, Rabinowitz A, Chen YC, et al. Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci U S A. 2005;102(1):198–203.
  • Alter J, Lou F, Rabinowitz A, et al. Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med. 2006;12(2):175–177.
  • McClorey G, Moulton HM, Iversen PL, et al. Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD. Gene Ther. 2006;13(19):1373–1381.
  • Yokota T, Lu Q, Partridge T, et al. Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol. 2009;65(6):667–676.
  • Goyenvalle A, Griffith G, Babbs A, et al. Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat Med. 2015;21(3):270–275.
  • Jirka SMG, van der Meulen JW, Tanganyika-de Winter CL, et al. G.P.109: evaluation of exon skipping activity of 2′- deoxy-2′-fluoro antisense oligonucleotides for Duchenne muscular dystrophy. Neuromuscul Disord. 2014;24(9–10):827–828.
  • Kinali M, Arechavala-Gomeza V, Feng L, et al. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol. 2009;8(10):918–928.

•• Clinical trials on DMD.

  • Van Deutekom JC, Janson AA, Ginjaar IB, et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med. 2007;357(26):2677–2686.

•• Clinical trials on DMD.

  • Scully MA, Pandya S, Moxley RT. Review of phase II and phase III clinical trials for Duchenne muscular dystrophy. Expert Opin Orphan Drugs. 2013;1(1):33–46.

•• Clinical trials on DMD.

  • Voit T, Topaloglu H, Straub V, et al. Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): an exploratory, randomised, placebo-controlled phase 2 study. Lancet Neurol. 2014;13(10):987–996.
  • Goemans NM, Tulinius M, van den Akker JT, et al. Systemic administration of PRO051 in Duchenne’s muscular dystrophy. N Engl J Med. 2011;364(16):1513–1522.
  • Wilton SD, Veedu RN, Fletcher S. The emperor’s new dystrophin: finding sense in the noise. Trends Mol Med. 2015;21(7):417–426.

• Essential discussion on DMD.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.