114
Views
21
CrossRef citations to date
0
Altmetric
Review

MUC1 cytoplasmic tail: a potential therapeutic target for ovarian carcinoma

, , &
Pages 1261-1271 | Published online: 10 Jan 2014

References

  • Agarwal R, Kaye SB. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat. Rev. Cancer3, 502–516 (2003).
  • Fleming JS, Beaugie CR, Haviv I, Chenevix-Trench G, Tan OL. Incessant ovulation, inflammation and epithelial ovarian carcinogenesis: revisiting old hypotheses. Mol. Cell Endocrinol.247, 4–21 (2006).
  • Naora H, Montell DJ. Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat. Rev. Cancer5, 355–366 (2005).
  • Hinoda Y, Sasaki S, Ishida T, Imai K. Monoclonal antibodies as effective therapeutic agents for solid tumors. Cancer Sci.95, 621–625 (2004).
  • Cragg MS, French RR, Glennie MJ. Signaling antibodies in cancer therapy. Curr. Opin. Immunol.11, 541–547 (1999).
  • Normanno N, Bianco C, De Luca A, Maiello MR, Salomon DS. Target-based agents against ErbB receptors and their ligands: a novel approach to cancer treatment. Endocr. Rel. Cancer10, 1–21 (2003).
  • Amant F, Vloeberghs V, Woestenborghs H, Moerman P, Vergote I. Transition of epithelial toward mesenchymal differentiation during ovarian carcinosarcoma tumorigenesis. Gynecol. Oncol.90, 372–377 (2003).
  • Sherbet GV, Patil D. Genetic abnormalities of cell proliferation, invasion and metastasis, with special reference to gynaecological cancers. Anticancer Res.23, 1357–1371 (2003).
  • Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat. Rev. Cancer4, 45–60 (2004).
  • Lan MS, Batra SK, Qi WN, Metzgar RS, Hollingsworth MA. Cloning and sequencing of a human pancreatic tumor mucin cDNA. J. Biol. Chem.265, 15294–15299 (1990).
  • Wreschner DH, Hareuveni M, Tsarfaty I et al. Human epithelial tumor antigen cDNA sequences. Differential splicing may generate multiple protein forms. Eur. J. Biochem.189, 463–473 (1990).
  • Hu XF, Xing PX. Discovery and validation of new molecular targets for ovarian cancer. Curr. Opin. Mol. Ther.5, 625–630 (2003).
  • Acres B, Limacher JM. MUC1 as a target antigen for cancer immunotherapy. Expert Rev. Vaccines4, 493–502 (2005).
  • Rahbarizadeh F, Rasaee MJ, Forouzandeh M et al. The production and characterization of novel heavy-chain antibodies against the tandem repeat region of MUC1 mucin. Immunol. Invest.34, 431–452 (2005).
  • Xing PX. Technology evaluation: R-1549, Antisoma/Roche. Curr. Opin. Mol. Ther.5, 560–565 (2003).
  • Spicer AP, Duhig T, Chilton BS, Gendler SJ. Analysis of mammalian MUC1 genes reveals potential functionally important domains. Mamm. Genome6, 885–888 (1995).
  • Pemberton LF, Rughetti A, Taylor-Papadimitriou J, Gendler SJ. The epithelial mucin MUC1 contains at least two discrete signals specifying membrane localization in cells. J. Biol. Chem.271, 2332–2340 (1996).
  • Hanisch FG, Stadie TR, Deutzmann F, Peter-Katalinic J. MUC1 glycoforms in breast cancer–cell line T47D as a model for carcinoma-associated alterations of 0-glycosylation. Eur. J. Biochem.236, 318–327 (1996).
  • Li Y, Liu D, Chen D, Kharbanda S, Kufe D. Human DF3/MUC1 carcinoma-associated protein functions as an oncogene. Oncogene22, 6107–6110 (2003).
  • Schroeder JA, Masri AA, Adriance MC et al. MUC1 overexpression results in mammary gland tumorigenesis and prolonged alveolar differentiation. Oncogene23, 5739–5747 (2004).
  • Li Q, Ren J, Kufe D. Interaction of human MUC1 and β-catenin is regulated by Lck and ZAP-70 in activated Jurkat T cells. Biochem. Biophys. Res. Commun.315, 471–476 (2004).
  • Wykes M, MacDonald KP, Tran M et al. MUC1 epithelial mucin (CD227) is expressed by activated dendritic cells. J. Leukocyte Biol.72, 692–701 (2002).
  • Xing PX, Lees C, Lodding J et al. Mouse mucin 1 (MUC1) defined by monoclonal antibodies. Int. J. Cancer76, 875–883 (1998).
  • Rahn JJ, Dabbagh L, Pasdar M, Hugh JC. The importance of MUC1 cellular localization in patients with breast carcinoma: an immunohistologic study of 71 patients and review of the literature. Cancer91, 1973–1982 (2001).
  • Ichige K, Perey L, Vogel CA, Buchegger F, Kufe D. Expression of the DF3-P epitope in human ovarian carcinomas. Clin. Cancer Res.1, 565–571 (1995).
  • Xing PX, Prenzoska J, McKenzie IF. Epitope mapping of anti-breast and anti-ovarian mucin monoclonal antibodies. Mol. Immunol.29, 641–650 (1992).
  • Dong Y, Walsh MD, Cummings MC et al. Expression of MUC1 and MUC2 mucins in epithelial ovarian tumours. J. Pathol.183, 311–317 (1997).
  • Feng H, Ghazizadeh M, Konishi H, Araki T. Expression of MUC1 and MUC2 mucin gene products in human ovarian carcinomas. Jpn J. Clin. Oncol.32, 525–529 (2002).
  • Croce MV, Isla-Larrain M, Remes-Lenicov F et al. MUC1 cytoplasmic tail detection using CT33 polyclonal and CT2 monoclonal antibodies in breast and colorectal tissue. Histol. Histopathol.21, 849–855 (2006).
  • Yamashita K, Yonezawa S, Tanaka S et al. Immunohistochemical study of mucin carbohydrates and core proteins in hepatolithiasis and cholangiocarcinoma. Int. J. Cancer55, 82–91 (1993).
  • Tsutsumida H, Swanson BJ, Singh PK et al. RNA interference suppression of MUC1 reduces the growth rate and metastatic phenotype of human pancreatic cancer cells. Clin. Cancer Res.12, 2976–2987 (2006).
  • Ligtenberg MJ, Buijs F, Vos HL, Hilkens J. Suppression of cellular aggregation by high levels of episialin. Cancer Res.52, 2318–2324 (1992).
  • Jamora C, Fuchs E. Intercellular adhesion, signalling and the cytoskeleton. Nat. Cell Biol.4, E101–E108 (2002).
  • Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ. Deconstructing the cadherin–catenin–actin complex. Cell123, 889–901 (2005).
  • Takeichi M. Cadherins: a molecular family important in selective cell–cell adhesion. Annu. Rev. Biochem.59, 237–252 (1990).
  • Li Y, Bharti A, Chen D, Gong J, Kufe D. Interaction of glycogen synthase kinase 3β with the DF3/MUC1 carcinoma-associated antigen and β-catenin. Mol. Cell Biol.18, 7216–7224 (1998).
  • Sastry SK, Burridge K. Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp. Cell Res.261, 25–36 (2000).
  • Wesseling J, van der Valk SW, Hilkens J. A mechanism for inhibition of E-cadherin-mediated cell–cell adhesion by the membrane-associated mucin episialin/MUC1. Mol. Biol. Cell7, 565–577 (1996).
  • Wesseling J, van der Valk SW, Vos HL, Sonnenberg A, Hilkens J. Episialin (MUC1) overexpression inhibits integrin-mediated cell adhesion to extracellular matrix components. J. Cell Biol.129, 255–265 (1995).
  • McDermott KM, Crocker PR, Harris A et al. Overexpression of MUC1 reconfigures the binding properties of tumor cells. Int. J. Cancer94, 783–791 (2001).
  • Chang JH, Gill S, Settleman J, Parsons SJ. c-Src regulates the simultaneous rearrangement of actin cytoskeleton, p190RhoGAP, and p120RasGAP following epidermal growth factor stimulation. J. Cell Biol.130, 355–368 (1995).
  • Zou JX, Liu Y, Pasquale EB, Ruoslahti, E. Activated SRC oncogene phosphorylates R-ras and suppresses integrin activity. J. Biol. Chem.277, 1824–1827 (2002).
  • Kaplan KB, Bibbins KB, Swedlow JR, Arnaud M, Morgan DO, Varmus HE. Association of the amino-terminal half of c-Src with focal adhesions alters their properties and is regulated by phosphorylation of tyrosine 527. Embo. J.13, 4745–4756 (1994).
  • Zrihan-Licht S, Baruch A, Elroy-Stein O, Keydar I, Wreschner DH. Tyrosine phosphorylation of the MUC1 breast cancer membrane proteins. Cytokine receptor-like molecules. FEBS Lett.356, 130–136 (1994).
  • Schroeder JA, Thompson MC, Gardner MM, Gendler SJ. Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland. J. Biol. Chem.276, 13057–13064 (2001).
  • Li Y, Kuwahara H, Ren J, Wen G, Kufe D. The c-Src tyrosine kinase regulates signaling of the human DF3/MUC1 carcinoma-associated antigen with GSK3 β and β-catenin. J. Biol. Chem.276, 6061–6064 (2001).
  • Yamamoto M, Bharti A, Li Y, Kufe D. Interaction of the DF3/MUC1 breast carcinoma-associated antigen and β-catenin in cell adhesion. J. Biol. Chem.272, 12492–12494 (1997).
  • Su LK, Vogelstein B, Kinzler KW. Association of the APC tumor suppressor protein with catenins. Science262, 1734–1737 (1993).
  • Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P. Binding of GSK3β to the APC-β-catenin complex and regulation of complex assembly. Science272, 1023–1026 (1996).
  • Jones RJ, Brunton VG, Frame MC. Adhesion-linked kinases in cancer; emphasis on src, focal adhesion kinase and PI 3-kinase. Eur. J. Cancer36, 1595–1606 (2000).
  • Yeatman TJ. A renaissance for SRC. Nat. Rev. Cancer4, 470–480 (2004).
  • Ren R, Mayer BJ, Cicchetti P, Baltimore D. Identification of a ten-amino acid proline-rich SH3 binding site. Science259, 1157–1161 (1993).
  • Li Y, Ren J, Yu W et al. The epidermal growth factor receptor regulates interaction of the human DF3/MUC1 carcinoma antigen with c-Src and β-catenin. J. Biol. Chem.276, 35239–35242 (2001).
  • Ottenhoff-Kalff AE, Rijksen G, van Beurden EA, Hennipman A, Michels AA, Staal GE. Characterization of protein tyrosine kinases from human breast cancer: involvement of the c-src oncogene product. Cancer Res.52, 4773–4778 (1992).
  • Wiener JR, Windham TC, Estrella VC et al. Activated SRC protein tyrosine kinase is overexpressed in late-stage human ovarian cancers. Gynecol. Oncol.88, 73–79 (2003).
  • Bjorge JD, Pang A, Fujita DJ. Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. J. Biol. Chem.275, 41439–41446 (2000).
  • Pengetnze Y, Steed M, Roby KF, Terranova PF, Taylor CC. Src tyrosine kinase promotes survival and resistance to chemotherapeutics in a mouse ovarian cancer cell line. Biochem. Biophys. Res. Commun.309, 377–383 (2003).
  • Chen T, Pengetnze Y, Taylor CC. Src inhibition enhances paclitaxel cytotoxicity in ovarian cancer cells by caspase-9-independent activation of caspase-3. Mol. Cancer Ther.4, 217–224 (2005).
  • George JA, Chen T, Taylor CC. SRC tyrosine kinase and multidrug resistance protein-1 inhibitions act independently but cooperatively to restore paclitaxel sensitivity to paclitaxel-resistant ovarian cancer cells. Cancer Res.65, 10381–10388 (2005).
  • Pandey P, Kharbanda S, Kufe D. Association of the DF3/MUC1 breast cancer antigen with Grb2 and the Sos/Ras exchange protein. Cancer Res.55, 4000–4003 (1995).
  • Penuel E, Martin GS. Transformation by v-Src: Ras-MAPK and PI3K-mTOR mediate parallel pathways. Mol. Biol. Cell10, 1693–1703 (1999).
  • Meerzaman D, Shapiron PS, Kim KC. Involvement of the MAP kinase ERK2 in MUC1 mucin signaling. Am. J. Physiol. Lung Cell Mol. Physiol.281, L86–L91 (2001).
  • Guy CT, Cardiff RD, Muller WJ. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol. Cell Biol.12, 954–961 (1992).
  • Guy CT, Muthuswamy SK, Cardiff RD, Soriano P, Muller WJ. Activation of the c-Src tyrosine kinase is required for the induction of mammary tumors in transgenic mice. Genes Dev.8, 23–32 (1994).
  • Spicer AP, Rowse GJ, Lidner TK, Gendler SJ. Delayed mammary tumor progression in Muc-1 null mice. J. Biol. Chem.270, 30093–30101 (1995).
  • Al Masri A, Gendler SJ. Muc1 affects c-Src signaling in PyV MT-induced mammary tumorigenesis. Oncogene24, 5799–5808 (2005).
  • Nigg EA, Sefton BM, Hunter T, Walter G, Singer SJ. Immunofluorescent localization of the transforming protein of Rous sarcoma virus with antibodies against a synthetic src peptide. Proc. Natl Acad. Sci. USA79, 5322–5326 (1982).
  • Johnson LN, Noble ME, Owen DJ. Active and inactive protein kinases: structural basis for regulation. Cell85, 149–158 (1996).
  • Sefton BM, Trowbridge IS, Cooper JA, Scolnick EM. The transforming proteins of Rous sarcoma virus, Harvey sarcoma virus and Abelson virus contain tightly bound lipid. Cell31, 465–474 (1982).
  • Hanks SK, Ryzhova L, Shin NY, Brabek J. Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. Front. Biosci.8, D982–D996 (2003).
  • Schlaepfer DD, Hauck CR, Sieg DJ. Signaling through focal adhesion kinase. Prog. Biophys. Mol. Biol.71, 435–478 (1999).
  • Talmage DA, Freund R, Young AT, Dahl J, Dawe CJ, Benjamin TL. Phosphorylation of middle T by pp60c-src: a switch for binding of phosphatidylinositol 3-kinase and optimal tumorigenesis. Cell59, 55–65 (1989).
  • Cantley LC. The phosphoinositide 3-kinase pathway. Science296, 1655–1657 (2002).
  • Webster MA, Hutchinson JN, Rauh MJ et al. Requirement for both Shc and phosphatidylinositol 3´ kinase signaling pathways in polyomavirus middle T-mediated mammary tumorigenesis. Mol. Cell Biol.18, 2344–2359 (1998).
  • Calo V, Migliavacca M, Bazan V et al. STAT proteins: from normal control of cellular events to tumorigenesis. J. Cell Physiol.197, 157–168 (2003).
  • Yuan ZL, Guan YJ, Wang L, Wei W, Kane AB, Chin YE. Central role of the threonine residue within the p+1 loop of receptor tyrosine kinase in STAT3 constitutive phosphorylation in metastatic cancer cells. Mol. Cell Biol.24, 9390–9400 (2004).
  • Dann CE, Hsieh JC, Rattner A et al. Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature412, 86–90 (2001).
  • Henderson BR, Fagotto F. The ins and outs of APC and β-catenin nuclear transport. EMBO Rep.3, 834–839 (2002).
  • Seidensticker MJ, Behrens J. Biochemical interactions in the wnt pathway. Biochim. Biophys. Acta1495, 168–182 (2000).
  • Uthoff SM, Eichenberger MR, McAuliffe TL, Hamilton CJ, Galandiuk S. Wingless-type frizzled protein receptor signaling and its putative role in human colon cancer. Mol. Carcinog.31, 56–62 (2001).
  • Liu C, Li Y, Semenov M et al. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell108, 837–847 (2002).
  • Orford K, Crockett C, Jensen JP, Weissman AM, Bayers SW. Serine phosphorylation-regulated ubiquitination and degradation of β-catenin. J. Biol. Chem.272, 24735–24738 (1997).
  • Rubinfeld B, Souza B, Albert I, Munemitsu S, Polakis P. The APC protein and E-cadherin form similar but independent complexes with α-catenin, β-catenin, and plakoglobin. J. Biol. Chem.270, 5549–5555 (1995).
  • Hattrup CL, Fernandez-Rodriguez J, Schroeder JA, Hansson GC, Gendler SJ. MUC1 can interact with adenomatous polyposis coli in breast cancer. Biochem. Biophys. Res. Commun.316, 364–369 (2004).
  • Huang L, Chen D, Liu D, Yin L, Kharbanda S, Kufe D. MUC1 oncoprotein blocks glycogen synthase kinase 3 β-mediated phosphorylation and degradation of β-catenin. Cancer Res.65, 10413–10422 (2005).
  • Huang L, Ren J, Chen D, Li Y, Kharbanda S, Kufe D. MUC1 cytoplasmic domain coactivates Wnt target gene transcription and confers transformation. Cancer Biol. Ther.2, 702–706 (2003).
  • Roura S, Miravet S, Piedra J, Garcia de Herreros A, Dunach M. Regulation of E-cadherin/catenin association by tyrosine phosphorylation. J. Biol. Chem.274, 36734–36740 (1999).
  • Wen Y, Caffrey TC, Wheelock MJ, Johnson KR, Hollingsworth MA. Nuclear association of the cytoplasmic tail of MUC1 and β-catenin. J. Biol. Chem.278, 38029–38039 (2003).
  • Li Y, Hively WP, Varmus HE. Use of MMTV-Wnt-1 transgenic mice for studying the genetic basis of breast cancer. Oncogene19, 1002–1009 (2000).
  • Schroeder JA, Adriance MC, Thompson MC, Camenisch TD, Gendler SJ. MUC1 alters β-catenin-dependent tumor formation and promotes cellular invasion. Oncogene22, 1324–1332 (2003).
  • Ren J, Li Y, Kufe D. Protein kinase C δ regulates function of the DF3/MUC1 carcinoma antigen in β-catenin signaling. J. Biol. Chem.277, 17616–17622 (2002).
  • Lin SY, Xia W, Wang JC et al. β-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc. Natl Acad. Sci. USA97, 4262–4266 (2000).
  • Yamashiro S, Yamakita Y, Ono S, Matsumura F. Fascin, an actin-bundling protein, induces membrane protrusions and increases cell motility of epithelial cells. Mol. Biol. Cell9, 993–1006 (1998).
  • Tao YS, Edwards RA, Tubb B, Wang S, Bryan J, McCrea PD. β-catenin associates with the actin-bundling protein fascin in a noncadherin complex. J. Cell Biol.134, 1271–1281 (1996).
  • Kohlgraf KG, Gawron AJ, Higashi M et al. Tumor-specific immunity in MUC1.Tg mice induced by immunization with peptide vaccines from the cytoplasmic tail of CD227 (MUC1). Cancer Immunol. Immunother.53, 1068–1084 (2004).
  • Croce MV, Isla-Larrain MT, Rua CE, Rabassa ME, Gendler SJ, Segal-Eiras A. Patterns of MUC1 tissue expression defined by an anti-MUC1 cytoplasmic tail monoclonal antibody in breast cancer. J. Histochem. Cytochem.51, 781–788 (2003).
  • Carragher NO, Westhoff MA, Fincham VJ, Schaller MD, Frame MC. A novel role for FAK as a protease-targeting adaptor protein: regulation by p42 ERK and Src. Curr. Biol.13, 1442–1450 (2003).
  • Morkel M, Huelsken J, Wakamiya M et al. β-catenin regulates Cripto- and Wnt3-dependent gene expression programs in mouse axis and mesoderm formation. Development130, 6283–6294 (2003).
  • van de Wetering M, Sancho E, Verweij C et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell111, 241–250 (2002).
  • D’Antonio A, Losito S, Pignata S et al. Transforming growth factor α, amphiregulin and cripto-1 are frequently expressed in advanced human ovarian carcinomas. Int. J. Oncol.21, 941–948 (2002).
  • Stromberg K, Johnson GR, O’Connor DM, Sorensen CM, Gullick WJ, Kannan B. Frequent immunohistochemical detection of EGF supergene family members in ovarian carcinogenesis. Int. J. Gynecol. Pathol.13, 342–347 (1994).
  • Saloman DS, Bianco C, Ebert AD et al. The EGF-CFC family: novel epidermal growth factor-related proteins in development and cancer. Endocr. Rel. Cancer7, 199–226 (2000).
  • Strizzi L, Bianco C, Normanno N et al. Epithelial mesenchymal transition is a characteristic of hyperplasias and tumors in mammary gland from MMTV-Cripto-1 transgenic mice. J. Cell Physiol.201, 266–276 (2004).
  • Hu XF, Xing PX. Cripto monoclonal antibodies. Drug News Perspect18, 293–303 (2005).
  • Hu XF, Xing PX. Cripto as a target for cancer immunotherapy. Expert Opin. Ther. Targets9, 383–394 (2005).
  • Xing PX, Hu XF, Pietersz GA, Hosick HL, McKenzie IF. Cripto: a novel target for antibody-based cancer immunotherapy. Cancer Res.64, 4018–4023 (2004).
  • Casamassimi A, De Luca A, Agrawal S, Stromberg K, Salomon DS, Normanno N. EGF-related antisense oligonucleotides inhibit the proliferation of human ovarian carcinoma cells. Ann. Oncol.11, 319–325 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.