187
Views
40
CrossRef citations to date
0
Altmetric
Review

High- and low-penetrance cutaneous melanoma susceptibility genes

, , &
Pages 657-670 | Published online: 10 Jan 2014

References

  • Parkin DL, Whelan SL, Ferlay J et al.Cancer incidence in five continents.Vol VIII. IARC Press, Lyon, France (2003).
  • Gandini S, Sera F, Cattaruzza MS et al. Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. Eur. J. Cancer41, 28–44 (2005).
  • Gandini S, Sera F, Cattaruzza MS et al. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur. J. Cancer41, 45–60 (2005).
  • Gandini S, Sera F, Cattaruzza MS et al. Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. Eur. J. Cancer41, 2040–2059 (2005).
  • Goldstein AM, Tucker MA. Genetic epidemiology of cutaneous melanoma: a global perspective. Arch. Dermatol.137, 1493–1496 (2001).
  • Greene MH, Goldin LR, Clark WH Jr et al. Segregation analysis of cutaneous melanoma: autosomal dominant trait possibly linked to the Rh locus. Proc. Natl Acad. Sci. USA80, 6071–6075 (1983).
  • Cannon-Albright LA, Goldgar DE, Meyer LJ et al. Assignment of a locus for familial melanoma, MLM, to chromosome 9p13-p22. Science258, 1148–1152 (1992).
  • Nancarrow DJ, Mann GJ, Holland EA et al. Confirmation of chromosome 9p linkage in familial melanoma. Am. J. Hum. Genet.53, 936–942 (1993).
  • Kamb A, Gruis NA, Weaver-Feldhaus J et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science264, 436–440 (1994).
  • Nobori T, Liura K, Wu DJ, Lois A, Takabayashi K, Carson DA. Deletions of the cyclin-dependent kinase 4 inhibitor gene, CDK4I, in melanoma. Cancer Res.54, 5269–5272 (1994).
  • Hussussian CJ, Struewing JP, Goldstein AM et al. Germline p16 mutations in familial melanoma. Nat. Genet.8, 15–21 (1994).
  • Kamb A, Shattuck-Eidens D, Eeles R et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat. Genet.8, 23–26 (1994).
  • FitzGerald MG, Harkin DP, Silva-Arrieta S et al. Prevalence of germ-line mutations in p16, p19ARF, and CDK4 in familial melanoma: analysis of a clinic-based population. Proc. Natl Acad. Sci. USA93, 8541–8545 (1996).
  • Flores JF, Pollock PM, Walker GJ et al. Analysis of the CDKN2A, CDKN2B and CDK4 genes in 48 Australian melanoma kindreds. Oncogene15, 2999–3005 (1997).
  • Harland M, Meloni R, Gruis N et al. Germline mutations of the CDKN2 gene in UK melanoma families. Hum. Mol. Genet.6, 2061–2067 (1997).
  • Platz A, Hansson J, Mansson-Brahme E et al. Screening of germline mutations in the CDKN2A and CDKN2B genes in Swedish families with hereditary cutaneous melanoma. J. Natl Cancer Inst.89, 697–702 (1997).
  • Fargnoli MC, Chimenti S, Keller G et al.CDKN2a/p16INK4a mutations and lack of p19ARF involvement in familial melanoma kindreds. J. Invest. Dermatol.111, 1202–1206 (1998).
  • Soufir N, Avril MF, Chompret A et al. Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group. Hum. Mol. Genet.7, 209–216 (1998).
  • Aitken J, Welch J, Duffy D et al.CDKN2A variants in a population-based sample of Queensland families with melanoma. J. Natl Cancer Inst.91, 446–452 (1999).
  • Holland EA, Schmid H, Kefford RF, Mann GJ. CDKN2A (p16INK4a) and CDK4 mutation analysis in 131 Australian melanoma probands: effect of family history and multiple primary melanomas. Genes Chromosomes Cancer25, 339–348 (1999).
  • Ruiz A, Puig S, Malvehy J et al.CDKN2A mutations in Spanish cutaneous malignant melanoma families and patients with multiple melanomas and other neoplasia. J. Med. Genet.36, 490–493 (1999).
  • Yakobson E, Shemesh P, Azizi E et al. Two p16 (CDKN2A) germline mutations in 30 Israeli melanoma families. Eur. J. Hum. Genet.8, 590–596 (2000).
  • Mantelli M, Barile M, Ciotti P et al. High prevalence of the G101W germline mutation in the CDKN2A (P16INK4a) gene in 62 Italian malignant melanoma families. Am. J. Med. Genet.107, 214–221 (2002).
  • Debniak T, Gorski B, Scott RJ et al. Germline mutation and large deletion analysis of the CDKN2A and ARF genes in families with multiple melanoma or an aggregation of malignant melanoma and breast cancer. Int. J. Cancer110, 558–562 (2004).
  • Landi MT, Goldstein AM, Tsang S et al. Genetic susceptibility in familial melanoma from northeastern Italy. J. Med. Genet.41, 557–566 (2004).
  • Lang J, Boxer M, MacKie RM. CDKN2A mutations in Scottish families with cutaneous melanoma: results from 32 newly identified families. Br. J. Dermatol.153, 1121–1125 (2005).
  • Niendorf K, Goggins W, Yang G et al. MELPREDICT: a logistic regression model to estimate CDKN2A carrier probability. J. Med. Genet. 2005 [Epub ahead of print].
  • Eliason MJ, Larson AA, Florell SR et al. Population-based prevalence of CDKN2A mutations in Utah melanoma families. J. Invest. Dermatol.126, 660–666 (2006).
  • Wölfel T, Hauer M, Schneider J et al. A p16INK4a-insensitive CDK4 mutant targeted cytolytic T lymphocytes in a human melanoma. Science269, 1281–1284 (1995).
  • Zuo L, Weger J, Yang Q et al. Germline mutations in the p16INK4A binding domain of CDK4 in familial melanoma. Nat. Genet.12, 97–99 (1996).
  • Molven A, Grimstvedt MB, Steine SJ et al. A large Norwegian family with inherited malignant melanoma, multiple atypical nevi, and CDK4 mutation. Genes Chromosomes Cancer44, 10–18 (2005).
  • Palmer JS, Duffy DL, Box NF et al. Melanocortin-1 receptor polymorphism and risk of melanoma: is the association explained solely by pigmentation phenotype? Am. J. Hum. Genet.66, 176–186 (2000).
  • Kennedy C, ter Huurne J, Berkhout M et al. Melanocortin 1 receptor (MC1R) gene variants are associated with an increased risk for cutaneous melanoma which is largely independent of skin type and hair color. J. Invest. Dermatol.117, 294–300 (2001).
  • Box NF, Duffy DL, Chen W et al. MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations. Am. J. Hum. Genet.69, 765–773 (2001).
  • van der Velden PA, Sandkuijl LA, Bergman W et al. Melanocortin-1 receptor variant R151C modifies melanoma risk in Dutch families with melanoma. Am. J. Hum. Genet.69, 774–779 (2001).
  • Jannot AS, Meziani R, Bertrand G et al. Allele variations in the OCA2 gene (pink-eyed-dilution locus) are associated with genetic susceptibility to melanoma. Eur. J. Hum. Genet.13, 913–920 (2005).
  • Casula M, Colombino M, Satta MP et al.BRAF gene is somatically mutated but does not make a major contribution to malignant melanoma susceptibility: the Italian Melanoma Intergroup Study. J. Clin. Oncol.22, 286–292 (2004).
  • Meyer P, Sergi C, Garbe C. Polymorphisms of the BRAF gene predispose males to malignant melanoma. J. Carcinog.2, 7 (2003).
  • James MR, Roth RB, Shi MM et al.BRAF polymorphisms and risk of melanocytic neoplasia. J. Invest. Dermatol.125, 1252–1258 (2005).
  • Shahbazi M, Pravica V, Nasreen N et al. Association between functional polymorphism in EGF gene and malignant melanoma. Lancet359, 397–401 (2002).
  • Hutchinson PE, Osborne JE, Lear JT et al. Vitamin D receptor polymorphisms are associated with altered prognosis in patients with malignant melanoma. Clin.Cancer Res.6, 498–504 (2000).
  • Han J, Colditz GA, Liu JS, Hunter DJ. Genetic variation in XPD, sun exposure, and risk of skin cancer. Cancer Epidemiol. Biomarkers Prev.14, 1539–1544 (2005).
  • Baccarelli A, Calista D, Minghetti P et al.XPD gene polymorphism and host characteristics in the association with cutaneous malignant melanoma risk. Br. J. Cancer90, 497–502 (2004).
  • Blankenburg S, Konig IR, Moessner R et al. Assessment of 3 xeroderma pigmentosum group C gene polymorphisms and risk of cutaneous melanoma: a case–control study. Carcinogenesis26, 1085–1090 (2005).
  • Winsey SL, Haldar NA, Marsh HP et al. A variant within the DNA repair gene XRCC3 is associated with the development of melanoma skin cancer. Cancer Res.60, 5612–5616 (2000).
  • Hayward NK. Genetics of melanoma predisposition. Oncogene22, 3053–3062 (2003).
  • Mao L, Merlo A, Bedi G et al. A novel p16INK4A transcript. Cancer Res.55, 2995–2997 (1995).
  • Quelle DE, Zindy F, Ashmun RA, Scherr CJ. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell83, 993–1000 (1995).
  • Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature366, 704–707 (1993).
  • Pomerantz J, Schreiber-Agus N, Liegeois NJ et al. The Ink4a tumor suppressor gene product, p19(Arf), interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell92, 713–723 (1998).
  • Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppressor pathways. Cell92, 725–734 (1998).
  • Sarkar-Agrawal P, Vergilis I, Sharpless NE, DePinho RA, Rünger TM. Impaired processing of DNA photoproducts and ultraviolet hypermutability with loss of p16INK4a or p19ARF. J. Natl Cancer Inst.96, 1790–1793 (2004).
  • Mistry SH, Taylor C, Randerson-Moor JA et al. Prevalence of 9p21 deletions in UK melanoma families. Genes Chromosomes Cancer44, 292–300 (2005).
  • Liu L, Dilworth D, Gao L et al. Mutation of the CDKN2A 5´UTR creates an aberrant initiation codon and predisposes to melanoma. Nat. Genet.21, 128–132 (1999).
  • Harland M, Holland EA, Ghiorzo P et al. Mutation screening of the CDKN2A promoter in melanoma families. Genes Chromosomes Cancer28, 45–57 (2000).
  • MacKie RM, Andrew N, Lanyon WG, Connor JM. CDKN2A germline mutations in UK patients with familial melanoma and multiple primary melanomas. J. Invest. Dermatol.111, 269–272 (1998).
  • Harland M, Mistry S, Bishop DT, Newton Bishop JA. A deep intronic mutation in CDKN2A is associated with disease in a subset of melanoma pedigrees. Hum. Mol. Genet.10, 2679–2686 (2001).
  • Loo JC, Liu L, Hao A et al. Germline splicing mutations of CDKN2A predispose to melanoma. Oncogene22, 6387–6394 (2003).
  • Harland M, Taylor CF, Bass S et al. Intronic sequence variants of the CDKN2A gene in melanoma pedigrees. Genes Chromosomes Cancer43, 128–136 (2005).
  • Gruis NA, van der Velden PA, Sandkuijl LA et al. Homozygotes for CDKN2 (p16) germline mutations in Dutch familial melanoma kindreds. Nat. Genet.10, 351–353 (1995).
  • Borg A, Johannsson U, Johannsson O et al. Novel germline p16 mutation in familial malignant melanoma in southern Sweden. Cancer Res.56, 2497–2500 (1996).
  • Pollock PM, Spurr N, Bishop T et al. Haplotype analysis of two recurrent CDKN2A mutations in 10 melanoma families: evidence for common founders and independent mutations. Hum. Mutat.11, 424–431 (1998).
  • Ciotti P, Struewing JP, Mantelli M et al. A single genetic origin for the G101W CDKN2A mutation in 20 melanoma-prone families. Am. J. Hum. Genet.67, 311–319 (2000).
  • Goldstein AM, Liu L, Shennan MG, Hogg D, Tucker MA, Struewing JP. A common founder for the V196D CDKN2A mutation in seven North American melanoma-prone families. Br. J. Cancer85, 527–530 (2001).
  • Auroy S, Avril MF, Chompret A et al. Sporadic multiple primary melanoma cases: CDKN2A germline mutations with a founder effect. Genes Chromosomes Cancer32, 195–202 (2001).
  • Hashemi J, Bendahl PO, Sandberg T et al. Haplotype analysis and age estimation of the 113insR CDKN2A founder mutation in Swedish melanoma families. Genes Chromosomes Cancer31, 107–116 (2001).
  • Rizos H, Darmanian AP, Holland EA, Mann GJ, Kefford RF. Mutations in the INK4a/ARF melanoma susceptibility locus functionally impair p14ARF. J. Biol. Chem.276, 41424–41434 (2001).
  • Randerson-Moor JA, Harland M, Williams S et al. A germline deletion of p14ARF but not CDKN2A in a melanoma-neural system tumor syndrome family. Hum. Mol. Genet.10, 55–62 (2001).
  • Hewitt C, Wu CL, Evans G et al. Germline mutation of ARF in a melanoma kindred. Hum. Mol. Genet.11, 1273–1279 (2002).
  • Laud K, Marian C, Avril MF et al. Comprehensive analysis of CDKN2A (p16INK4A/p14ARF) and CDKN2B genes in 53 melanoma index cases considered to be at heightened risk of melanoma. J. Med. Genet.43, 39–47 (2005).
  • de Snoo FA, Hayward NK. Cutaneous melanoma susceptibility and progression genes. Cancer Lett.230, 153–186 (2005).
  • Bahuau M, Vidaud D, Jenkins RB et al. Germ-line deletion involving the INK4 locus in familial proneness to melanoma and nervous system tumors. Cancer Res.58, 2298–2303 (1998).
  • Tachibana I, Smith JS, Sato K, Hosek SM, Kimmel DW, Jenkins RB. Investigation of germline PTEN, p53, p16INK4A/p14ARF, and CDK4 alterations in familial glioma. Am. J. Med. Genet.92, 136–141 (2000).
  • Piepkorn M. Melanoma genetics: an update with focus on CDKN2A(p16)/ARF tumor suppressors. J. Am. Acad. Dermatol.42, 705–722 (2000).
  • Goldstein AM. Familial melanoma, pancreatic cancer and germline CDKN2A mutations. Hum. Mutat.23, 630 (2004).
  • Newton Bishop JA, Harland M, Bennett DC et al. Mutation testing in melanoma families: INK4A, CDK4 and INK4D. Br. J. Cancer80, 295–300 (1999).
  • Goldstein AM, Fraser MC, Clark WH Jr, Tucker MA. Age at diagnosis and transmission of invasive melanoma in 23 families with cutaneous malignant melanoma/dysplastic nevi. J. Natl Cancer Inst.86, 1385–1390 (1994).
  • Kefford RF, Newton-Bishop JA Bergman W, Ticker MA on behalf of the Melanoma Genetics Consortium. Counseling and DNA testing for individuals perceived to be genetically predisposed to melanoma: a consensus statement of the Melanoma Genetics Consortium. J. Clin. Oncol.17, 3245–3251 (1999).
  • Mantelli M, Pastorino L, Ghiorzo P et al. Early onset may predict G101W founder mutation carrier status in Ligurian melanoma patients. Melanoma Res.14, 443–448 (2004).
  • Monzon J, Liu L, Brill H et al.CDKN2A mutations in multiple primary melanomas. N. Engl. J. Med.338, 879–887 (1998).
  • Hashemi J, Platz A, Ueno T, Stierner U, Ringborg U, Hansson J. CDKN2A germline mutations in individuals with multiple cutaneous melanomas. Cancer Res.60, 6864–6867 (2000).
  • Peris K, Fargnoli MC, Pacifico A et al.CDKN2A and MC1R mutations in patients with sporadic multiple primary melanoma. J. Invest. Dermatol.122, 1327–1330 (2004).
  • Soufir N, Lacapere JJ, Bertrand G et al. Germline mutations of the INK4a-ARF gene in patients with suspected genetic predisposition to melanoma. Br. J. Cancer90, 503–509 (2004).
  • Puig S, Malvehy J, Badenas C et al. Role of the CDKN2A locus in patients with multiple primary melanomas. J. Clin. Oncol.23, 3043–3051 (2005).
  • Tsao H, Zhang X, Kwitkiwski K, Finkelstein DM, Sober AJ, Haluska FG. Low prevalence of germline CDKN2A and CDK4 mutations in patients with early-onset melanoma. Arch. Dermatol.136, 1118–1122 (2000).
  • Youl P, Aitken J, Hayward N et al. Melanoma in adolescents: a case–control study of risk factors in Queensland, Australia. Int. J. Cancer98, 92–98 (2002).
  • Berg P, Wennberg AM, Tuominen R et al. Germline CDKN2A mutations are rare in child and adolescent cutaneous melanoma. Melanoma Res.14, 251–255 (2004).
  • Nagore E, Montoro A, Oltra S et al. Age does not appear to be a major indicator of CDKN2A or CDK4 mutations in melanoma patients in Spain. Melanoma Res.15, 555–558 (2005).
  • Stratigos AJ, Yang G, Dimisianos R et al. Germline CDKN2A mutations among greek patients with early-onset and multiple primary cutaneous melanoma. J. Invest. Dermatol.1226, 399–401 (2006).
  • Bishop DT, Demenais F, Goldstein AM et al. Geographical variation in the penetrance of CDKN2A mutations for melanoma. J. Natl Cancer Inst.94, 894–903 (2002).
  • Begg CB, Orlow I, Hummer AJ et al. Lifetime risk of melanoma in CDKN2A mutation carriers in a population-based sample. J. Natl Cancer Inst.97, 1507–1515 (2005).
  • Bergman W, Gruis N. Correspondence: familial melanoma and pancreatic cancer. N. Engl. J. Med.334, 471 (1996).
  • Goldstein AM, Fraser MC, Struewing JP et al. Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4A mutations. N. Engl. J. Med.333, 970–974 (1995).
  • Ghiorzo P, Ciotti P, Mantelli M et al. Characterization of Ligurian melanoma families and risk of occurrence of other neoplasia. Int. J. Cancer83, 441–448 (1999).
  • Borg A, Sandberg T, Nilsson K et al. High frequency of multiple melanomas and breast and pancreas carcinomas in CDKN2A mutation-positive melanoma families. J. Natl Cancer Inst.92, 1260–1266 (2000).
  • Vasen HF, Gruis NA, Frants NN, van der Velden PA, Hille ETM, Bergman W. Risk of developing pancreatic cancer in families with familial atypical multiple mole melanoma associated with a specific 19 deletion of p16 (p16-Leiden). Int. J. Cancer87, 809–811 (2000).
  • Rulyak SJ, Brentnall TA, Lynch HT, Austin MA. Characterization of the neoplastic phenotype in the familial atypical multiple-mole melanoma-pancreatic carcinoma syndrome. Cancer98, 798–804 (2003).
  • Lynch HT, Brand RE, Hogg D et al. Phenotypic variation in eight extended CDKN2A germline mutation familial atypical multiple mole melanoma-pancreatic carcinoma syndrome. Cancer94, 84–96 (2002).
  • Foley Parker J, Florell SR, Alexander A, DiSario JA, Shami PJ, Leachman SA. Pancreatic carcinoma surveillance in patients with familial melanoma. Arch. Dermatol.139, 1019–1025 (2003).
  • Nielsen GP, Burns KL, Rosenberg AE, Louis DN. CDKN2A gene deletions and loss of p16 expression occur in osteosarcomas that lack RB alterations. Am. J. Pathol.153, 159–163 (1998).
  • Goldstein AM, Struewing JP, Fraser MC, Smith MW, Tucker MA. Prospective risk of cancer in CDKN2A germline mutation carriers. J. Med. Genet.41, 421–424 (2004).
  • Ranade K, Hussussian CJ, Sikorski RS et al. Mutations associated with familial melanoma impair p16INK4a function. Natu.Genet.10, 114–116 (1995).
  • Becker TM, Rizos H, Kefford RF, Mann GJ. Functional impairment of melanoma-associated p16INK4a mutants in melanoma cells despite retention of cyclin-dependent kinase 4 binding. Clin.Cancer Res.7, 3282–3288 (2001).
  • Becker TM, Ayub AL, Kefford RF, Mann GJ, Rizos H. The melanoma-associated 24 base pair duplication in p16INK4a is functionally impaired. Int. J. Cancer117, 569–573 (2005).
  • Hansen CB, Wadge LM, Lowstuter K, Boucher K, Leachman SA. Clinical germline genetic testing for melanoma. Lancet Oncol.5, 314–319 (2004).
  • Della Torre G, Pasini B, Frigerio S et al.CDKN2A and CDK4 mutation analysis in Italian melanoma-prone families: functional characterization of a novel CDKN2A germ line mutation. Br. J. Cancer85, 836–844 (2001).
  • Goldstein AM, Chidambaram A, Halpern A et al. Rarity of CDK4 germline mutations in familial melanoma. Melanoma Res.12, 51–55 (2002).
  • Goldstein AM, Struewing JP, Chidambaram A, Fraser MC, Tucker MA. Genotype–phenotype relationships in American melanoma-prone families with CDKN2A and CDK4 mutations. J. Natl Cancer Inst.92, 1006–1110 (2000).
  • Gillanders E, Juo SH, Holland EA et al. Localization of a novel melanoma susceptibility locus to 1p22. Am. J. Hum. Genet.73, 301–313 (2003).
  • Walker GJ, Indsto JO, Sood R et al. Deletion mapping suggests that the 1p22 melanoma susceptibility gene is a tumor suppressor localized to a 9-Mb interval. Genes Chromosomes Cancer41, 56–64 (2004).
  • Bale SJ, Dracopoli NC, Tucker MA et al. Mapping the gene for hereditary cutaneous malignant melanoma-dysplastic nevus to chromosome 1p. N. Engl. J. Med.320, 1367–1372 (1989).
  • Goldstein AM, Dracopoli NC, Ho EC et al. Further evidence for a locus for cutaneous malignant melanoma-dysplastic nevus (CMM/DN) on chromosome 1p, and evidence for genetic heterogeneity. Am. J. Hum. Genet.52, 537–550 (1993).
  • vanHaeringen A, Bergman W, Nelen MR et al. Exclusion of the dysplastic nevus syndrome (DNS) locus from the short arm of chromosome 1 by linkage studies in Dutch families. Genomics5, 61–64 (1989).
  • Cannon-Albright LA, Goldgar DE, Wright EC et al. Evidence against the reported linkage of the cutaneous melanoma-dysplastic nevus syndrome locus to chromosome 1p36. Am. J. Hum. Genet.46, 912–918 (1990).
  • Jonsson G, Bendahl PO, Sandberg T et al. Mapping of a novel ocular and cutaneous malignant melanoma susceptibility locus to chromosome 9q21.32. J. Natl Cancer Inst.97, 1377–1382 (2005).
  • Chhajlani V, Wikberg JE. Molecular cloning and expression of the human melanocyte stimulating hormone receptor cDNA. FEBS Lett.309, 417–420 (1992).
  • Mountjoy KG, Robbins LS, Mortrud MT, Cone RD. The cloning of a family of genes that encode the melanocortin receptors. Science257, 1248–1251 (1992).
  • Rees JL. The genetics of sun sensitivity in humans. Am. J. Hum. Genet.75, 739–751 (2004).
  • Valverde P, Healy E, Jackson I, Rees JL, Thody AJ. Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat. Genet.11, 328–330 (1995).
  • Healy E, Flannagan N, Ray A et al. Melanocortin-1 receptor gene and sun sensitivity in individuals without red hair. Lancet355, 1072–1073 (2000).
  • Bastiaens M, ter Huurne J, Gruis N et al. The melanocortin-1 receptor is the major freckle gene. Hum. Mol. Genet.10, 1701–1708 (2001).
  • Rana BK, Hewett-Emmett D, Jin L et al. High polymorphism at the human melanocortin 1 receptor locus. Genetics151, 1547–1557 (1999).
  • Harding RM, Healy E, Ray AJ et al. Evidence for variable selective pressures at MC1R. Am. J. Hum. Genet.66, 1351–1361 (2000).
  • Valverde P, Healy E, Sikkink S et al. The Asp84Glu variant of the melanocortin 1 receptor (MC1R) is associated with melanoma. Hum. Mol. Genet.5, 1663–1666 (1996).
  • Matichard E, Verpillat P, Meziani R et al. Melanocortin 1 receptor (MC1R) gene variants may increase the risk of melanoma in France independently of clinical risk factors and UV exposure. J. Med. Genet.41, e13 (2004).
  • Landi MT, Kanetsky PA, Tsang S et al.MC1R, ASIP, and DNA repair in sporadic and familial melanoma in a Mediterranean population. J. Natl Cancer Inst.97, 998–1007 (2005).
  • Fargnoli MC, Spica T, Sera F et al. Re: MC1R, ASIP, and DNA repair in sporadic and familial melanoma in a Mediterranean population. J. Natl Cancer Inst.98, 144–145 (2006).
  • Chaudru V, Laud K, Avril MF et al. Melanocortin-1 receptor (MC1R) gene variants and dysplastic nevi modify penetrance of CDKN2A mutations in French melanoma-prone pedigrees. Cancer Epidemiol. Biomarkers Prev.14, 2384–2390 (2005).
  • Goldstein AM, Landi MT, Tsang S, Fraser MC, Munroe DJ, Tucker MA. Association of MC1R variants and risk of melanoma in melanoma-prone families with CDKN2A mutations. Cancer Epidemiol. Biomarkers Prev.14, 2208–2212 (2005).
  • Schiöth HB, Phillips SR, Rudzish R, Birch-Machin MA, Wikberg JE, Rees JL. Loss of function mutations of the human melanocortin 1 receptor are common and are associated with the red hair. Biochem. Biophys. Res. Commun.260, 488–491 (1999).
  • Robinson SJ, Healy E. Human melanocortin 1 receptor (MC1R) gene variants alter melanoma cell growth and adhesion to extracellular matrix. Oncogene21, 8037–8046 (2002).
  • Ringholm A, Klovins J, Rudzish R, Phillips S, Rees JL, Schioth HB. Pharmacological characterization of loss of function mutations of the human melanocortin 1 receptor that are associated with red hair. J. Invest. Dermatol.123, 917–923 (2004).
  • Scott MC, Wakamatsu K, Ito S et al. Human melanocortin 1 receptor variants, receptor function and melanocyte response to UV radiation. J. Cell Sci.115, 2349–2355 (2002).
  • Pavey S, Gabrielli B. α-melanocyte stimulating hormone potentiates p16/CDKN2A expression in human skin after ultraviolet irradiation. Cancer Res.62, 875–880 (2002).
  • Brose MS, Volpe P, Feldman M et al.BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res.62, 6997–7000 (2002).
  • Davies H, Bignell GR, Cox C et al. Mutations of the BRAF gene in human cancer. Nature417, 949–954 (2002).
  • Dong J, Phelps RG, Qiao R et al.BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma. Cancer Res.63, 3883–3885 (2003).
  • Gorden A, Osman I, Gai W et al. Analysis of BRAF and N-RASmutations in metastatic melanoma tissues. Cancer Res.63, 3955–3957 (2003).
  • Kumar R, Angelini S, Czene K et al.BRAF mutations in metastatic melanoma: a possible association with clinical outcome. Clin.Cancer Res.9, 3362–3368 (2003).
  • Pollock PM, Harper UL, Hansen KS et al. High frequency of BRAF mutations in nevi. Nat. Genet.33, 19–20 (2003).
  • Satyamoorthy K, Li G, Gerrero MR et al. Constitutive mitogen-activated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrine growth factor stimulation. Cancer Res.63, 756–759 (2003).
  • Yazdi AS, Palmedo G, Flaig MJ et al. Mutations of the BRAF gene in benign and malignant melanocytic lesions. J. Invest. Dermatol.121, 1160–1162 (2003).
  • Lang J, Boxer M, MacKie R. Absence of exon 15 BRAF germline mutation in familial melanoma. Hum. Mutat.21, 327–330 (2003).
  • Laud K, Kannengiesser C, Avril MF et al.BRAF as a melanoma susceptibility candidate gene? Cancer Res.63, 3061–3065 (2003).
  • Meyer P, Klaes R, Schmitt C, Boettger MB, Garbe C. Exclusion of BRAFV599E as a melanoma susceptibility mutation. Int. J. Cancer106, 78–80 (2003b).
  • Casula M, Colombino M, Satta MP et al. Errata to: BRAF gene is somatically mutated but does not make a major contribution to malignant melanoma susceptibility: the Italian Melanoma Intergroup Study. J. Clin. Oncol.24, 936 (2005).
  • Jackson S, Harland M, Turner F et al. No Evidence for BRAF as a melanoma/nevus susceptibility gene. Cancer Epidemiol. Biomarkers Prev.14, 913–918 (2005).
  • Bertram CG, Gaut RM, Barrett JH et al. An assessment of the CDKN2A variant Ala148Thr as a nevus/melanoma susceptibility allele. J. Invest. Dermatol.119, 961–965 (2002).
  • Debniak T, Scott RJ, Huzarski T et al.CDKN2A common variants and their association with melanoma risk: a population-based study. Cancer Res.65, 835–839 (2005).
  • Kumar R, Smeds J, Berggren P et al. A single nucleotide polymorphism in the 3´ untranslated region of the CDKN2A gene is common in sporadic primary melanomas but mutations in the CDKN2B, CDKN2C, CDK4 and p53 genes are rare. Int. J. Cancer95, 388–393 (2001).
  • McCarron SL, Bateman AC, Theaker JM, Howell WM. EGF +61 gene polymorphism and susceptibility to and prognostic markers in cutaneous malignant melanoma. Int. J. Cancer107, 673–675 (2003).
  • Amend KL, Elder JT, Tomsho LP et al.EGF gene polymorphism and the risk of incident primary melanoma. Cancer Res.64, 2668–2672 (2004).
  • James MR, Hayward NK, Dumenil T, Montgomery GW, Martin NG, Duffy DL. Epidermal growth factor gene (EGF) polymorphism and risk of melanocytic neoplasia. J. Invest. Dermatol.123, 760–762 (2004).
  • Randerson-Moor JA, Gaut R, Turner F et al. The relationship between the epidermal growth factor (EGF) 5´UTR variant A61G and melanoma/nevus susceptibility. J. Invest. Dermatol.123, 755–759 (2004).
  • Lafuente A, Molina R, Palou J, Castel T, Moral A, Trias M. Phenotype of glutathione S-transferase Mu (GSTM1) and susceptibility to malignant melanoma. MMM group. Multidisciplinary Malignant Melanoma Group. Br. J. Cancer72, 324–326 (1995).
  • Heagerty AH, Fitzgerald D, Smith A et al. Glutathione S-transferase GSTM1 phenotypes and protection against cutaneous tumours. Lancet343, 266–268 (1994).
  • Shanley SM, Chenevix-Trench G, Palmer J, Hayward N. Glutathione S-transferase GSTM1 null genotype is not overrepresented in Australian patients with nevoid basal cell carcinoma syndrome or sporadic melanoma. Carcinogenesis16, 2003–2004 (1995).
  • Kanetsky PA, Holmes R, Walker A et al. Interaction of glutathione S-transferase M1 and T1 genotypes and malignant melanoma. Cancer Epidemiol. Biomarkers Prev.10, 509–513 (2001).
  • Millikan RC, Hummer A, Begg C et al. Polymorphisms in nucleotide excision repair genes and risk of multiple primary melanoma: the Genes Environment and Melanoma Study. Carcinogenesis27, 610–618 (2006).
  • Duan Z, Shen H, Lee JE et al. DNA repair gene XRCC3 241Met variant is not associated with risk of cutaneous malignant melanoma. Cancer Epidemiol. Biomarkers Prev.11, 1142–1143 (2002).
  • Bertram CG, Gaut RM, Barrett JH et al. An assessment of a variant of the DNA repair gene XRCC3 as a possible nevus or melanoma susceptibility genotype. J. Invest. Dermatol.122, 429–432 (2004).
  • Halsall JA, Osborne JE, Potter L, Pringle JH, Hutchinson PE. A novel polymorphism in the 1A promoter region of the vitamin D receptor is associated with altered susceptibility and prognosis in malignant melanoma. Br. J. Cancer91, 765–770 (2004).
  • Soufir N, Meziani R, Lacapere JJ et al. Association between endothelin receptor B nonsynonymous variants and melanoma risk. J. Natl Cancer Inst.97, 1297–1301 (2005).
  • Shen H, Liu Z, Strom SS et al.p53 codon 72 Arg homozygotes are associated with an increased risk of cutaneous melanoma. J. Invest. Dermatol.121, 1510–1514 (2003).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.