13
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Lateral Transfer: A Survey and New Developments

Pages 443-459 | Published online: 14 Mar 2013

References

  • Anderson, F.E., Swofford, D.L. 2004. Should we be worried about long-branch attraction in real data sets? Investigations using metazoan 18S rDNA. Mol. Phylogenet. Evol. 33: 440-451.
  • Bejerano, G., Pheasant, M., Makunin, I., Stephen, S., Kent, W.J., Mattick, J.S., Haussler, D. 2004. Ultraconserved elements in the human genome. Science 304: 1321-1325.
  • Bergthorsson, U., Adams, K.L., Thomason, B., Palmer, J.D. 2003. Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424: 197-201.
  • Bergthorsson, U., Richardson, A.O., Young, G.J., Goertzen, L.R., Palmer, J.D. 2004. Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc. Natl. Acad. Sci. USA 101: 17747-17752.
  • Blanchette, M., Bourque, G., Sankoff, D. 1997. Breakpoint phylogenies. In: Miyano, S., Takagi, T., eds. Genome informatics. Universal Academy Press, Tokyo, pp. 25-34.
  • Brown, J.R., Douady, C.J., Italia, M.J., Marshall, W.E., Stanhope, M.J. 2001. Universal trees based on large combined protein sequence data sets. Nat. Genet. 28: 281-285.
  • Bull, J.J., Huelsenbeck, J.P., Cunningham, C.W., Swofford, D.L., Waddell, P.J. 1993. Partitioning and combining data in phylogenetic analysis. Syst. Biol. 42: 384-397.
  • Chang, J.T. 1996. Full reconstruction of Markov models on evolutionary trees: identifiability and consistency. Math. Biosci. 137: 51-73.
  • Chippindale, P.T., Wiens, J.J. 1994. Weighting, partitioning, and combining characters in phylogenetic analysis. Syst. Biol. 43: 278-287.
  • Cunningham, C.W. 1997. Can three incongruence tests predict when data should be combined? Mol. Biol. Evol. 14: 733-740.
  • Daubin, V., Ochman, H. 2004. Quartet mapping and the extent of lateral transfer in bacterial genomes. Mol. Biol. Evol. 21: 86-89.
  • Daubin, V., Gouy, M., Perriere, G. 2002. A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. Genome Res. 12: 1080-1090.
  • Daubin, V., Moran, N.A., Ochman, H. 2003. Phylogenetics and the cohesion of bacterial genomes. Science 301: 829-832.
  • de Queiroz, A., Donoghue, M.J., Kim, J. 1995. Separate versus combined analysis of phylogenetic evidence. Annu. Rev. Ecol. Syst. 25: 657-681.
  • Delwiche, C.F., Palmer, J.D. 1996. Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol. Biol. Evol. 13: 873-882.
  • Doolittle, R.F., Feng, D.F., Tsang, S., Cho, G., Little, E. 1996. Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271: 470-477.
  • Doolittle, W.F. 1999a. Lateral genomics. Trends Cell. Biol. 9: M5-M8.
  • Doolittle, W.F. 1999b. Phylogenetic classification and the universal tree. Science 284: 2124-2129.
  • Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G. 1999. Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge.
  • Felsenstein, J. 1978. Cases in which parsimony and compatibility methods will be positively misleading. Syst. Zool. 27: 401-410.
  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368-376.
  • Fitch, W. 1971. Toward defining the course of evolution: minimum change for a specified tree topology. Syst. Zool. 20: 406-416.
  • Fitch, W.M., Margoliash, E. 1967. The construction of phylogenetic trees—a generally applicable method utilizing estimates of the mutation distance obtained from cytochrome c sequences. Science 155: 279-284.
  • Garcia-Vallve, S., Guzman, E., Montero, M.A., Romeu, A. 2003. HGT-DB: a database of putative horizontally transferred genes in prokaryotic complete genomes. Nucleic Acids Res. 31: 187-189.
  • Gu, X. 1998. Early Metazoan divergence was about 830 million years ago. J. Mol. Evol. 47: 369-371.
  • Hein, J. 1990. Reconstructing evolution of sequences subject to recombination using parsimony. Math. Biosci. 98:. 185-200.
  • Hein, J. 1993. A heuristic method to reconstruct the history of sequences subject to recombination. J. Mol. Evol. 36: 396-405.
  • Hendy, M.D., Penny, D. 1989. A framework for the quantitative study of evolutionary trees. Syst. Zool. 38: 297-309.
  • Huelsenbeck, J.P., Bull, J.J., Cunningham, C.W. 1996. Combining data in phylogenetic analysis. Trends Ecol. Evol. 117: 152-158.
  • Husmeier, D., McGuire, G. 2002. Detecting recombination with MCMC. Bioinformatics 18 Suppl. 1: S345-S353.
  • Husmeier, D., Wright, F. 2001. Detection of recombination in DNA multiple alignments with hidden Markov models. J. Comput. Biol. 8: 401-427.
  • Huynen, M.A., Bork, P. 1998. Measuring genome evolution. Proc. Natl. Acad. Sci. USA 95: 5849-5856.
  • Jin, G., Nakhleh, L., Snir, S., Tuller, T. 2006. Maximum likelihood of phylogenetic networks. Bioinformatics 22: 2604-2611.
  • Jin, G., Nakhleh, L., Snir, S., Tuller, T. 2007a. Efficient parsimony-based methods for phylogenetic network reconstruction. Bioinformatics 23: e123-e128.
  • Jin, G., Nakhleh, L., Snir, S., Tuller, T. 2007b. Inferring phylogenetic networks by the maximum parsimony criterion: a case study. Mol. Biol. Evol. 24: 324-337.
  • Koonin, E.V., Galperin, M.Y. 2002. Evolutionary concept in genetics and genomics. Sequence— Evolution—Function. Computational approaches in comparative genomics. Kluwer Academic Publishers, 488 pp.
  • Koonin, E.V., Makarova, K.S., Aravind, L. 2001. Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol. 55: 709-742.
  • Lawrence, J.G., Ochman, H. 1997. Amelioration of bacterial genomes: rates of change and exchange. J. Mol. Evol. 44: 383-397.
  • Lawrence, J.G., Ochman, H. 2002. Reconciling the many faces of lateral gene transfer. Trends Microbiol. 10: 1-4.
  • Matte-Tailliez, O., Brochier, C., Forterre, P., Philippe, H. 2002. Archaeal phylogeny based on ribosomal proteins. Mol. Biol. Evol. 19: 631-639.
  • Medigue, C., Rouxel, T., Vigier, P., Henaut, A., Danchin, A. 1991. Evidence for horizontal gene transfer in Escherichia coli speciation. J. Mol. Biol. 222: 851-856.
  • Mower, J.P., Stefanovic, S., Young, G.J., Palmer, J.D. 2004. Plant genetics: gene transfer from parasitic to host plants. Nature 432: 165-166.
  • Nakamura, Y., Itoh, T., Matsuda, H., Gojobori, T. 2004. Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat. Genet. 36: 760-766.
  • Nakhleh, L., Jin, G., Zhao, F., Mellor-Crummey, J. 2005. Reconstructing phylogenetic networks using maximum parsimony. IEEE Computational Systems Bioinformatics Conference (CSB'05), pp. 93-102.
  • Ochman, H. 2003. Neutral mutations and neutral substitutions in bacterial genomes. Mol. Biol. Evol. 20: 2091-2096.
  • Ochman, H., Lawrence, J.G., Groisman, E.A. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299-304.
  • Olmstead, R.G., Sweere, J.A. 1994. Combining data in phylogenetic systematics: an empirical approach using three molecular data sets in the Solanaceae. Syst. Biol. 43: 467-481.
  • Penny, D., Hendy, M.D. 1987. TurboTree: a fast algorithm for minimal trees. Comput. Appl. Biosci. 3: 183-187.
  • Pupko, T., Pe'er, I., Shamir, R., Graur, D. 2000. A fast algorithm for joint reconstruction of ancestral amino acid sequences. Mol. Biol. Evol. 17: 890-896.
  • Sanderson, M.J., Wojciechowski, M.F., Hu, J.M., Khan, T.S., Brady, S.G. 2000. Error, bias, and long-branch attraction in data for two chloroplast photosystem genes in seed plants. Mol. Biol. Evol. 17: 782-797.
  • Sankoff, D., Blanchette, M. 1998. Multiple genome rearrangement and breakpoint phylogeny. J. Comput. Biol. 5: 555-570.
  • Siepel, A., Bejerano, G., Pedersen, J.S., Hinrichs, A.S., Hou, M., Rosenbloom, K., Clawson, H., Spieth, J., Hillier, L.W., Richards, S., Weinstock, G.M., Wilson, R.K., Gibbs, R.A., Kent, W.J., Miller, W., Haussler, D. 2005. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15: 1034-1050.
  • Steel, M., Penny, D. 2000. Parsimony, likelihood, and the role of models in molecular phylogenetics. Mol. Biol. Evol. 17: 839-850.
  • Strimmer, K., Moulton, V. 2000. Likelihood analysis of phylogenetic networks using directed graphical models. Mol. Biol. Evol. 17: 875-881.
  • Swofford, D.L. 1998. PAUP*: Phylogenetic analysis using parsimony. Sinauer, Sunderland, MA.
  • Teichmann, S.A., Mitchison, G. 1999. Is there a phylogenetic signal in prokaryote proteins? J. Mol. Evol. 49: 98-107.
  • von Haeseler, A., Churchill, G.A. 1993. Network models for sequence evolution. J. Mol. Evol. 37: 77-85.
  • Wiens, J.J. 1998. Combining data sets with different phylogenetic histories. Syst. Biol. 47: 568-581.
  • Woese, C.R., Fox, G.E. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74: 5088-5090.
  • Zuckerkandl, E., Pauling, L. 1965. Molecules as documents of evolutionary history. J. Theor. Biol. 8: 357-366.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.