491
Views
27
CrossRef citations to date
0
Altmetric
Reviews

Advanced dual-energy CT for head and neck cancer imaging

References

  • Papers of special note have been highlighted as:
  • * of interest to readers
  • ** of considerable interest to readers
  • Johnson TRC, Kalender WA. Physical background. In: Johnson T, Fink C, Schönberg SO, et al., editors. Dual energy CT in clinical practice. Berlin: Springer-Verlag Berlin Heidelberg; 2011. p. 3–9.

**Chapter in a book dedicated to dual-energy CT providing an overview of basic principles

**Review article providing an overview of dual-energy CT principles and approaches to scanning

  • De Cecco CN, Darnell A, Rengo M, et al. Dual-energy CT: oncologic applications. AJR Am J Roentgenol. 2012;199(5 Suppl):S98–S105. DOI:10.2214/AJR.12.9207.
  • Heye T, Nelson RC, Ho LM, et al. Dual-energy CT applications in the abdomen. AJR Am J Roentgenol. 2012;199(5 Suppl):S64–S70. DOI:10.2214/AJR.12.9196.
  • Lu GM, Zhao Y, Zhang LJ, et al. Dual-energy CT of the lung. AJR Am J Roentgenol. 2012;199(5 Suppl):S40–S53. DOI:10.2214/AJR.12.9112.
  • Pomerantz SR, Kamalian S, Zhang D, et al. Virtual monochromatic reconstruction of dual-energy unenhanced head CT at 65-75 keV maximizes image quality compared with conventional polychromatic CT. Radiology. 2013;266(1):318–325. DOI:10.1148/radiol.12111604.
  • Postma AA, Hofman PA, Stadler AA, et al. Dual-energy CT of the brain and intracranial vessels. AJR Am J Roentgenol. 2012;199(5 Suppl):S26–S33. DOI:10.2214/AJR.12.9115.
  • Vliegenthart R, Pelgrim GJ, Ebersberger U, et al. Dual-energy CT of the heart. AJR Am J Roentgenol. 2012;199(5 Suppl):S54–S63. DOI:10.2214/AJR.12.9208.
  • Vogl TJ, Schulz B, Bauer RW, et al. Dual-energy CT applications in head and neck imaging. AJR Am J Roentgenol. 2012;199(5 Suppl):S34–S39. DOI:10.2214/AJR.12.9113.

*Review article on early emerging applications of dual-energy CT scanning for head and neck imaging

  • Kuno H, Onaya H, Iwata R, et al. Evaluation of cartilage invasion by laryngeal and hypopharyngeal squamous cell carcinoma with dual-energy CT. Radiology. 2012;265(2):488–496. DOI:10.1148/radiol.12111719.

**Original article describing application of dual-energy CT iodine overlay maps for improving diagnostic accuracy for determination of laryngeal cartilage invasion by tumor

  • Forghani R, Levental M, Gupta R, et al. Different spectral hounsfield unit curve and high-energy virtual monochromatic image characteristics of squamous cell carcinoma compared with nonossified thyroid cartilage. AJNR Am J Neuroradiol. 2015. DOI:10.3174/ajnr.A4253.

**Original article demonstrating that head and neck squamous carcinoma has different spectral Hounsfield unit curve characteristics compared to non-ossified thyroid cartilage with best distinction on high-energy reconstructions

  • Lam S, Gupta R, Levental M, et al. Optimal virtual monochromatic images for evaluation of normal tissues and head and neck cancer using dual-energy CT. AJNR Am J Neuroradiol. 2015. DOI:10.3174/ajnr.A4314.

**Original article using quantitative analysis to determine the optimal virtual monochromatic image energy levels for the evaluation of head and neck squamous cell carcinoma and normal tissues using a fast kVp switching scanner

  • Wichmann JL, Noske EM, Kraft J, et al. Virtual monoenergetic dual-energy computed tomography: optimization of kiloelectron volt settings in head and neck cancer. Invest Radiol. 2014;49(11):735–741. DOI:10.1097/RLI.0000000000000077.

**Original article evaluating different virtual monochromatic image energy levels for the evaluation of head and neck squamous cell carcinoma using a dual-source scanner

  • Tawfik AM, Kerl JM, Bauer RW, et al. Dual-energy CT of head and neck cancer: average weighting of low- and high-voltage acquisitions to improve lesion delineation and image quality-initial clinical experience. Invest Radiol. 2012;47(5):306–311. DOI:10.1097/RLI.0b013e31821e3062.

**Original article evaluating different percent linear blending of weighted-average images for the evaluation of head and neck squamous cell carcinoma using a dual-source scanner

  • Scholtz JE, Husers K, Kaup M, et al. Non-linear image blending improves visualization of head and neck primary squamous cell carcinoma compared to linear blending in dual-energy CT. Clin Radiol. 2015;70(2):168–175. DOI:10.1016/j.crad.2014.10.018.

**Original article evaluating the use of nonlinear blending of weighted-average images for the evaluation of head and neck squamous cell carcinoma using a dual-source scanner

  • Srinivasan A, Parker RA, Manjunathan A, et al. Differentiation of benign and malignant neck pathologies: preliminary experience using spectral computed tomography. J Comput Assist Tomogr. 2013;37(5):666–672. DOI:10.1097/RCT.0b013e3182976365.

**Original article using different quantitative parameters derived from spectral Hounsfield attenuation curves to evaluate differences between malignant and benign head and neck lesions using a fast kVp switching scanner

  • Tawfik AM, Razek AA, Kerl JM, et al. Comparison of dual-energy CT-derived iodine content and iodine overlay of normal, inflammatory and metastatic squamous cell carcinoma cervical lymph nodes. Eur Radiol. 2014;24(3):574–580. DOI:10.1007/s00330-013-3035-3.

*Original article comparing and demonstrating differences in dual-energy CT-derived iodine content of metastatic squamous cell carcinoma cervical nodes compared to normal or inflammatory nodes

  • Wichmann JL, Kraft J, Noske EM, et al. Low-tube-voltage 80-kVp neck CT: evaluation of diagnostic accuracy and interobserver agreement. AJNR Am J Neuroradiol. 2014;35(12):2376–2381. DOI:10.3174/ajnr.A4052.
  • Liu X, Ouyang D, Li H, et al. Papillary thyroid cancer: dual-energy spectral CT quantitative parameters for preoperative diagnosis of metastasis to the cervical lymph nodes. Radiology. 2015;275(1):167–176. DOI:10.1148/radiol.14140481.
  • Scholtz JE, Kaup M, Kraft J, et al. Objective and subjective image quality of primary and recurrent squamous cell carcinoma on head and neck low-tube-voltage 80-kVp computed tomography. Neuroradiology. 2015;57(6):645–651. DOI:10.1007/s00234-015-1512-x.
  • Stolzmann P, Winklhofer S, Schwendener N, et al. Monoenergetic computed tomography reconstructions reduce beam hardening artifacts from dental restorations. Forensic Sci Med Pathol. 2013;9(3):327–332. DOI:10.1007/s12024-013-9420-z.

*Original article describing applications of dual-energy CT for artifact reduction

  • Tanaka R, Hayashi T, Ike M, et al. Reduction of dark-band-like metal artifacts caused by dental implant bodies using hypothetical monoenergetic imaging after dual-energy computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115(6):833–838. DOI:10.1016/j.oooo.2013.03.014.

*Original article describing applications of dual-energy CT for artifact reduction

  • Johnson T, Fink C, Schönberg SO, et al. Dual energy CT in clinical practice. Medical radiology. Berlin: Springer-Verlag Berlin Heidelberg; 2011.
  • Chandra N, Langan DA. Gemstone detector: dual energy imaging via fast kVp switching. In: Johnson T, Fink C, Schönberg SO, et al., editors. Dual energy CT in clinical practice. Berlin: Springer-Verlag Berlin Heidelberg; 2011. p. 35–41.
  • Jiang H, Vartuli J, Vess C. Gemstone – the ultimate scintillator for computed tomography [white paper]. Waukesha (WI): GE Healthcare; 2008.
  • Krauss B, Schmidt B, Flohr TG. Dual source CT. In: Johnson T, Fink C, Schönberg SO, et al., editors. Dual energy CT in clinical practice. Berlin: Springer-Verlag Berlin Heidelberg; 2011. p. 10–20.
  • Vlassenbroek A. Dual layer CT. In: Johnson T, Fink C, Schönberg SO, et al., editors. Dual energy CT in clinical practice. Berlin: Springer-Verlag Berlin Heidelberg; 2011. p. 21–34.
  • Hoang JK, Reiman RE, Nguyen GB, et al. Lifetime attributable risk of cancer from radiation exposure during parathyroid imaging: comparison of 4D CT and parathyroid scintigraphy. AJR Am J Roentgenol. 2015;204(5):W579–W585. DOI:10.2214/AJR.14.13278.
  • Siegel JA, Welsh JS. Does imaging technology cause cancer? Debunking the linear no-threshold model of radiation carcinogenesis. Technol Cancer Res Treat. 2015. DOI:10.1177/1533034615578011.
  • Ho LM, Yoshizumi TT, Hurwitz LM, et al. Dual energy versus single energy MDCT: measurement of radiation dose using adult abdominal imaging protocols. Acad Radiol. 2009;16(11):1400–1407. DOI:10.1016/j.acra.2009.05.002.
  • Schenzle JC, Sommer WH, Neumaier K, et al. Dual energy CT of the chest: how about the dose? Invest Radiol. 2010;45(6):347–353. DOI:10.1097/RLI.0b013e3181df901d.
  • Li B, Yadava G, Hsieh J. Quantification of head and body CTDI(VOL) of dual-energy x-ray CT with fast-kVp switching. Med Phys. 2011;38(5):2595–2601.
  • Kamiya K, Kunimatsu A, Mori H, et al. Preliminary report on virtual monochromatic spectral imaging with fast kVp switching dual energy head CT: comparable image quality to that of 120-kVp CT without increasing the radiation dose. Jpn J Radiol. 2013;31(4):293–298. DOI:10.1007/s11604-013-0185-9.
  • Tawfik AM, Kerl JM, Razek AA, et al. Image quality and radiation dose of dual-energy CT of the head and neck compared with a standard 120-kVp acquisition. AJNR Am J Neuroradiol. 2011;32(11):1994–1999. DOI:10.3174/ajnr.A2654.

*Original article demonstrating slightly reduced radiation dose but similar quality of standard reconstructions from dual-energy CT acquisitions of the neck compared to single-energy CT

  • Matsumoto K, Jinzaki M, Tanami Y, et al. Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology. 2011;259(1):257–262. DOI:10.1148/radiol.11100978.
  • Wu X, Langan DA, Xu D, et al. Monochromatic CT image representation via fast switching dual kVp. Proc SPIE. 2009;7258:725845. DOI:10.1117/12.811698.
  • Patel BN, Thomas JV, Lockhart ME, et al. Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: optimization of energy level viewing significantly increases lesion contrast. Clin Radiol. 2013;68(2):148–154. DOI:10.1016/j.crad.2012.06.108.
  • Graser A. Kidney imaging. In: Johnson T, Fink C, Schönberg SO, et al., editors. Dual energy CT in clinical practice. Berlin: Springer-Verlag Berlin Heidelberg; 2011. p. 157–166.
  • Gupta R, Phan CM, Leidecker C, et al. Evaluation of dual-energy CT for differentiating intracerebral hemorrhage from iodinated contrast material staining. Radiology. 2010;257(1):205–211. DOI:10.1148/radiol.10091806.
  • Ferda J, Novak M, Mirka H, et al. The assessment of intracranial bleeding with virtual unenhanced imaging by means of dual-energy CT angiography. Eur Radiol. 2009;19(10):2518–2522. DOI:10.1007/s00330-009-1495-2.
  • Karlo CA, Gnannt R, Winklehner A, et al. Split-bolus dual-energy CT urography: protocol optimization and diagnostic performance for the detection of urinary stones. Abdom Imaging. 2013;38(5):1136–1143. DOI:10.1007/s00261-013-9992-9.
  • Albrecht MH, Scholtz JE, Kraft J, et al. Assessment of an advanced monoenergetic reconstruction technique in dual-energy computed tomography of head and neck cancer. Eur Radiol. 2015;25(8):2493–2501. DOI:10.1007/s00330-015-3627-1.

**Original article using an advanced algorithm applied to low-energy virtual monochromatic image reconstructions for the evaluation of head and neck squamous cell carcinoma using a dual-source scanner

  • Hartl DM, Landry G, Hans S, et al. Organ preservation surgery for laryngeal squamous cell carcinoma: low incidence of thyroid cartilage invasion. Laryngoscope. 2010;120(6):1173–1176. DOI:10.1002/lary.20912.
  • Jenckel F, Knecht R. State of the art in the treatment of laryngeal cancer. Anticancer Res. 2013;33(11):4701–4710.
  • Kuno H, Onaya H, Fujii S, et al. Primary staging of laryngeal and hypopharyngeal cancer: CT, MR imaging and dual-energy CT. Eur J Radiol. 2014;83(1):e23–e35. DOI:10.1016/j.ejrad.2013.10.022.

*Review article on the use of imaging for staging of laryngeal and hypopharyngeal cancers, including the use of dual-energy CT

  • Lefebvre JL. Larynx preservation. Curr Opin Oncol. 2012;24(3):218–222. DOI:10.1097/CCO.0b013e3283523c95.
  • Edge SB, Byrd DR, Compton CC, et al. AJCC cancer staging manual. 7th ed. New York: Springer; 2010.
  • Becker M. Neoplastic invasion of laryngeal cartilage: radiologic diagnosis and therapeutic implications. Eur J Radiol. 2000;33(3):216–229.
  • Hermans R. Staging of laryngeal and hypopharyngeal cancer: value of imaging studies. Eur Radiol. 2006;16(11):2386–2400. DOI:10.1007/s00330-006-0301-7.
  • Mafee MF, Schild JA, Michael AS, et al. Cartilage involvement in laryngeal carcinoma: correlation of CT and pathologic macrosection studies. J Comput Assist Tomogr. 1984;8(5):969–973.
  • Beitler JJ, Muller S, Grist WJ, et al. Prognostic accuracy of computed tomography findings for patients with laryngeal cancer undergoing laryngectomy. J Clin Oncol. 2010;28(14):2318–2322. DOI:10.1200/JCO.2009.24.7544.
  • Becker M, Burkhardt K, Dulguerov P, et al. Imaging of the larynx and hypopharynx. Eur J Radiol. 2008;66(3):460–479. DOI:10.1016/j.ejrad.2008.03.027.
  • Becker M, Zbaren P, Laeng H, et al. Neoplastic invasion of the laryngeal cartilage: comparison of MR imaging and CT with histopathologic correlation. Radiology. 1995;194(3):661–669. DOI:10.1148/radiology.194.3.7862960.
  • Li M, Zheng X, Li J, et al. Dual-energy computed tomography imaging of thyroid nodule specimens: comparison with pathologic findings. Invest Radiol. 2012;47(1):58–64. DOI:10.1097/RLI.0b013e318229fef3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.