82
Views
20
CrossRef citations to date
0
Altmetric
Review

Use of APO2L/TRAIL with mTOR inhibitors in the treatment of glioblastoma multiforme

, &
Pages 1313-1322 | Published online: 10 Jan 2014

References

  • Vivianco I, Sawyers CL. The phosphophatidylinositol 3-kinase/AKT pathway in human cancer. Nat. Rev. Cancer2, 489–501 (2002).
  • Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signaling. Nat. Cell Biol.4, 648–657 (2002).
  • Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell10, 151–162 (2002).
  • Potter CJ, Pedraza LG, Xu T. Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol.4, 658–665 (2002).
  • Garami A, Zwartkruis FJ, Nobukuni T et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC 1 and 2. Mol. Cell11, 1457–1466 (2003).
  • Saucedo LJ, Goa X, Chiarelli DA, Li L, Pan D, Edgar BA. Rheb promotes cell growth as a component of the insulin/mTOR signaling network. Nat. Cell Biol.5, 566–571 (2003).
  • Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D. Rheb is a direct target of the tuberous sclerosis tumor suppressor proteins. Nat. Cell Biol.5, 578–581 (2003).
  • Im E, von Lintig FC, Chen J et al. Rheb is in a high activation state and inhibits B-Raf kinase in mammalian cells. Oncogene21, 6356–6365 (2002).
  • Castro AF, Rebhun JF, Clark GJ, Quilliam LA. Rheb promotes tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J. Biol. Chem.278, 32493–32496 (2003).
  • Fingar DC, Richardson AR, Tee L, Cheatham C, Tsou C, Blenis J. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4-BP1/eukaryotic translation initiation factor 4E. Mol. Cell Biol.24, 200–216 (2004).
  • Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene23, 3151–3171 (2004).
  • Fingar DC, Salama S, Tsou C, Harlow E, Blenis J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4E-BP1/eIF4E. Genes Dev.16, 1472–1478 (2002).
  • Gingras AC, Raught B, Sonenberg N. Regulation of translation inhibition by FRAP/mTOR. Genes Dev.15, 807–826 (2001).
  • Hara K, Maruki Y, Long X et al. Raptor, a binding partner of target of rapamycin (TOR), mediated TOR action. Cell110, 177–189 (2002).
  • Kim DH, Sarbassov DD, Ali SM et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell110, 163–175 (2002).
  • Abraham RT. Identification of TOR signaling complexes: more TORC for the cell growth engine. Cell111, 9–12 (2002).
  • Radimerski T, Montagne J, Rintleen F et al. dS6K-regulated cell growth is dPKB/dPI(3)K-independent, but requires dPDK1. Nat. Cell Biol.4, 251–255 (2002).
  • Manning BD, Cantley LC. United at last: the tuberous sclerosis complex gene products connect the phosphoinositide 3-kinase/Akt pathway to mammalian target of rapamycin (mTOR) signaling. Biochem. Soc. Trans.31, 573–578 (2003).
  • Stolovich M, Tang E, Hornstein G et al. Transduction of growth or mitogenic signals into translational activation of TOP mRNAs is fully reliant on the phophatidylinositol 3-kinase-mediated pathway but requires neither S6K1 nor rpS6 phosphorylation. Mol. Cell Biol.22, 8101–8113 (2002).
  • Janus A, Robak T, Smolewski P. The mammalian target of rapamycin (mTOR) kinase pathway: Its role in tumourgenesis and targeted antitumor therapy. Cell Mol. Biol. Lett.10, 479–498 (2005).
  • Jin W, Wu L, Llang K, Llu B, Lu Y, Fan Z. Roles of the PI-3K and MEK pathways in Ras-mediated chemoresistance in breast cancer cells. Br. J. Cancer89, 185–191 (2003).
  • Gottschalk AR, Basila D, Wong M et al. p27 Kip1 is required for PTEN-induced G1 growth arrest. Cancer Res.61, 2105–2111 (2001).
  • Schlieman MG, Gahy BN, Ramsamooj R, Beckett L, Bold RJ. Incidence, mechanism and prognostic value of activated AKT in pancreas cancer. Br. J. Cancer89, 2110–2115 (2003).
  • Brugarolas JB, Vazquez F, Reddy A, Sellers WR, Kaelin WG. TSC2 regulates VEGF through mTOR-dependent and independent pathways. Cancer Cell4, 147–184 (2003).
  • De Benedetti A, Graff JR. eIF4E expression and its role in malignancies and metastases. Oncogene23, 3189–3199 (2004).
  • Stein RC. Prospects for phosphoinositide 3-kinase inhibition as a cancer treatment. Endocr. Relat. Cancer8, 237–248 (2001).
  • Ward SG. Finan P. Isoform-specific phosphoinositide 3-kinase inhibitors as therapeutic agents. Curr. Opin. Pharmacol.3, 426–434 (2003).
  • Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J. Clin.55, 178–194 (2005).
  • Mita MM, Mita A, Rowinsky EK. The molecular target of rapamycin (mTOR) as a therapeutic target against cancer. Cancer Biol. Ther.2, 169–177 (2003).
  • Rowinsky EK. Targeting the molecular target of rapamycin (mTOR). Curr. Opin. Oncol.16, 564–575 (2004).
  • Law M, Forrester E, Chytil A et al. Rapamycin disrupts cyclin/cyclin-dependent kinase/p21/proliferating cell nuclear antigen complexes and cyclin D1 reverses rapamycin action by stabilizing these complexes. Cancer Res.66, 1070–1080 (2006).
  • Gambacorti-Passerini CB, Gunby RH, Piazza R, Galietta A, Rostagno R, Scapozza L. Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet Oncol.4, 75–85 (2003).
  • Semenza GL. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer3, 721–732 (2003).
  • Blagoskonny MV, Darzynkiewicz Z. Four birds with one stone: RAPA as potential anticancer therapy. Cancer Biol. Ther.1, 359–361 (2002).
  • Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J. Clin.55, 178–194 (2005).
  • Galanis E, Buckner JC, Maurer JI et al. Phase II trial of Temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group study. J. Clin. Oncol.23, 5294–5304 (2005).
  • Forouzesh B, Buckner JC, Marks AJ et al. Phase 1, bioavailability, and pharmacokinetic study of oral dosage of CCI-779 administered to patients with advanced solid malignancies: 2002 EORTC-NCI-AACR Symposium on Molecular targets and Cancer Therapeutics. Eur. J. Cancer54, 168 (2002).
  • O’Reilly T, Vaxelaire J, Muller M et al. In vivo activity of RAD 001, an orally active rapamycin derivative, in experimental tumor models. Proc. Am. Assoc. Cancer Res. (2002) (Abstract 359).
  • Clackson T, Metcalf III CA, Rozamus LW et al. Regression of tumor xenografts in mice after oral administration of AP23573, a novel mTOR inhibitor that induces tumor starvation. Proc. Am. Assoc. Cancer Res.43, 95 (2002) (Abstract LB).
  • Pacey S, Rea D, Steven N, Brock C et al. Results of Phase 1 clinical trial investigating a combination of the oral mTOR-inhibitor Everolimus (E, Rad001) and Gemcitabine (GEM) in patients (pts) with advanced cancers: 2004 ASCO Meeting. J. Clin Oncol.22, 3120 (2004).
  • Dudkin L, Dilling MB, Cheshire PJ et al. Biochemical correlates of mTOR inhibition by the rapamycin ester CCI-779 and tumor growth inhibition. Clin. Cancer Res.7, 1758–1764 (2001).
  • Geoerger B, Kerr K, Tang CB et al. Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy. Cancer Res.61, 1527–1532 (2001).
  • Vignot S, Faivre S, Aguirre D, Raymond E. mTOR-targeted therapy of cancer with rapamycin. Ann. Oncol.16, 525–537 (2005).
  • Rivera V, Tang H, Metcalf C et al. Anti-proliferative activity of the mTOR inhibitor AP23573 in combination with cytotoxic and targeted agents. Proc. Am. Assoc. Cancer Res.45, 3887 (2004).
  • LeBlanc HN, Ashkenazi A. Apo2L/TRAIL and its death and decoy receptors. Cell Death Differentiation10, 66–75 (2003).
  • Almasan A, Ashkenazi A. Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev.14, 337–348 (2003).
  • Petak I, Houghton JA. Shared pathways: death receptors and cytotoxic drugs in cancer therapy. Path. Oncol. Res.7, 95–106 (2001).
  • Xiao C, Yang BF, Asadi N, Beguinot F, Hao C. Tumor necrosis factor-related apoptosis-inducing ligand induces death-inducing signaling complex and its modulation by c-FLIP and PED/PEA-15 in glioma cells. J. Biol. Chem.277, 25020–25025 (2001).
  • Nam SY, Jung GA, Hur GC et al. Upregulation of FLIPs by Akt, a possible inhibition mechanism of TRAIL-induced apoptosis in human gastric cancers. Cancer Sci.94, 1066–1073 (2003).
  • Varfolomeev E, Maecker H, Sharp D et al. Molecular determinants of kinase pathway activation by Apo2 ligand/tumor necrosis-factor related apoptosis-inducing ligand. J. Biol. Chem.280, 40599–40608 (2005).
  • Deng Y, Lin Y, Wu X. TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev.16, 33–45 (2001).
  • Fulda S, Wick W, Weller M, Debatin KM. Smac agonists sensitize for Apo2L/TRAIL – or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat. Med.8, 807–815 (2002).
  • Panner A, James CD, Berger MS, Pieper RO. mTOR controls FLIPs translation and TRAIL sensitivity in glioblastoma multiforme cells. Mol. Cell Biol.25, 8809–8823 (2005).
  • Karin M, Lin A. NF-κB at the crossroads of life and death. Nat. Immunol.3, 221–227 (2002).
  • Burns TF, El-Deiry WS. Identification of inhibitors of TRAIL-induced death (ITIDs) in the TRAIL-sensitive colon carcinoma cell line SW480 using a genetic approach. J. Biol. Chem.276, 37879–37866 (2001).
  • Eshleman JS, Carlson BL, Mladek AC, Kastner BD, Shide K, Sarkaria JN. Inhibition of the mammalian target of rapamycin sensitizes U87 xenografts to fractionated radiation therapy. Cancer Res.62, 7291–7297 (2002).
  • Fesik SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat. Rev. Cancer5, 876–885 (2005).
  • Mondesire WH, Jian W, Zhang H et al. Targeting mammalian target of rapamycin synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells. Clin. Cancer Res.10, 7031–7042 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.