20
Views
13
CrossRef citations to date
0
Altmetric
Review

Advances in targeted therapy for chronic myeloid leukemia

&
Pages 295-310 | Published online: 10 Jan 2014

References

  • National Cancer Institute. Surveillance, Epidemiology and End Results (SEER) Program — public use CD-ROM (1973–1999) National Cancer Institute, DCPC, Surveillance Program, Cancer Statistics Branch, Bethesda, MD, USA (2003).
  • Lange R, Moloney W Yamawaki T Leukemia in atomic bomb survivors. General observations. B/ooc/9,574–585 (1954).
  • Heyseel R, Brill B, Woodbury L. Leukemia in Hiroshima atomic bomb survivors. Blood 15,313–331 (1960).
  • Sokal JE, Cox EB, Baccarani M et al Prognostic discrimination in 'good-risk' chronic granulocytic leukemia. Blood 63, 789–799 (1984).
  • Karanas A, Silver RT. Characteristics of the terminal phase of chronic granulocytic leukemia. B/ooc/32,445–459 (1968).
  • Griesshammer M, Heinze B, Hellman A et al Chronic myelogenous leukemia in blast crisis: retrospective analysis of prognostic factors in 90 patients. Ann. Remota]. 73,225-230 (1996).
  • O'Brien SG, Guilhot F, Larson RA et al Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. Med 348,994–1004 (2003).
  • •Preliminary results of the Phase III trial comparing imatinib monotherapy with interferon (IEN)-a and cytarabine in the patients with newly diagnosed, untreated chronic phase chronic myeloid leukemia (CML-CP).
  • Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr/abl oncogene products. Science 247, 1079–1082 (1990).
  • Biernaux C, Loos M, Sels A, Huez G, Stryckmans P Detection of major bcr—abl gene expression at a very low level in blood cells of some healthy individuals. B/ooc/86, 3118–3122 (1995).
  • Bose S, Deininger M, Gora-Tybor J, Goldman JM, Melo J. The presence of typical and atypical bcr—abl fusion genes in leukocytes of normal individuals: biologic significance and implications for assessment of minimal residual disease. Blood 92, 3362–3367 (1998).
  • Fialkow PJ, Martin PJ, Najfeld V et al Evidence for a multistep pathogenesis of chronic myelogenous leukemia. Blood 58, 158–163 (1981).
  • Raskind WH, Ferraris AM, Najfeld V et al. Further evidence for the existence of a clonal Ph-negative stage in some cases of Ph-positive chronic myelocytic leukemia. Leukemia 7,1163–1167 (1993).
  • Hagemeijer A, Smit EM, Lowenberg B, Abels J. Chronic myeloid leukemia with permanent disappearance of the Phi chromosome and development of new clonal subpopulations. Blood 53,1–74 (1979).
  • AriyamaT, Inazawa J, Uemura Y et al. Clonal origin of Philadelphia chromosome negative cells with trisomy 8 appearing during the course of interferon-a therapy for Ph positive chronic myelocytic leukemia. Cancer Genet. Cytogenet. 81, 20–23 (1995).
  • Bose S, Chowdhry VP, Saxena R, Kucheria K. Lymphoid blast crisis during complete cytogenetic remission following interferon-a and hydroxyurea therapy. Acta kkematol. 98,155–159 (1997).
  • Bum T, Muller C, Al-Ali HK et al. Emergence of clonal cytogenetic abnormalities in Ph- cells in some CML patients in cytogenetic remission to imatinib but restoration of polyclonal hematopoiesis in the majority. Blood101, 1941–1949 (2003).
  • O'Dwyer ME, Gaffer KM, Loriaux Met al Demonstration of Philadelphia chromosome negative abnormal clones in patients with chronic myelogenous leukemia during major cytogenetic responses induced by imatinib mesylate. Leukemia 17,481–487 (2003).
  • Deininger MWN, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. B/ooc/96,3343–3356 (2000).
  • Clarkson B, Strife A. Linkage of proliferative and maturational abnormalities in chronic myelogenous leukemia and relevance to treatment. Leukemia 7,1683–1721 (1993).
  • Melo JV, Myint H, Gallon DA, Goldman JM. P190 bcr—abl chronic myeloid leukemia: the missing link with chronic myelomonocytic leukemia? Leukemia 8, 208–211 (1994).
  • Pane F, Frigeri F, Sidona M et al Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). B/ooc/88,2410–2414 (1996).
  • Verstovsek S, Lin H, Kantarjian H et al Neutrophilic-chronic myeloid leukemia: low levels of p230 BCR/ABL mRNA and undetectable p230 BCR/ABL protein may predict an indolent course. Cancer 94, 2416–2425 (2002).
  • Pluk H, Dorey K, Superti-Furga G. Autoinhibition of c-abl. Cell 108, 247–259 (2002).
  • •Demonstration that the N-terminal region of c-ABL inhibits its catalytic activity, analogous to the C-terminal region of SRC. This region is deleted in BCR-ABL contributing to its deregulated activity
  • Shtivelman E, Lifshitz B, Gale RP et al Alternative splicing of RNAs transcribed from the human abl gene and from the bcr—abl fused gene. Ce1147, 277–284 (1986).
  • McWhirter JR, Gaalasso DL, Wang JYJ. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of bcr—abl oncoproteins. Mal Cell Biol. 13,7587–7595 (1993).
  • Pendergast AM, Quilliam LA, Cripe LD et al BCR—ABL-induced oncogenesis is mediated by direct interaction with the 5H2 domain of the GRB-2 adaptor protein. Ce1175, 175–185 (1993).
  • Pendergast AM, Muller AJ, Havlik MH, Maru Y, Witte ON. BCR sequences essential for transformation by the bcr—abl oncogene bind to the ABL 5H2 regulatory domain in a non-phospho-tyrosine-dependent manner. Ce//66,161–171 (1991).
  • Gross AW, Zhang X, Ren R. bcr—abl with an 5H3 deletion retains the activity to induce a myeloproliferative disease in mice, yet c-abl activated by an 5H3-deletion induces only lymphoid malignancy. Mal Cell Biol. 19,6918-6928 (1999).
  • Zhang X, Ren R. bcr—abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood 92, 3829–3840 (1998).
  • Heisterkamp N, Voncken JW, Senadheera D et al Reduced oncogenicity of p190 Bcr/Abl F-actin-binding domain mutants. B/ooc/96,2226–2232 (2000).
  • Reuter CWM, Morgan MA, Bergmann L. Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies? B/ooc/96, 1655–1669 (2000).
  • Kato K, Cox AD, Hisaka MM, Graham S, Buss JE, Der CJ. Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc. Natl Acad. Sc]. USA 89, 6403–6407 (1992).
  • Shields JM, Pruitt K, McFall A, Shaub A, Der CJ. Understanding Ras: 'it ain't over 'EA it's over'. Wends Cell Biol. 10,147–154 (2000).
  • Skorski T, Kanadaraj P, Ku DH et a/. Negative regulation of p210GAP GTPase promoting activity by p210BcriAbl: implication of ras-dependent Philadelphia chromosome positive cell growth. I Exp. Merl 179,1855–1865 (1994).
  • Chuang TH, Xu X, Kaartinen B et al Abr and Bcr are multifunctional regulators of the Rho GTP-binding protein family. Proc. Natl. Acad. Sc]. USA 92,10282–10286 (1995).
  • Sawyers CL, McLaughlin J, Witte ON. Genetic requirement for Ras in the transformation of fibroblasts and hematopoietic cells by the bcr—ab/oncogene. Exp. Merl 181,307–313 (1995).
  • •BCR—ABL transformation of murine bone marrow cells is inhibited by a dominant-negative Ras and a Ras construct containing only the catalytic domain of GTPase activating protein. Inhibition can be reversed by coexpression of normal Ras.
  • Mandanas RA, Leibowitz DS, Gharehbaghi K et al. Role of p21 Ras in p210 bcr—abl transformation of murine myeloid cells. B/ooc/ 82,1838–1847 (1993) .
  • Pendergast A, Quilliam L, Cripe L et al BCR—ABL-induced oncogenesis is mediated by direct interaction with the 5H2 domain of the GRB-2 adaptor protein. Ce1175, 175–185 (1993).
  • Goga A, McLaughlin J, Afar DE, Saffran DC, Witte ON. Alternative signals to RAS for hematopoietic transformation by the bcr—abl oncogene. Ce1182, 981–988 (1995).
  • Carpino N, Wisniewski D, Strife A et al. p62(dok): a constitutively tyrosine-phosphorylated GAP-associated protein in chronic myelogenous leukemia progenitor cells. Ce1188, 197–204 (1997).
  • Skorski T, Nieborowska-Skorska M, Szczylik C et al. C-RAF-1 serineithreonine kinase is required in BCR/ABL-dependent and normal hematopoiesis. Cancer Res 55, 2275–2278 (1995).
  • •Downregulation of c-Raf-1 expression with antisense oligodeoxynucleotides and inhibition of c-Raf-1 activity by dominant-negative mutants inhibited BCR—ABL-dependent growth of CML cells. This did not occur through direct association of c-Raf-1 with BCR—ABL.
  • Salomoni P, Wasik MA, Riedel RF et al. Expression of constitutively active Raf-1 in the mitochondria restores anti-apoptotic and leukemogenic potential of a transformation-deficient BCIVABL mutant. J. Bp. Merl 187,1995-2007 (1998).
  • Raitano AB, Halpern JR, Hambuch TM, Sawyers CL. The bcr—abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proc. Natl Acad. Sc]. USA 92,11746–11750 (1995).
  • •BCR—ABL activated the JNK/SAPK pathway in hematopoietic cells; dominant-negative c-Jun, a downstream effector molecule of JNK/SAPK, inhibited BCR—ABL transformation of fibroblasts.
  • Kabarowski JH, Allen PB, Wiedemann LM. A temperature sensitive p210 bcr—abl mutant defines the primary consequences of bcr—abl tyrosine kinase expression in growth factor dependent cells. EM130J. 13, 5887–5895 (1994).
  • Cortez D, Reuther GW, Pendergast AM. The bcr—abl tyrosine kinase activates mitotic signaling pathways and stimulates G1 -to-S phase transition in hematopoietic cells. Oncogene 15,2333–2342 (1997).
  • Toker A, Cantley LC. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387,673–676 (1997).
  • Cantley LC, Neel BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Roc Nat/Acad. Sc]. USA 96,4240–4245 (1999).
  • Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev. 13,2905–2927 (1999).
  • Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378,785–789 (1995).
  • Muise-Helmericks RC, Grimes HL, Bellacosa A, Malstrom SE, Tsichlis PN, Rosen N. Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase Akt-dependent pathway. j Biol. Chem. 273, 29864–29872 (1998).
  • Sekulic A, Hudson CC, Homme JL et al A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 60,3504–3513 (2000).
  • West MJ, Stoneley M, Willis AE. Translational induction of the c-myc oncogene via activation of the FRANTOR signalling pathway. Oncogene 17,769–780 (1998).
  • Dufner A, Andjelkovic M, Burgering BM, Hemmings BA, Thomas G. Protein kinase B localization and activation differentially affect S6 kinase 1 activity and eukaryotic translation initiation factor 4E-binding protein 1 phosphorylation. Mal Cell Biol. 19,4525-4534 (1999).
  • Schmelzle T, Hall MN. TOR, a central controller of cell growth. Ce11103, 253–262 (2000).
  • Sattler M, Salgia R, Okuda K et al The proto-oncogene product p120CBL and the adaptor proteins CRTC and c-CRK link c-ABL, p190BCIVABL and p210BCR/ABL to the phosphatidylinosito1-3- kinase pathway. Oncogene 12,839–846 (1996).
  • Skorski T, Bellacosa A, Nieborowska- Skorska M et al Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-31dAkt-dependent pathway. EM130 J. 16,6151-6161 (1997).
  • Rodriguez-Viciana P, Warne PH, Dhand R et al Phosphatidylinosito1-3-0H kinase as a direct target of Ras. Nature 370,527–532 (1994).
  • Skorski T, Kanakaraj P, Nieborowska- Skorska M et al Phosphatidylinosito1-3 kinase activity is regulated by BCIVABL and is required for the growth of Philadelphia chromosome-positive cells. B/ooc/86,726–736 (1995).
  • •The p85 subunit of phosphatidylinosito1-3 kinase (PI3K) is associated with BCR—ABL. Downregulation of bcr—abl expression by antisense oligodeoxynudeotides inhibited PI3K activity Conversely, downregulation of p85expression by antisense oligodeoxynucleotides or inhibition of PI3K activity by wortmannin inhibited the proliferation of bcr—abl dependent cell lines.
  • Reuther JY, Reuther GVV, Cortez D, Pendergast AM, Baldwin Jr AS. A requirement for NF-KB activation in Bcr-Abl-mediated transformation. Genes Dev. 12,968–981 (1998).
  • •BCR-ABL activated transcription of NF-KB-dependent genes; NF-KB was required for tumor formation in nude mice and transformation of primary bone marrow cells by bcr—abl.
  • Ward AC, Touw I, Yoshimura A. The Jak- Stat pathway in normal and perturbed hematopoiesis. Blood 95,19–29 (2000).
  • Horita M, Andreu EJ, Benito A et al. Blockade of the bcr—abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bc1-xL. J. Exp. Med. 191,977-984 (2000).
  • Gesbert F, Griffin JD. Bcr/Abl activates transcription of the &l-Xgene through STAT5. B/ooc/96,2269–2276 (2000).
  • Lin TS, Mahajan S, Frank DA. STAT signaling in pathogenesis and treatment of leukemias. Oncogene 19,2496–2504 (2000).
  • Rane SG, Reddy ER Janus kinases: components of multiple signaling pathways. Oncogene 19,5662–5679 (2000).
  • Nieborowska-Skorska M, Wasik MA, Slupianek A et al Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (5H)3 and 5H2 domains of BCR/ABL and is required for leukemogenesis. I Exp. Med. 189, 1229–1242 (1999).
  • Chai SK, Nichols GL, Rothman R Constitutive activation of JAKs and STATs in BCR—ABL-expressing cell lines and peripheral blood cells derived from leukemic patients. I Iminuno1.159, 4720–4728 (1997).
  • Shuai K, Halpern J, ten Hoeve J, Rao X, Sawyers CL. Constitutive activation of STAT5 by the bcr—ab/oncogene in chronic myelogenous leukemia. Oncogene 13, 247–254 (1996).
  • Ilaria RL Jr, Van Etten RA. P210 and p 90BCHABL induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J. Biol. Chem. 271, 31704–31710 (1996).
  • Xie S, Wang Y, Liu J et al. Involvement of Jak2 tyrosine phosphorylation in bcr—abl transformation. Oncogene 20,6188–6195 (2001).
  • Sillaber C, Gesbert F, Frank DA, Sattler M, Griffin JD. STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells. B/ooc/95,2118–2125 (2000).
  • Preisler HD, Agarwal R, Sato H, Singh PK, Wang ZQ, Sandberg AA. Studies of proto-oncogene expression in the chronic and blastic phases of chronic myelogenous leukemia. Eur j Cancer26, 960–965 (1990).
  • Sawyers CL, Callahan W, Witte ON. Dominant negative MYC blocks transformation by ABL oncogenes. Ce1170, 901–910 (1992).
  • •Overexpression of dominant-negative myc Prevented bcr—abl-mediated transformation of mtuine bone marrow cells.
  • Afar DEH, Goga A, McLaughlin J, Witte ON, Sawyers CL. Differential complementation of bcr—abl point mutations with c-Myc. Science 264, 424–426 (1994).
  • Stewart MJ, Litz Jackson S, Burgess GS, Williamson EA, Leibowitz DS, Boswell HS. Role for E2F1 in p210 bcr—abl downstream regulation of c-myc transcription initiation: studies in murine myeloid cells. Leukemia 9,1499–1507 (1995).
  • Xie S, Lin H, Sun T, Arlinghaus RB. Jak2 is involved in c-Myc induction by Bcr-Abl. Oncogene 21,7137–7146 (2002).
  • Derderian PM, Kantarjian HM, Talpaz M et al Chronic myelogenous leukemia in the lymphoid blastic phase: characteristics, treatment response and prognosis. Am. J. Med. 94,69–74 (1993).
  • Wadhwa J, Szydlo RM, Apperley JF et al Factors influencing duration of survival after onset of blastic transformation of chronic myeloid leukaemia. B/ooc/99, 2304–2309 (2002).
  • Cervantes F, Villamor N, Esteve J et al 'Lymphoid' blast crisis of chronic myeloid leukaemia is associated with distinct clinicohaematological features. BE J. Haematol 100,123–129 (1998).
  • Shet AS, Jahagirdar BN, Verfaillie CM. Chronic myelogenous leukemia: mechanisms underlying disease progression. Leukemia 16,1402–1411 (2002).
  • Johansson B, Fioretos T, Mitelman E Cytogenetic and molecular genetic evolution of chronic myeloid leukemia. Acta Haematol 107,76–94 (2002).
  • Hasford J, Pfirrmann M, Hehlmann R et al. A new prognostic score for survival of patients with chronic myeloid leukaemia treated with interferon-a. J. Nail Cancer Inst. 90,850–858 (1998).
  • Bonifazi F, De Vivo A, Rosti G et al Testing Sokal's and the new prognostic score for chronic myeloid leukaemia treated with interferon-a. BE JI-Lematol. 111, 587–595 (2000).
  • Chronic Myeloid Leukemia Trialist's Collaborative Group. Interferon-a versus chemotherapy for chronic myeloid leukemia: a meta-analysis of seven randomized trials. .1. Nail Cancer Inst. 89, 1616–1620 (1997).
  • Silver RT, Woolf SH, Hehlmann R et al An evidence-based analysis of the effect of busulfan, hydroxyurea, interferon and allogeneic bone marrow transplantation in treating the chronic phase of chronic myeloid leukemia: developed for the American Society of Hematology. Blooc194, 1517–1536 (1999).
  • Hasford J, Pfirrmann M, Hehlmann R et al Prognosis and prognostic factors for patients with chronic myeloid leukaemia: nontransplant therapy. Semin. Ilematol 40, 4–12 (2003).
  • Kantarjian HM, O'Brien S, Cortes JE et al. Complete cytogenetic and molecular responses to interferon-a-based therapy for chronic myelogenous leukemia are associated with excellent long-term prognosis. Cancer 97, 1033–1041 (2003).
  • Bonifazi F, de Vivo A, Rosti G et al Chronic myeloid leukaemia and interferon-a: a study of complete cytogenetic responders. Blood 98, 3074–3081 (2001).
  • Guilhot F, Chastang C, Michallet M et al. Interferon a-2b combined with cytarabine versus interferon alone in chronic myelogenous leukemia. N Engl. I Med. 337,223-229 (1997).
  • Guilhot F, Maloisel F, Guyotat D et al Significant survival improvement with a combination of interferon a2b (IFN) and cytarabine (Ara-C) in chronic myeloid leukemia (CML). Update of a randomized trial. PrOC. A/17. Soc. Oncol 18,7a (1999).
  • Baccarani M, Rosti G, de Vivo A et al A randomized study of interferon-a versus interferon-a and low-dose arabinosyl cytosine in chronic myeloid leukemia. B/ooc/99,1527–1535 (2002).
  • Sacchi S, Kantarjian HM, O'Brien SM et al. Long-term follow-up results of interferon-a-based regimens in patients with late chronic phase chronic myelogenous leukemia. Leukemia 11, 1610–1616 (1997).
  • Kantarjian HM, Keating MJ, Estey EH et al Treatment of advanced stages of Philadelphia chromosome-positive chronic myelogenous leukemia with interferon-a and low-dose cytarabine. j Clin. Oncol 10, 772–778 (1992).
  • Niederle N, Kloke 0, Osieka R, Wandl U, Opalka B, Schmidt CG. Interferon a-2b in the treatment of chronic myelogenous leukemia. Semin. Oncol 14(2 Suppl. 2), 29–35 (1987).
  • Gratwohl A, Hermans J, Goldman J et al Risk assessment for patients with chronic myeloid leukaemia before allogeneic blood or marrow transplantation. Lancet 352, 1087–1092 (1998).
  • Barrett J. Allogeneic stem cell transplantation for chronic myeloid leukemia. Semin. Hematol 40,59–71 (2003).
  • McGlave PB, Shu XO, Wen W et al Unrelated donor marrow transplantation for chronic myelogenous leukemia: 9 years' experience of the National Marrow Donor Program. B/ooc/95,2219–2225 (2000).
  • Horowitz MM, Rowlings PA, Passweg JR. Allogeneic bone marrow transplantation for CML: a report from the International Bone Marrow Transplant Registry. Bone Marmw Transplant. 17,531–542 (1996).
  • Clift RA, Buckner CD, Thomas ED et al Marrow transplantation for patients in accelerated phase of chronic myeloid leukemia. B/ooc/84,4368–4373 (1994).
  • Arcese W, Goldman JM, D'Arcangelo E et al Outcome for patients who relapse after allogeneic bone marrow transplantation for chronic myeloid leukemia. B/ooc/82,3211-3219 (1993). too Clift RA, Buckner CD, Thomas ED et al Marrow transplantation for patients in accelerated phase of chronic myeloid leukemia. B/ooc/84,4368–4373 (1994).
  • Sacchi S, Kantarjian HM, O'Brien S et al. Chronic myelogenous leukemia in nonlymphoid blastic phase: analysis of the results of first salvage therapy with three different treatment approaches for 162 patients. Cancer 86,2632–2641 (1999).
  • Visani G, Rosti G, Bandini G et al. Second chronic phase before transplantation is crucial for improving survival of blastic phase chronic myeloid leukaemia. BE Haematol 109,722–728 (2000).
  • Wassmann B, Pfeifer H, Scheuring U et al Therapy with imatinib mesylate (Glivec) preceding allogeneic stem cell transplantation (SCT) in relapsed or refractory Philadelphia-positive acute lymphoblastic leukemia (Ph-i-ALL). Leukemia 16,2358–2365 (2002).
  • Shimoni A, Kroger N, Zander AR et al Imatinib mesylate (STI571) in preparation for allogeneic hematopoietic stem cell transplantation and donor lymphocyte infusions in patients with Philadelphia-positive acute leukemias. Leukemia 17, 290–297 (2003).
  • Horowitz MM. Summary slides. IBMT1? Newsletter 9,4–11 (2002).
  • Carroll M, Ohno-Jones S, Tamura S et al. CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing TEL-ABL and TEL-PDGFR fusion proteins. B/ooc/90,4947–4952 (1997).
  • Druker BJ, Tamura S, Buchdunger E et al Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of bcr—abl positive cells. Nature Merl 2,561–566 (1996).
  • Kantarjian H, Sawyers C, Hochhaus A et al Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl. I Merl 346,645–652 (2002).
  • Talpaz M, Silver RT, Druker B et al Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a Phase 2study. Blood 99,1928–1937 (2002).
  • Sawyers CL, Hochhaus A, Feldman E et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a Phase II study. Blood 99,3530-3539 (2002). iii Gorre ME, Mohammed M, Ellwood K et al Clinical resistance to STI-571cancer therapy caused by bcr—abl genemutation or amplification. Sdence293, 876–880 (2001).
  • •Mutation in ATP-binding site of and amplification of bcr—abl gene leading to its reactivation and resistance to imatinib in primary patient cells.
  • Hochhaus A, Kreil S, Corbin AS et al Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 16,2190–2196 (2002).
  • Shah NP, Nicoll JM, Nagar B et al Multiple bcr—ab/kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor (5TI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Ce112, 117–125 (2002).
  • •Multiple mutations in the kinase domain of bcr—abl in primary patient samples leading to varying degrees of resistance to imatinib; some of these mutations existed prior to the development of resistance and disease progression in patients with CML-CP.
  • Roshe-Lestienne C, Soenen-Comu V, Grardel-Duflos N et al Several types of mutations of the Ab/gene can be found in chronic myeloid leukemia patients resistant to STI571and they can pre-exist [to] the onset of treatment. B/ooc/100,1014–1018 (2002).
  • Donato NJ, Wu JY, Stapley J et al bcr—abl independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to 5TI571. Blood 101,690–698 (2003).
  • Hofmann WK, Vos S, Elashoff D et al Relation between resistance of Philadelphia chromosome-positive acute lymphoblastic leukemia to the tyrosine kinase inhibitor STI571and gene expression profiles: a gene expression study. Lancet 359,481–486 (2002).
  • Mahon FX, Deininger MW, Schultheis B et al Selection and characterization of bcr—abl positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. B/ooc/96,1070–1079 (2000).
  • Gambacorti-Passerini C, Barni R, le Coutre P et al Role of al acid glycoprotein in the in vivo resistance of human BCR—ABL(+) leukemic cells to the abl inhibitor 5TI571. Natl Cancer Inst. 92,1641–1650 (2000).
  • Corbin AS, La Rosée P, Stoffregen EP, Druker BJ, Deininger MW. Several bcr—abl kinase domain mutants associated with imatinib mesylate resistance remain sensitive to imatinib. Blood101 (11), 4611–4614 (2003).
  • •Overexpression of different bcr—abl mutants previously reported to be associated with imatinib resistance demonstrated variable sensitivity to imatinib.
  • Kantaijian HM, Talpaz M, O'Brien S et al. Dose escalation of imatinib mesylate can overcome resistance to standard-dose therapy in patients with chronic myelogenous leukemia. Blood101, 473–475 (2003).
  • Topaly J, Zeller WJ, Fruehauf S. Combination therapy with imatinib mesylate (STI571): synopsis of in vitro studies. Br. .thematol. 119, 3–14 (2002).
  • •Summary of in vitro interactions between imatinib and various chemotherapeutic agents, small molecule inhibitors and novel anticancer drugs.
  • O'Dwyer ME, Mauro MJ, Kuyl JM, Paquette R, Sawyers CL, Druker BJ. Preliminary evaluation of the combination of imatinib mesylate (Gleevec) in combination with low dose interferon-a for the treatment of chronic phase CML. Blood 98, 864a (2001) (Abstract 3513).
  • Druker BJ. Imatinb alone and in combination for chronic myeloid leukemia. Semin. Hematol 40, 50–58 (2003).
  • O'Brien S, Valiance SE, Craddock C, Holyoake TL, Goldman JM. PEGIntron and 5TI571combination evaluation study (PISCES) in chronic phase chronic myeloid leukaemia. Blood 98, 846a (2001) (Abstract 3512).
  • Hochhaus A, Fischer T, Brammendorf TH et al Imatinib (Glivec) and pegylated interferon 2a (Pegasysl Phase I/II combination study in chronic phase chronic myelogenous leukemia (CML). Blood100, 164a (2002) (Abstract 616).
  • Baccarani M, Trabacchi E, Bassi S et al Results of a Phase II trial testing a combination of imatinib and pegylated interferon 23in Ph+ chronic myeloid leukemia in early chronic phase. The early cytogenetic response is significantly risk related. By the Italian Co-operative Study Group on CML (ICSG on CML). Blood 100, 94a (2002) (Abstract 348).
  • Druker BJ, Kantarjian HM, Talpaz M et al. A Phase I study of Gleevec (imatinib mesylate) administered concomitantly with cytosine arabinoside (Ara-C) in patients with Philadelphia positive chronic myeloid leukemia (CML). B/ooc/98, 845a (2001) (Abstract 3511).
  • Comelissen JJ, Verhoef GEG, Straetmans N et al A dose-escalating Phase I/II study of imatinib (Glivec) and cytarabin[e] in first chronic phase chronic myeloid leukemia. Blood 100, 95a (2002) (Abstract 349).
  • Martine G, Philippe R, Michel T et al. Imatinib (Gleevec) and cytarabine (Ara-C) is an effective regimen in Philadelphia (Ph)-positive chronic myelogenous leukemia (CML) chronic phase (CP) patients (pts). Blood 100, 95a (2002) (Abstract 351).
  • Mauro MJ, O'Dwyer ME, Stone RM, Walker T, Wiese A, Druker BJ. Preliminary evaluation of the combination of imatinib mesylate (Gleevec) with low dose Ara-C as initial therapy for newly diagnosed chronic phase CML. Blood 100, 165a (2002) (Abstract 617).
  • Thomas DA, Cortes J, Garcia-Manero G et al Minimal residual disease (MRD) after hyper-CVAD and imatinib mesylate (5TI571) for Philadelphia (Ph) positive adult acute lymphoblastic leukemia (ALL). Blood 100, 764a (2002) (Abstract 3023).
  • Perkins C, Kim CN, Fang G, Bhalla KN. Arsenic induces apoptosis of multi-drug resistant human myeloid leukemia cells that express bcr—abl or overexpress MDR, MRP, Bc1-2, or Bc1-xL. B/ooc/95, 1014–1022 (2000).
  • La Rosée P, Johnson K, O'Dwyer ME, Druker BJ. hi vitro studies of the combination of imatinib mesylate (Gleevec) and arsenic trioxide (Trisenox) in chronic myelogenous leukemia. Exp. Hematol 30, 729–737 (2002).
  • Porosnicu M, Nimmanapalli R, Nguyen D, Worthington E, Perkins C, Bhalla KN. Co-treatment with AS203enhances selective cytotoxic effects of STI-571against Bcr-Abl-positive acute leukemia cells. Leukemia 15, 772–778 (2001).
  • Mauro MJ, Deininger MW, O'Dwyer ME et al Phase I/II study of arsenic trioxide (Trisenox) in combination with imatinib mesylate (Gleevec, STI571) in patients with Gleevec-resistant chronic myelogenous leukemia in chronic phase. Blood 100, 781a(2002b) (Abstract 3090).
  • Peters DG, Hoover RR, Gerlach MJ et al Activity of the farnesyl transferase inhibitor 5CH66336against BCR/ABL-induced murine leukemia and primary cells from patients with chronic myeloid leukemia. B/ooc/ 97, 1404–1412 (2001) .
  • Liu A-X, Du W, Liu J-P, Jessell TM, Pendergast GC. RhoB alteration is necessary for the apoptotic and antineoplastic responses to famesyltransferase inhibitors. Mal Cell Biol. 20, 6105–6113 (2000).
  • Ashar HR, James L, Gray D et al Farnesyl transferase inhibitors block the famesylation of CENP-E and CENP-F and alter the association of CENP-E with microtubules. j Biol. Chem. 275, 30451–30457 (2000).
  • End DW, Smets G, Todd AV et al Characterization of the antitumor effects of the selective famesyl protein transferase inhibitor R115777in vivo and in vitro. Cancer Res. 61, 131–137 (2001).
  • Hoover RR, Mahon F-X, Melo JV, Daley GQ. Overcoming 5TI571resistance with the farnesyl transferase inhibitor 5CH66336. Blood100, 1068–1071 (2002).
  • Karp JE, Lancet JE, Kaufmann SH et al. Clinical and biologic activity of the farnesyltransferase inhibitor R115777in adults with refractory and relapsed acute leukemias: a Phase I trial clinical-laboratory correlative trial. B/ooc/97, 3361–3369 (2001).
  • Cortes J, Albitar M, Thomas D Efficacy of the farnesyl transferase inhibitor R115777in chronic myeloid leukemia and other hematologic malignancies. Blood101, 1692–1697 (2003).
  • List AF, DeAngelo D, O'Brien S et al. Phase I study of continuous oral administration of Lonafarnib (Sarasar cm) in patients with advanced hematologic malignancies. Blood 100, 789a (2002) (Abstract 3120).
  • Cortes JE, Daley G, Talpaz M et al. Pilot study of 5CH66336 (Lonafarnib), a famesyl transferase inhibitor (FTI), in patients with chronic myeloid leukemia (CML) in chronic or accelerated phase resistant or refractory to imatinib. Blood 100, 164a (2002) (Abstract 614).
  • Choi Y-J, Wang Q, White S, Gorre M, Sawyers CL, Bollag G. Imatinib-resistant cell lines are sensitive to the Raf inhibitor BAY 43–9006. Blood100, 369a (2002) (Abstract 1427).
  • Crump M, Leber B, Buckstein R et al A randomized Phase I clinical and biologic study of two schedules of the raf-kinase inhibitor BAY 43-9006in patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML): an NCI Canada Clinical Trials Group Study. Blood 100, 267b (2002) (Abstract 4597).
  • Kang C-D, Yoo S-D, Hwang B-W et al. The inhibition of ERK/MAPK not the activation of JNK/SAPK is primarily required to induce apoptosis in chronic myelogenous leukemic K562cells. Leuk. Res. 24,527-534 (2000).
  • Yu C, Krystal G, Varticovski L et al. Pharmacologic mitogen-activated protein/extracellular signal-regulated kinase/mitogen-activated protein kinase inhibitors interact synergistically with STI571to induce apoptosis in Bcr/Abl-expressing human leukemia cells. Cancer Res. 62,188–199 (2002).
  • LoRusso PM, Adjei AA, Meyer MB et al A Phase I clinical and pharmacokinetic evaluation of the oral MEK inhibitor, CI-1040, administered for 21consecutive days, repeated every 4week in patients with advanced cancer. Proc. Am. Soc. Gun. Oncol 21,81a (2002) (Abstract 321).
  • Adams J. Proteasome inhibition in cancer: development of PS-341. Semin. Oncol 28, 613–619 (2001).
  • Dou QP, McGuire TF, Peng Y, An B. Proteasome inhibition leads to significant reduction of bcr—abl expression and subsequent induction of apoptosis in K562human chronic myelogenous leukemia cells. .1. Pharmacol Exp. Ther. 289, 781–790 (1999).
  • Gatto SR, Scappini B, Verstovsek S et al. h7vitro effects of PS-341alone and in combination with STI571in bcr—abl positive cell lines both sensitive and resistant to STI571. B/ooc/98,101a (2001) (Abstract 424).
  • Orlowski RZ, Stinchcombe TE, Mitchell BS et al Phase I trial of the proteasome inhibitor PS-341in patients with refractory hematologic malignancies. j Gun. Oncol 20,4420–4427 (2002).
  • Daheron L, Salmeron S, Patri S et al. Identification of several genes differentially expressed during progression of chronic myelogenous leukemia. Leukemia 12, 326–332 (1998).
  • Ohmine K, Ota J, Ueda M et al Characterization of stage progression in chronic myeloid leukemia by DNA microarray with purified hematopoietic stem cells. Oncogene 20,8249–8257 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.