64
Views
15
CrossRef citations to date
0
Altmetric
Review

Anticancer drug development based on modulation of the Bcl-2 family core apoptosis mechanism

Pages 1157-1177 | Published online: 10 Jan 2014

References

  • Rathmell J, Lindsten T, Zong W-X, Cinalli RM, Thompson CB. Deficiency in Bak and Bax perturbs thymic selection and lymphoid homeostasis. Nature Immuna 3(10), 932–939 (2002).
  • Perez D, White E. TNF-a signals apoptosis through a Bid-dependent conformational change in Bax that is inhibited by FIB 19K. Ma Cell 6 (1), 53–63 (2000).
  • Ashkenazi A. Targeting death and decoy receptors of the TNF superfamily. Nature Rev Cancer 2, 420–430 (2002).
  • Zangemeister-Wittke U. Antisense to apoptosis inhibitors facilitates chemotherapy and TRAIL-induced death signaling. Ann. NY Acad. Scl. 1002,90–94 (2004).
  • Diaz GD, Li Q, Dashwood RH. Caspase-8 and apoptosis-inducing factor mediate cytochrome c-independent pathway of apoptosis in human colon cancer cells induced by dietary phytochemical chlorophyllin. Cancer Res. 63(6), 1254–1261 (2003).
  • De Giorgi F, Lartigue L, Bauer MKA et al. The permeability transition pore signals apoptosis by directing Bax translocation and multimerization. FASEB J 16(6), 607–609 (2002).
  • Shimizu S, Ide T, Yanagida T, Tsujimoto Y. Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome cf Biol. Chem. 275 (16), 12321–12325 (2000).
  • Shimizu S, Narita M, Tsujimoto Y. Bc1-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399(6735), 483–487 (1999).
  • Shimizu S, Konishi A, Kodama T, Tsujimoto Y. BH4 domain of anti-apoptotic Bc1-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc. Natl Acad. Sci. USA 97(7), 3100–3105 (2000).
  • Belzacq A-S, Vieira HLA, Verrier F et aL Bc1-2 and Bax modulate adenine nucleotide translocase activity. Cancer Res. 63(2), 541–546 (2003).
  • Lutter M, Perkins GA, Wang X. The pro- apoptotic Bc1-2 family member tBid localizes to mitochondrial contact sites. BMC Cell Biol. 2(1), 22 (2002).
  • Degli Esposti M, Cristea IM, Gaskell SJ, Nakao Y, Dive C. Proapoptotic Bid binds to monolysocardiolipin, a new molecular connection between mitochondrial membranes and cell death. Cell Death Differ. 10(12), 1300–1309 (2003).
  • Kuwana T, Newmeyer DD. Bc1-2-family proteins and the role of mitochondria in apoptosis. CUIT: Opin. Cell Biol. 15 (6), 691–699 (2003).
  • Kirkin V, Joos S, Zörnig M. The role of Bcl- 2 family members in tumorigenesis. Biochim. Biophys. Acta 1644(2–3), 229–249 (2004).
  • McDonnell JM, Fushman D, Milliman CL, Korsmeyer SJ, Cowburn D. Solution structure of the proapoptotic molecule BID: a structural basis for apoptotic agonists and antagonists. Ce1196(5), 625–634 (1999).
  • Kataoka T, Holler N, Micheau O et al. Bch rambo, a novel Bc1-2 homologue that induces apoptosis via its unique C-terminal extension. J. Biol. Chem. 276(22), 19548–19554 (2001).
  • Talieri M, Diamandis EP, Katsaros N, Gourgiotis D, Scorilas A. Expression of BCL2L12, a new member of apoptosis-related genes, in breast tumors. Thromb. Haemost. 89(6), 1081–1088 (2003).
  • Puthalakath H, Villunger A, O'Reilly LA et aL Brnf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science 293 (5536), 1829–1832 (2001).
  • Inohara N, Gourly TS, Carrio R et al. Diva, a Bc1-2 homologue that binds directly to Apaf-1 and induces BH3-independent cell death. J. Biol. Chem. 273 (49), 32479–32486 (1998).
  • Sulistijo ES, Jaszewski TM, MacKenzie KR. Sequence-specific dimerization of the transmembrane domain of the BH3-only' protein BNIP3 in membranes and detergent. I Biol. Chem. 278(51) 51950–51956 (2003).
  • Ruffolo SC, Shore GC. BCL-2 selectively interacts with the BID-induced open conformer of BAK, inhibiting BAK auto-oligomerization. I Biol. Chem. 278(27), 25039–25045 (2003).
  • Letai A, Bassik M, Walensky L, Sorcinelli M, Weiler S, Korsmeyer S. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2(3), 183 (2002).
  • Hsu SY, Kaipia A, McGee E, Lomeli M, Hsueh AJ. Bok is a pro-apoptotic Bc1-2 protein with restricted expression in reproductive tissues and heterodimerizes with selective anti-apoptotic Bc1-2 family members. Proc. Natl Acad. Sci. USA 94(23), 12401–12406 (1997).
  • Suzuki M, Youle RJ, Tjandra N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell103 (4), 645–654 (2001).
  • Eskes R, Deshagher S, Antonsson B, Martinou J-C. Bid induces the oligomerisation and insertion of Bax into the outer mitochondrial membrane. MoL Cell. Biol. 20(3), 929–935 (2000).
  • Cheng EH, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301(5632), 513–517 (2003).
  • •Voltage-dependent anion channel (VDAC)-2 may be an endogenous inhibitor of Bak in the absence of apoptotic stimuli.
  • Jourdan M, Veyrune JL, Vos JD, Redal N, Couderc G, Klein B. A major role for Mc-1 anti-apoptotic protein in the IL-6-induced survival of human myeloma cells. Oncogene 22(19), 2950–2959 (2003).
  • Puthier D, Derenne S, Barille S et al. Mc-1 and Bc1-xL are co-regulated by IL-6 inhuman myeloma cells. Br. J. HaernatoL 107(2), 392–395 (2000).
  • Puthier D, Bataille R, Amiot M. IL-6 upregulates Mcl-1 in human myeloma cells through JAK/STAT rather than ras/MAPK pathway. Eur. ImmunoL 29 (12), 3945–3950 (2000).
  • Puthier D, Thabard W, Rapp M et al. Interferon a extends the survival of human myeloma cells through an upregulation of the Mc-1 anti-apoptotic molecule. Br. J HaematoL 112(2), 358–363 (2001).
  • Rassidakis GZ, Jones D, Lai R et al. Bc1-2 family proteins in peripheral T-cell lymphomas: correlation with tumor apoptosis and proliferation. J. PathoL 200(2), 240–248 (2003).
  • Khoury JD, Medeiros LJ, Rassidakis GZ, McDonnell TJ, Abruzzo LV, Lai R. Expression of Mcl-1 in mantle cell lymphoma is associated with high-grade morphology, a high proliferative state and p53 overexpression. j PathoL 199(1), 90–97 (2002).
  • Selzer E, Thallinger C, Hoeller C et aL Betulinic acid-induced Mc-1 expression in human melanoma — mode of action and functional significance. MoL Med. 8(12) 877–884 (2003).
  • O'Reilly LA, Print C, Hausmann G et al. Tissue expression and subcellular localization of the pro-survival molecule Bchw. Cell Death Differ 8(5), 486–495 (2001).
  • Yan C, Chen J, Chen D et aL Overexpression of the cell death suppressor Bchw in ischemic brain: implications for a neuroprotective role via the mitochondrial pathway. J Cereb. Blood Flow Metab. 20(3), 620–630 (2000).
  • Lee HW, Lee SS, Lee SJ, Um HD. Bcl-w is expressed in a majority of infiltrative gastric adenocarcinomas and suppresses the cancer cell death by blocking stress-activated protein Itinase/c-Jun NH2-terminal Itinase activation. Cancer Res. 63(5), 1093–1100 (2003).
  • Wilson RV, Nostra MC, Balzi M et al. Bchw expression in colorectal adenocarcinoma. Br. J. Cancer 82(1) 178–185 (2000).
  • Kitamura S, Kondo S, Shinomura Y et aL Met/FIGF receptor modulates Bchw expression and inhibits apoptosis in human colorectal cancers. Br. J. Cancer 83(5), 668–673 (2000).
  • Song Q, Kuang Y, Dixit VM, Vincenz C. Boo, a novel negative regulator of cell death, interacts with Apaf-1. EMBO 18(1), 167–178 (1999).
  • Naumann U, Weit S, Wischhusen J, Weller M. Diva/Boo is a negative regulator of cell death in human glioma cells. FEBS Lett. 505(1), 23–26 (2001).
  • Aouacheria A, Arnaud E, Venet S et al. Nrh, a human homologue of Nr-13 associates with Bc1-xS and is an inhibitor of apoptosis. Oncogene 20(41), 5846–5855 (2001).
  • Ke N, Godzik A, Reed JC. Bcl-B, a novel Bc1-2 family member that differentially binds and regulates Bax and Bak. J. Biol. Chem. 276(16), 12481–12484 (2001).
  • Lutter M, Fang M, Luo X, Nishijima M, Xie X-S, Wang X. Cardiolipin provides specificity for targeting of tBid to mitochondria. Nature Cell Biol. 2(10), 754–756 (2000).
  • McMillin JB, Dowhan W Cardiolipin and apoptosis. Biochim. Biophys. Acta 1585(2–3), 97–107 (2002).
  • Schlame M, Rua D, Greenberg ML. The biosynthesis and functional role of cardiolipin. Frog. Lipid Res. 39 (3), 257–288 (2000).
  • Vyssokikh M, Zorova L, Zorov D et al. The intra-mitochondrial cytochrome c distribution varies correlated to the formation of a complex between VDAC and the adenine nucleotide translocase: this affects Bax-dependent cytochrome c release. Biochim. Biophys. Acta 1644(1), 27–36 (2004).
  • Iverson SL, Enoksson M, Gogvadze V, Ott M, Orrenius S. Cardiolipin is not required for Bax-mediated cytochrome c release from yeast mitochondria. J. Biol. Chem. 279(2), 1100–1107 (2004).
  • Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S. Cytochrome c release from mitochondria proceeds by a two-step process. Proc. Natl Acad. Sci. USA 99(3), 1259–1263 (2002).
  • Nomura K, Imai H, Koumura T, Kobayashi T, Nakagawa Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycemia-induced apoptosis. Biochem. J. 351(1), 183–193 (2000).
  • Garcia Fernandez M, Troiano L, Moretti L et al. Early changes in intramitochondrial cardiolipin distribution during apoptosis. Cell Growth Differ. 13(9), 449–455 (2002).
  • Liu J, Dai Q, Chen J et al. Phospholipid scramblase 3 controls mitochondrial structure, function and apoptotic response. MoL Cancer Res.1 (12), 892–902 (2003).
  • Liu J, Chen J, Dai Q, Lee RM. Phospholipid scramblase 3 is the mitochondrial target of protein kinase C8- induced apoptosis. Cancer Res. 63(6), 1153–1156 (2003).
  • •Phospholipid scramblase (PLS)-3 may be functionally important in some forms of apoptosis, possibly because it induces membrane translocation of cardiolipin.
  • Jia L, Srinivasula SM, Lui FT et al. Apaf-1 protein deficiency confers resistance to cytochrome c-dependent apoptosis in human leukemic cells. Blood 98(2), 414–421 (2001).
  • Yajima H, Suzuki E Identification of a Bc1-XL binding region within the ATPase domain of Apaf-1. Biochem. Biophys. Res. Commun. 309(3), 520–527 (2003).
  • Chau BN, Cheng EH-Y, Kerr DA, Hardwick JM. Aven, a novel inhibitor of caspase activation, binds Bc1-XL and Apaf-1. MoL Cell 6 (1), 31–40 (2000).
  • Finnegan NM, Curtin JF, Prevost G, Morgan B, Cotter TG. Induction of apoptosis in prostate carcinoma cells by BH3 peptides which inhibit Bak/Bc1-2 interactions. BE J. Cancer85(1), 115–121 (2001).
  • Bettaieb A, Dubrez-Daloz L, Launay S et al. Bc1-2 proteins: targets and tools for chemosensitization of tumor cells. CUIT: Med. Chem. Anticancer Agents 3(4), 307–318 (2003).
  • Shangary S, Johnson DE. Recent advances in the development of anticancer agents targeting cell death inhibitors in the Bc1-2 protein family. Leukemial7 (8), 1470–1481 (2003).
  • Wang JL, Zhang ZJ, Choksi S et al. Cell permeable Bc1-2 binding peptides: a chemical approach to apoptosis induction in tumor cells. Cancer Res. 60(6), 1498–1502 (2000).
  • Li X, Marani M, Yu J et aL Adenovirus- mediated Bax overexpression for the induction of therapeutic apoptosis in prostate cancer. Cancer Res. 61(1), 186–191 (2001).
  • Roucou X, Montessuit S, Antonsson B, Martinou J-C. Bax oligomerization in mitochondrial membranes requires tBid (caspase-8-cleaved Bid) and a mitochondrial protein. Biochem. 1368(3), 915–921 (2002).
  • Andriani F, Nan B, Yu J et al. Use of probasin promoter ARR2PB to express Bax in androgen receptor-positive prostate cancer cells. J. Natl Cancer Inst. 93(17), 1314–1324 (2001).
  • Jung MS, Jin DH, Chae HD et al. Bc1-xL and E1B-19K proteins inhibit p53-induced irreversible growth arrest and senescence by preventing ROS-dependent p38 activation. Biol. Chem. 279(17), 17765–17771 (2004).
  • Caricasole A, Bruno V, Cappuccio I, Melchiorri D, Copani A, Nicoletti E A novel rat gene encoding a humanin-like peptide endowed with broad neuroprotective activity. FASEB 16(10), 1331–1333 (2002).
  • Nishimoto I. Death and survival of neuronal cells exposed to Alzheimer's disease-relevant insults. Nippon Yakurigaku Zasshil20(1), 11P-15P (2002).
  • Kariya S, Takahashi N, Hirano M, Uerno S. Humanin improves impaired metabolic activity and prolongs survival of serum-deprived human lymphocytes. MoL Cell. Biochem. 254(1-2), 83–89 (2003).
  • Sponne I, Fifre A, Koziel V, Kriem B, Oster T, Pillot T. Humanin rescues cortical neurons from prion-peptide-induced apoptosis. MoL Cell. Neurosci 25 (1), 95–102 (2004).
  • Zou P, Ding Y, Sha Y, Hu B, Nie S. Humanin peptides block calcium influx of rat hippocampal neurons by altering fibrinogenesis of Abeta(140). Peptides 24(5), 679–685 (2003).
  • Ikonen M, Lui B, Hashimoto Y et aL Interaction between the Alzheimer's survival peptide humanin and insulin-like growth factor-binding protein 3 regulates cell survival and apoptosis. Proc. Natl Acad. Sci. USA 100(22), 13042–13047 (2003).
  • Guo B, Zhai D, Cabezas E et aL Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 423(6938), 456–461 (2003).
  • Klasa RJ, Gillum AM, Klem RE, Frankel SR. Oblimersen Bc1-2 antisense: facilitating apoptosis in cancer treatment. Antisense Nucleic Acid Drug Dev 12(3) 193–213 (2002).
  • •Overview of the preclinical and early clinical data on Genasense, establishing a profile for a treatment that reduces Bc1–2 protein levels. Some tumor types that overexpress Bc1-2 and depend on it for their survival respond to Genasense alone. However, most tumor types give little response to Genasense alone, but when combined with other cancer therapies it potentiates their antitumor effects.
  • Nakayama K, Nakayama KI, Negishi I etal. Targeted disruption of Bc1-2 ot/I3 in mice: occurrence of gray hair, polycystic kidney disease and lymphocytopenia. Proc. Natl Acad. Sci. USA 91(9), 3700–3704 (1994).
  • Bouillet P, Cory S, Zhang LC, Strasser A, Adams JM. Degenerative disorders caused by Bc1-2 deficiency are prevented by loss of its BH3-only antagonist Bim. Dew Cell 1(5), 645–653 (2001).
  • Rai KR, O'Brien S, Cunningham C et aL Genasense (Bc1-2 antisense) monotherapy in patients with relapsed or refractory chronic lymphocytic leukemia: Phase I and II results. Proc. Am. Soc. HematoL (2002) (Abstract 1490).
  • Wang S, Yang D, Lippman ME. Targeting Bc1-2 and Bc1-XL with nonpeptidic small-molecule antagonists. Semin. OncoL 30 (Suppl. 16), 133–142 (2003).
  • Marcucci G, Byrd JC, Dai G et al. Phase I and pharmacodynamic studies of G3139, a Bc1-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed acute leukemia. Blood 101(2), 425–432 (2003).
  • Krepler C, Wacheck V, Strommer S et al. CpG oligonucleotides elicit antitumor responses in a human melanoma NOD/SCID xenotransplantation model. Invest. DermatoL 122(2), 387–391 (2004).
  • Lai JC, Benimetskaya L, Santella RM, Wang Q, Miller PS, Stein CA. G3139 (oblimersen) may inhibit prostate cancer cell growth in a partially bis-CpG-dependent non-antisense manner. MoL Cancer Ther. 2(10), 1031–1043 (2003).
  • Baird ME, Lucas DM, Mane AP et aL G3139 promotes release of IL-8 by chronic lymphocytic leukemia cells cultured in vitro: potential implications for therapeutic use. Blood 98,281b (2001).
  • Wacheck V, Krepler C, Strommer S et aL Antitumor effect of G3139 Bc1-2 antisense oligonucleotide is independent of its immune stimulation by CpG motifs in SCID mice. Antisense Nucleic Acid Drug Dev 12(6), 359–367 (2002).
  • Waters JS, Clarke PA, Cunningham D et aL BCL-2 antisense oligodeoxynucleotide (ODN) (G3139) therapy exerts its antitumor action through a sequence-specific antisense effect, and not a cell-mediated immune response. Proc. Am. Soc. Clin. OncoL 19,14a (2000) (Abstract 48).
  • Raffo A, Lai JC, Stein CA et al. Antisense RNA downregulation of bc1-2 expression in DU145 prostate cancer cells does not diminish the cytostatic effects of G3139 (Oblimersen). Clin. Cancer Res. 10(9), 3195–3206 (2004).
  • ••These studies, together with those in [78]and [79], indicate that Genasense may act via mechanisms other than antisense to Bc1-2. It is therefore not possible to use the response profile of Genasense as an index of the effects expected from a reduction of Bc1-2 protein levels alone.
  • Wacheck V, Losert D, Gunsberg P et aL Small interfering RNA targeting Bc1-2 sensitizes malignant melanoma. Oligonucleotides 13(5), 393–400 (2004).
  • Dorai T, Perlman H, Walsh K et al A recombinant defective adenoviral agent expressing antiBc1-2 ribozyme promotes apoptosis of Bc1-2-expressing human prostate cancer cells. Int. J Cancer 82(6), 846–852 (1999).
  • Kim I-K, Jung Y-K, Noh D-Y et al. Functional screening of genes suppressing TRAIL-induced apoptosis: distinct inhibitory activities of Bc1-XL and Bc1-2. Br. J. Cancer88(6), 910–917 (2003).
  • Simoes-Wust AP, Schurpf T, Hall J, Stahel RA, Zangemeister-Wittke U. Bch 2/Bc1-xL bispecific antisense treatment sensitizes breast carcinoma cells to doxorubicin, paclitaxel and cyclophosphamide. Breast Cancer Res. Treat. 76(2), 157–166 (2002).
  • Hopkins-Donaldson S, Cathomas R, Simoes-Wust AP et aL Induction of apoptosis and chemosensitization of mesothelioma cells by Bc1-2 and Bc1-xi, antisense treatment. Int. J Cancer 106 (2), 160–166 (2003).
  • Olie RA, Hafner C, Kuttel R et aL Bc1-2 and Bc1-xL antisense oligonucleotides induce apoptosis in melanoma cells of different clinical stages. J. Invert. DermatoL 118(3), 505–512 (2002).
  • Leech SH, Olie RA, Gautschi O et aL Induction of apoptosis in lung-cancer cells following Bc1-xL antisense treatment. Int. J Cancer 86 (4), 570–576 (2000).
  • Heere-Ress E, Thallinger C, Lucas T et al. Bc1-xL is a chemoresistance factor in human melanoma cells that can be inhibited by antisense therapy. Int. J. Cancer 99(1), 29–34 (2002).
  • Guensberg P, Wacheck V, Lucas T et al. Bc1-xL antisense oligonucleotides chemosensitize human glioblastoma cells. Chemotherapy 48 (4), 189–195 (2002).
  • Wacheck V, Selzer E, Guensberg P et al. Bc1-xL antisense oligonucleotides radiosensitize colon cancer cells. Br. J Cancer89(7), 1352–1357 (2003).
  • Mercatante DR, Mohler JL, Kole R. Cellular response to an antisense-mediated shift of Bcl-x pre-mRNA splicing and antineoplastic agents. J. Biol. Chem. 277(51), 49374–49382 (2002).
  • Vilenchik M, Raffo AJ, Benimetskaya L, Shames D, Stein CA. Antisense RNA downregulation of bc1-xL. Expression in prostate cancer cells leads to diminished rates of cellular proliferation and resistance to cytotoxic chemotherapeutic agents.Cancer Res. 62(7), 2175–2183 (2002).
  • Thallinger C, Wolschek MF, Wacheck V et al. Mcl-1 antisense therapy chemosensitizes human melanoma in a SCID mouse xenotransplantation model. J Invest. DermatoL 120(6), 1081–1086 (2003).
  • Derenne S, Mania B, Dean NM et aL Antisense strategy shows that Mcl-1 rather than Bc1-2 or Bchx(1,) is an essential survival protein of human myeloma cells. Blood 100(1), 194–199 (2002).
  • Olie RA, Hall J, Natt F, Stahel RA, Zangemeister-Wittke U. Analysis of ribosyl-modified, mixed backbone analogs of a Bc1-2/Bc1-xL antisense oligonucleotide. Biochem. Biophys. Acta 1576 (1–2), 101–109 (2002).
  • Gautschi O, Tschopp S, Olie RA et aL Activity of a novel Bc1-2/Bc1-xL-bispecific antisense oligonucleotide against tumors of diverse histologic origins. J. Natl Cancer Inst. 93(6), 463–471 (2001).
  • Tortora G, Caputo R, Damiano V et al. Combined targeted inhibition of Bc1-2, Bc1-xL, epidermal growth factor receptor, and protein kinase A Type I causes potent antitumor, apoptotic, and anti-angiogenic activity. Clin. Cancer Res. 9(2), 866–871 (2003).
  • Del Bufalo D, Trisciuoglio D, Scarsella M, Zangemeister-Wittke U, Zupi G. Treatment of melanoma cells with a Bch 2/Bc1-xL antisense oligonucleotide induces anti-angiogenic activity. Oncogene 22(52), 8441–8447 (2003).
  • Petros AM, Gunasekera A, Xu N, Olejniczak ET, Fesick SW Defining the p53 DNA-binding domain/Bc1-x(L)-binding interface using NMR. FEBS Lett. 559(1–3), 171–174 (2004).
  • Hajduk PJ, Betz SF, Mack J et al. A strategy for high-throughput assay development using leads derived from nuclear magnetic resonance-based screening. J. BiomoL Screen.7 (5), 429–432 (2002).
  • Kim KM, Giedt CD, Basenez G etal. Biophysical characterization of recombinant human Bc1-2 and its interaction with an inhibitory ligand, actimycin A. Biochemistry 40(16) 4911–4922 (2001).
  • Tzung SP, Kim KM, Basenez G et aL Actimycin A mimics a cell-death-inducing Bc1-2 homology domain 3. Nature Cell Biol. 3(2), 183–191 (2001).
  • Pei XY, Dai Y, Grant S. The proteosome inhibitor bortezomib promotes mitochondrial injury and apoptosis induced by the small molecule Bc1-2 inhibitor HA14-1 in multiple myeloma cells. Leukemial7 (10), 2036-2045 (2003).
  • Lugovskoy AA, Degterev Al, Fahmy AF etal. A novel approach for characterizing protein ligand complexes: molecular basis for specificity of small-molecule Bc1-2 inhibitors. J. Ain. Chem. Soc. 124(7), 1234–1240 (2002).
  • Takahashi M, Shimizu T, Nishitoba T, Newmeyer DD, Green DR, Kataoka S. Discovery and characterization of a novel small molecule Bc1-2 inhibitor using an in vitro reconstituted apoptosis assay-based high-throughput screening. Proc. Am. Assoc. Cancer Res. 44,188 (2003) (Abstract 827).
  • Beauparlant P, Attar& G, Belec L et aL Small molecule inhibitors of Bc1-2 protein—protein interactions show antitumor activity in nude mice. Eul: J. Cancer 38\(Supp1.7), 163 (2002).
  • Shoemaker A, Oleksijew A, Qing W et al Antitumor activity of A-385358: a small molecule inhibitor of Bc1-xL. Proc. Am. Assoc. Cancer Res. 44 (2003) (Abstract LB2).
  • Petros AM, Medek A, Nettesheim DG et al. Solution structure of the anti-apoptotic protein bc1-2. Proc. Natl Acad. Sci. USA 98(6), 3012–3017 (2001).
  • Schauer-Vukasinovic V, Hess S, Antuch W et al. Identification and characterization of Bc1-2 inhibitors based on ot-helix mimetics. Proc. AACR-NCI-EORTC Int. Con MoL Targets Cancer Ther. 147 (2003) (Abstract B117).
  • •Small-molecule inhibitors of Bc1–2 have been developed with affinities for displacement of BH3 domain binding in the low nanomolar range [108,109,111]. These molecules may inhibit several of the antiapoptotic Bc1-2 family members. It is necessary to optimize this lead activity to obtain molecules with good bioavailability after oral administration and good penetration into cells, and to test them in the clinic.
  • Sengupta TR, Bandyopadhyay S, Fernandes DJ, Spicer EK. Identification of nucleolin as an AU-rich element binding protein involved in bc1-2 mRNA stabilization. J Biol. Chem. 279(12), 10855–10863 (2004).
  • Bandyopadhyay S, Sengupta TK, Fernandes DJ, Spicer EK. Taxol and okadaic acid-induced destabilization of bc1-2 mRNA is associated with decreased binding of proteins to a bc1-2 instability element. Biochem. PharmacoL 66(7), 1151–1162 (2003).
  • Kaufmann T, Schlipf S, Sanz J, Neubert K, Stein R, Borner C. Characterization of the signal that directs Bc1-xL, but not Bc1-2, to the mitochondrial outer membrane. J Cell Biol. 160(1), 53–64 (2003).
  • Shirane M, Nakayama KI. Inherent calcineurin inhibitor FKBP38 targets Bc1-2 to mitochondria and inhibits apoptosis. Nature Cell Biol. 5(1), 28–37 (2003).
  • Deng X, Gao F, May WS. Bc12 retards Gi/S cell cycle transition by regulating intracellular RO S. Blood 102 (9), 3179–3185 (2003).
  • Degli Esposti M, Ferry G, Masdehors P, Boutin JA, Hickman JA, Dive C. Post-translational modification of Bid has differential effects on its susceptibility to cleavage by caspase-8 or caspase-3. j Biol. Chem. 278(18), 15749–15757 (2003).
  • Desagher S, Osen-Sand A, Montessuit S et al. Phosphorylation of Bid by casein kinases I and II regulates its cleavage by caspase-8. MoL Ce118(3), 601–611 (2001).
  • Putcha GV, Le S, Frank S etal. JNK-mediated Bim phosphorylation potentiates Bax-dependent apoptosis. Neuron 38 (6), 899–914 (2003).
  • Luciano F, Jacquel A, Colosetti P et al. Phosphorylation of Bim-EL by Erk1/2 on serine 69 promotes its degradation via the proteosome pathway and regulates its proapoptotic function. Oncogene 22(43), 6785–6793 (2003).
  • Li YM, Wen Y, Zhou BP, Rua H-P, Ding Q, Hung M-C. Enhancement of Bik antitumor effect by Bik mutants. Cancer Res. 63(22), 7630–7633 (2003).
  • Deverman BE, Cook BL, Manson SR et al. deamidation is a critical switch in the regulation of the response to DNA damage. Ce11111, 51–62 (2002).
  • Yanagisawa H, Miyashita T, Nakano Y, Yamamoto D. Hspinl, a transmembrane protein interacting with Bc1-2/Bc1-xL, induces a caspase-independent autophagic cell death. Cell Death Differ. 10(7), 798–807 (2003).
  • •Hspinl is a molecule from a new family that binds to and inhibits the functions of Bc1–2. Further research will determine whether Hspinl is an endogenous inhibitor of Bc1-2 (and perhaps other family members), and how universal this effect is in cells.
  • Marsden VS, O'Connor L, O'Reilly LA et al. Apoptosis initiated by Bc1-2-regulated caspase activation independently of the cytochrome c/Apaf-l/caspase-9 apoptosome. Nature 419(6907), 634–637 (2002).
  • Bae J, Donigian JR, Hsueh AJ. Tankyrase 1 interacts with Mcl-1 proteins and inhibits their regulation of apoptosis. j Biol. Chem. 278(7), 5195–5204 (2003).
  • Crossley U. Neutrophil activation by fMLP regulates FOXO (forkhead) transcription factors by multiple pathways, one of which includes the binding of FOXO to survival factor Mcl-1. J Leukocyte BioL 74(4), 583–592 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.