24
Views
4
CrossRef citations to date
0
Altmetric
Review

Optical imaging of mice in oncologic research

&
Pages 857-864 | Published online: 10 Jan 2014

References

  • Rice B, Cable M, Nelson M. h7 viva imaging of light-emitting probes. Blamed Opt. 6(4), 432–440 (2001).
  • Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nature Med. 9(1), 123–128 (2003).
  • Bornhop D, Contag C, Licha K, Murphy C. Advance in contrast agents,reporters, and detection. j Blamed Opt. 6(2), 106–110 (2001).
  • McCaffrey A, Kay M, Contag C. Advancing molecular therapies through in vivo bioluminescent imaging. Mal Imaging 2 (2), 75–86 (2003) .
  • Hoffman R. Green fluorescent protein imaging of tumour growth, metastasis, and angiogenesis in mouse models. Lancet awl 3(9), 546–556 (2002).
  • ••Excellent discussion of models in whichgreen fluorescent protein (GEM imaging has proved useful.
  • Zolotukhin S, Potter M, Hauswirth W, Guy J, Muzyczka N. A 'humanized' green fluorescent protein cDNA adapted for high-level expression in mammalian cells. Viral. 70(7), 4646–4654 (1996).
  • Matz M, Fradkov A, Labas Y et al Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnol 17(10), 969–973 (1999).
  • Heim R, Cubitt A, Tsien R. Improved green fluorescence. Nature 373(6516), 663–664 (1995).
  • Chishima T, Miyagi Y, Wang X et al Visualization of the metastatic process by green fluorescent protein expression. Anticancer Res. 17(4A), 2377–2384 (1997).
  • Bouvet M, Wang J, Nardin S et al Real-time optical imaging of primary tumor growth and multiple metastatic events in a pancreatic cancer orthotopic model. Cancer Res. 62(5), 1534–1540 (2002).
  • Yang M, Hasegawa S, Jiang P et al. Widespread skel et al metastatic potential of human lung cancer revealed by green fluorescent protein expression. Cancer Res. 58(19), 4217–4221 (1998).
  • Naumov G, Wilson S, MacDonald I etal. Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. j Cell Sci. 112(12), 1835–1842 (1999).
  • Rashidi B, Yang M, Jiang P et al A highly metastatic Lewis lung carcinoma orthotopic green fluorescent protein model. Clin. Exp. Metastasis 18(1), 57–60 (2000).
  • Fukumura D, Xavier R, Sugiura T et al. Tumor induction of VEGF promoter activity in stromal cells. Ce1194(6), 715–725 (1998).
  • Doubrovin M, Ponomarev V, Serganova I et al Development of a new reporter gene system, dsRedixanthine phosphoribosyltransferase-xanthine, for molecular imaging of processes behind the intact blood—brain barrier. Mal Imaging 2(2), 93–112 (2003).
  • Moore A, Marecos E, Simonova M, Weissleder R, Bogdanov A Jr. Novel gliosarcoma cell line expressing green fluorescent protein: a model for quantitative assessment of angiogenesis. Mcrovasc. Res. 56(3), 145–153 (1998).
  • Chang Y, Tomaso ED, McDonald D et al Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc. Natl Acad. Li. 97(26), 14608–14613 (2000).
  • •Novel report of the use of GFP to evaluate the interplay of host and tumor interaction in tumor blood vessel formation.
  • Coralli C, Cemazar M, Kanthou C, Tozer G, Dachs G. Limitations of the reporter green fluorescent protein under simulated tumor conditions. Cancer Res. 61(12), 4784–4790 (2001).
  • Weissleder R. A clearer vision for in vivo imaging. Nature Biotechnol 19(4), 316–317 (2001).
  • Moore A, Sergeyev N, Bredow S, Weissleder R. A model system to quantitate tumor burden in locoregional lymph nodes during cancer spread. Invasion Metastasis 18(4), 192–197 (1998–1999).
  • Wunderbaldinger P, Turetschek K, Bremer C. Near-infrared fluorescence imaging of lymph nodes using a new enzyme sensing activatable macromolecular optical probe. Eur Radiol. 13(9), 2206–2211 (2003).
  • Bremer C, Ntziachristos V, Weissleder R. Optical-based molecular imaging: contrast agents and potential medical applications. Eur Radial 13(2), 231–243 (2003).
  • Becker A, Riefke B, Ebert B et al. Macromolecular contrast agents for optical imaging of tumors: comparison of indotricarbocyanine-labeled human serum albumin and transferrin. Photochem. Photobial 72(2), 234–241 (2000).
  • Gurfinkel M, Thompson A, Ralston W et al Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study. Photochem. Photobial 72(1), 94–102 (2000).
  • Reynolds J, Troy T, Mayer R et al Imaging of spontaneous canine mammary tumors using fluorescent contrast agents. Photochem. Photobiol 70(1), 87–94 (1999).
  • Becker A, Hessenius C, Licha K et al. Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nature Biotechnol 19(4), 327–331 (2001).
  • Licha K, Hessenius C, Becker A et al. Synthesis, characterization, and biological properties of cyanine-labeled somatostatin analogues as receptor-targeted fluorescent probes. Biocobjug. Chem. 12(1), 44–50 (2001).
  • Becker A, Hessenius C, Bhargava S et al. Cyanine dye labeled vasoactive intestinal peptide and somatostatin analog for optical detection of gastroenteropancreatic tumors. Ann. NY Acad. ScL 921(1), 275–278 (2000).
  • Citrin D, Scott T, Sproull M et al. h7 vivo tumor imaging using a near-infrared-labeled endostatin molecule. Int. J. Radiat. Oncol Biol. Phys. 58(2), 536–541 (2004).
  • Ke S, Wen X, Gurfinkel M et al. Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Cancer Res. 63(22), 7870–7875 (2003).
  • Citrin D, Lee A, Scott T et al. h7 vivo tumor imaging in mice with near-infrared labeled endostatin. Mol Cancer Ther. 3(4), 481–488 (2004).
  • Weissleder R, Tung C, Mahmood U, Bogdanov AJ. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotechnol 17(4), 375–378 (1999).
  • Edinger M, Cao Y, Hornig Y et al Advancing animal models of neoplasia through in vivo bioluminescence imaging. Eur. Cancer38(16), 2128–2136 (2002).
  • deWet J, Wood K, DeLuca M, Helinski D, Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 7(2), 725–737 (1987).
  • Hastings J. Chemistries and colors of bioluminescent reactions: a review. Gene 173(1), 5–11 (1996).
  • Wood K. Marker proteins for gene expression. CUI7: Opin. Biotechnol 6(1), 50–58 (1995).
  • Wood K. Luc genes: introduction of colour into bioluminescence assays. I Biolumin. Chem/um/n. 5(2), 107–114 (1990).
  • Wood K, Lam Y, McElroy W Introduction to beetle luciferases and their applications. Biolumin. Chemilumin. 4(1), 289–301 (1989).
  • Choy G, O'Connor S, Diehn F et al Comparison of noninvasive fluorescent and bioluminescent small animal optical imaging. Biotechniques 35 (5), 1022–1026 (2003).
  • •Comparison of bioluminescence and fluorescence imaging for monitoring tumor growth.
  • Contag C, Spilman S, Contag P et al Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem. Photobiol 66(4), 523–531 (1997).
  • Rocchetta H, Boylan C, Foley J et al Validation of a noninvasive, real-time imaging technology using bioluminescent Escherichia cob in the neutropenic mouse thigh model of infection. Antimicrob. Agents Chemother. 45(1), 129–137 (2001).
  • Sweeney T, Mailander V, Tucker A et al Visualizing the kinetics of tumor-cell clearance in living animals. Proc. Natl Acad. Sci 96(21), 12044–12049 (1999).
  • Contag C, Jenkins D, Contag P, Negrin R. Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2(1-2), 41–52 (2000).
  • Edinger M, Sweeney T, Tucker A et al Noninvasive assessment of tumor cell proliferation in animal models. Neoplasia 1(4), 303–310 (1999).
  • Hadjantonakis A, Dickinson M, Fraser S, Papaioannou V. Technicolour transgenics: imaging tools for functional genomics in the mouse. Nattily Rev Genet. 4,613–625 (2003).
  • Costa G, Sandora M, Nakajima A et al Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T-cell delivery of the IL-12 p40 subunit. J. Immunol 167(4), 2379–2387 (2001).
  • Day R, Kawecki M, Berry D. Dual-function reporter protein for analysis of gene expression in living cells. Biotechniques 25 (5), 848–856 (1998) .
  • Grentzmann G, Ingram JA, Kelly PJ, Gesteland RF, Atkins JE A dual-luciferase reporter system for studying recoding signals. RNA 4(4), 479–486 (1998).
  • Stables J, Scott S, Brown S et al. Development of a dual glow-signal firefly and Renilla luciferase assay reagent for the analysis of G-protein coupled receptor signalling. I Recept. Signal Transduct. Res. 19(1–4), 395–410 (1999).
  • Ray P, De A, Min J, Tsien R, Gambhir S. Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res. 64(4), 1323–1330 (2004).
  • Ntziachristos V, Bremer C, Graves E, Ripoll J, Weissleder R. In vivo tomographic imaging of near-infrared fluorescent probes. Mol Imaging1(2), 82–88 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.