242
Views
57
CrossRef citations to date
0
Altmetric
Drug Profile

Samarium lexidronam (153Sm-EDTMP): skeletal radiation for osteoblastic bone metastases and osteosarcoma

&
Pages 1517-1527 | Published online: 10 Jan 2014

References

  • Janjan N. Bone metastases: approaches to management. Semin. Oncol.28, 28–34 (2001).
  • Janjan N. Palliation and supportive care in radiation medicine. Hematol. Oncol. Clin. North Am.20, 187–211 (2006).
  • Samant R, Gooi AC. Radiotherapy basics for family physicians. Potent tool for symptom relief. Can. Fam. Physician51, 1496–1501 (2005).
  • Reisfield GM, Silberstein EB, Wilson GR. Radiopharmaceuticals for the palliation of painful bone metastases. Am. J. Hosp. Palliat. Care22, 41–46 (2005).
  • Anderson P. Samarium for osteoblastic bone metastases and osteosarcoma. Expert Opin. Pharmacother.7, 1475–1486 (2006).
  • Agarawal JP, Swangsilpa T, van der Linden Y et al. The role of external beam radiotherapy in the management of bone metastases. Clin. Oncol. (R. Coll. Radiol.)18, 747–760 (2006).
  • Hillegonds DJ, Franklin S, Shelton DK et al. The management of painful bone metastases with an emphasis on radionuclide therapy. J. Natl Med. Assoc.99, 785–794 (2007).
  • Lam MG, de Klerk JM, van Rijk PP, Zonnenberg BA. Bone seeking radiopharmaceuticals for palliation of pain in cancer patients with osseous metastases. Anticancer Agents Med. Chem.7, 381–397 (2007).
  • Lin A, Ray ME. Targeted and systemic radiotherapy in the treatment of bone metastasis. Cancer Metastasis Rev.25, 669–675 (2006).
  • Toegel S, Hoffmann O, Wadsak W et al. Uptake of bone-seekers is solely associated with mineralisation! A study with 99mTc-MDP, 153Sm-EDTMP and 18F-fluoride on osteoblasts. Eur. J. Nucl. Med. Mol. Imaging33, 491–494 (2006).
  • Goeckeler WF, Troutner DE, Volkert WA et al. 153Sm radiotherapeutic bone agents. Int. J. Rad. Appl. Instrum. [B]13, 479–482 (1986).
  • Atkins HL, Srivastava SC. Radiolabeled bone-seeking radiopharmaceuticals. Q. J. Nucl. Med.40, 285–289 (1996).
  • Goeckeler WF, Edwards B, Volkert WA et al. Skeletal localization of samarium-153 chelates: potential therapeutic bone agents. J. Nucl. Med.28, 495–504 (1987).
  • Ramamoorthy N, Saraswathy P, Das MK et al. Production logistics and radionuclidic purity aspects of 153Sm for radionuclide therapy. Nucl. Med. Commun.23, 83–89 (2002).
  • Vimalnath KV, Das MK, Ananthakrishnan M, Ramamoorthy N. Facile access to 154Eu, a new reference source for calibration in γ-ray spectrometry. Appl. Radiat. Isot.62, 17–23 (2005).
  • Coursey BM, Hoppes DD, Schima FJ, Unterweger MP. The standardization of samarium-153. Int. J. Rad. Appl. Instrum. [A]38, 31–34 (1987).
  • Quadramet®. In: Physician’s Desk Reference Product Information (61st Edition). Thompson PDR, NJ, USA 1040–1042 (2007).
  • van Rensburg AJ, Alberts AS, Louw WK. Quantifying the radiation dosage to individual skeletal lesions treated with samarium-153-EDTMP. J. Nucl. Med.39, 2110–2115 (1998).
  • Goeckeler WF, Stoneburner LK, Kasi LP et al. Analysis of urine samples from metastatic bone cancer patients administered 153Sm-EDTMP. Nucl. Med. Biol.20, 657–661 (1993).
  • Anderson PM, Wiseman GA, Dispenzieri A et al. High-dose samarium-153 ethylene diamine tetramethylene phosphonate low toxicity of skeletal irradiation in patients with osteosarcoma and bone metastases. J. Clin. Oncol.20, 189–196 (2002).
  • Louw WK, Dormehl IC, van Rensburg AJ et al. Evaluation of samarium-153 and holmium-166-EDTMP in the normal baboon model. Nucl. Med. Biol.23, 935–940 (1996).
  • Bayouth JE, Macey DJ. Dosimetry considerations of bone-seeking radionuclides for marrow ablation. Med. Phys.20, 1089–1096 (1993).
  • Lamb HM, Faulds D. Samarium 153Sm lexidronam. Drugs Aging11, 413–419 (1997).
  • Anderson PM, Wiseman GA, Erlandson L et al. Gemcitabine radiosensitization after high-dose samarium for osteoblastic osteosarcoma. Clin. Cancer Res.11, 6895–6900 (2005).
  • Resche I, Chatal JF, Pecking A et al. A dose-controlled study of 153Sm-ethylenediaminetetramethylene-phosphonate (EDTMP) in the treatment of patients with painful bone metastases. Eur. J. Cancer33, 1583–1591 (1997).
  • Sartor O, Reid RH, Hoskin PJ et al. Samarium-153-Lexidronam complex for treatment of painful bone metastases in hormone-refractory prostate cancer. Urology63, 940–945 (2004).
  • Serafini AN, Houston SJ, Resche I et al. Palliation of pain associated with metastatic bone cancer using samarium-153 lexidronam: a double-blind placebo-controlled clinical trial. J. Clin. Oncol16, 1574–1581 (1998).
  • Bruland OS, Skretting A, Solheim OP, Aas M. Targeted radiotherapy of osteosarcoma using 153 Sm-EDTMP. A new promising approach. Acta Oncol.35, 381–384 (1996).
  • Mahajan A, Anderson PM, Hughes D et al. Multimodality local management of recurent osteosarcoma including radiotherapy, samarium, and chemotherapy. Pediatr. Blood Cancer (2007) (In Press).
  • Mahajan A, Woo S, Kornguth D et al. Multimodality treatment of osteosarcoma: radiation in a high-risk cohort. Pediatr. Blood Cancer (2008) (In Press).
  • Franzius C, Schuck A, Bielack SS. High-dose samarium-153 ethylene diamine tetramethylene phosphonate: low toxicity of skeletal irradiation in patients with osteosarcoma and bone metastases. J. Clin. Oncol.20, 1953–1954 (2002).
  • Franzius C, Bielack S, Flege S et al. High-activity samarium-153-EDTMP therapy followed by autologous peripheral blood stem cell support in unresectable osteosarcoma. Nuklearmedizin40, 215–220 (2001).
  • Russell RG. Bisphosphonates: mode of action and pharmacology. Pediatrics119(Suppl. 2), S150–S162 (2007).
  • Perez EA. Metastatic bone disease in breast cancer: the patient’s perspective. Semin. Oncol.28, 60–63 (2001).
  • Coleman RE. Bisphosphonates in breast cancer. Ann. Oncol.16, 687–695 (2005).
  • Hoskin PJ. Bisphosphonates and radiation therapy for palliation of metastatic bone disease. Cancer Treat. Rev.29, 321–327 (2003).
  • Hortobagyi GN, Theriault RL, Lipton A et al. Long-term prevention of skeletal complications of metastatic breast cancer with pamidronate. Protocol 19 Aredia Breast Cancer Study Group. J. Clin. Oncol.16, 2038–2044 (1998).
  • Wu S, Dahut WL, Gulley JL. The use of bisphosphonates in cancer patients. Acta Oncol.46, 581–591 (2007).
  • Gralow J, Tripathy D. Managing metastatic bone pain: the role of bisphosphonates. J. Pain Symptom Manage.33, 462–472 (2007).
  • Diel IJ. Effectiveness of bisphosphonates on bone pain and quality of life in breast cancer patients with metastatic bone disease: a review. Support Care Cancer15(11), 1243–1249 (2007) (Epub ahead of print).
  • Santini D, Fratto ME, Vincenzi B et al. Zoledronic acid in the management of metastatic bone disease. Expert Opin. Biol. Ther.6, 1333–1348 (2006).
  • Saad F, Lipton A. Zoledronic acid is effective in preventing and delaying skeletal events in patients with bone metastases secondary to genitourinary cancers. BJU Int.96, 964–969 (2005).
  • Marcus CS, Saeed S, Mlikotic A et al. Lack of effect of a bisphosphonate (pamidronate disodium) infusion on subsequent skeletal uptake of Sm-153 EDTMP. Clin. Nucl. Med.27, 427–430 (2002).
  • Wang RF, Zhang CL, Zhu SL, Zhu M. A comparative study of samarium-153-ethylenediaminetetramethylene phosphonic acid with pamidronate disodium in the treatment of patients with painful metastatic bone cancer. Med. Princ. Pract.12, 97–101 (2003).
  • Yeh HS, Swift RA, Ferretti D et al. Phase I study of bortezomib and 153Sm-lexodronam combination for refractory and relapsed myeloma. J. Clin. Oncol.24, S450 (2006).
  • Mahajan A, Anderson PM, Hughes D et al. Multimodality local management of recurrent osteosarcoma including radiotherapy, samarium, and chemotherapy. Pediatr. Blood Cancer47, 501 (2006).
  • Morris M, Pandit-Taskar N, Amodio A et al. Phase I study of docetaxel and 153-Sm-lexidronam repetitively administered for castrate metastatic prostate cancer. J. Clin. Oncol.25(Suppl. 18), 272 (2007) (Abstract 5152).
  • Yeh H, Swift R, Ferretti D et al. Phase I study of bortezemib and 153-Sm-lexidronam combination for refractory and relasped multiple myeloma. J. Clin. Oncol. Proc. ASCO 2007.
  • Tu SM, Millikan RE, Mengistu B et al. Bone-targeted therapy for advanced androgen-independent carcinoma of the prostate: a randomised Phase II trial. Lancet357, 336–341 (2001).
  • Menda Y, Bushnell DL, Williams RD et al. Efficacy and safety of repeated samarium-153 lexidronam treatment in a patient with prostate cancer and metastatic bone pain. Clin. Nucl. Med.25, 698–700 (2000).
  • Turner JH, Claringbold PG. A Phase II study of treatment of painful multifocal skeletal metastases with single and repeated dose samarium-153 ethylenediaminetetra-methylene phosphonate. Eur. J. Cancer27, 1084–1086 (1991).
  • Sartor O, Reid RH, Bushnell DL et al. Safety and efficacy of repeat administration of samarium Sm-153 lexidronam to patients with metastatic bone pain. Cancer109, 637–643 (2007).
  • Anderson P, Aguilera D, Pearson M, Woo S. Outpatient chemotherapy + radiotherapy in sarcomas: improving cancer control with radiosensitizing agents. Review of ifosfamide, glufosfamide, gemcitabine, sapacitabine, samarium, methotrexate, temozolomide, and irinotecan regimens during radiation. Cancer Control (2007) (In Press).
  • Loblaw DA, Wu JS, Kirkbride P et al. Pain flare in patients with bone metastases after palliative radiotherapy – a nested randomized control trial. Support Care Cancer15, 451–455 (2007).
  • Dafermou A, Colamussi P, Giganti M et al. A multicentre observational study of radionuclide therapy in patients with painful bone metastases of prostate cancer. Eur. J. Nucl. Med.28, 788–798 (2001).
  • Farhanghi M, Holmes RA, Volkert WA et al. Samarium-153-EDTMP: pharmacokinetic, toxicity and pain response using an escalating dose schedule in treatment of metastatic bone cancer. J. Nucl. Med.33, 1451–1458 (1992).
  • Trotti A, Colevas AD, Setser A et al. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin. Radiat. Oncol.13, 176–181 (2003).
  • Turner JH, Claringbold PG, Hetherington EL et al. A Phase I study of samarium-153 ethylenediaminetetramethylene phosphonate therapy for disseminated skeletal metastases. J. Clin. Oncol.7, 1926–1931 (1989).
  • Applebaum FR, Sandmaier B, Brown PA. Myelosuppression and mechanism of recovery following administration of 153Samarium-EDTMP. Antibody Immunoconj.1, 263–279 (1988).
  • Turner JH, Claringbold PG, Berger JD et al. 153Sm-EDTMP and melphalan chemoradiotherapy regimen for bone marrow ablation prior to marrow transplantation: an experimental model in the rat. Nucl. Med. Commun.13, 321–329 (1992).
  • Bartlett ML, Webb M, Durrant S et al. Dosimetry and toxicity of Quadramet for bone marrow ablation in multiple myeloma and other haematological malignancies. Eur. J. Nucl. Med. Mol. Imaging29, 1470–1477 (2002).
  • Macfarlane DJ, Durrant S, Bartlett ML et al. 153Sm EDTMP for bone marrow ablation prior to stem cell transplantation for haematological malignancies. Nucl. Med. Commun.23, 1099–1106 (2002).
  • Hogan WJ, Lacy MQ, Wiseman GA et al. Successful treatment of POEMS syndrome with autologous hematopoietic progenitor cell transplantation. Bone Marrow Transplant.28, 305–309 (2001).
  • Dispenzieri A, Wiseman GA, Lacy MQ et al. A Phase I study of 153Sm-EDTMP with fixed high-dose melphalan as a peripheral blood stem cell conditioning regimen in patients with multiple myeloma. Leukemia19, 118–125 (2005).
  • Kennedy GA, Durrant S, Butler J et al. Outcome of myeloablative allogeneic stem cell transplantation in multiple myeloma with a 153Sm-EDTMP-based preparative regimen. Leukemia19, 879–880 (2005).
  • Rodriguez V, Erlandson L, Arndt CA et al. Low toxicity and efficacy of (153)samarium-EDTMP and melphalan as a conditioning regimen for secondary acute myelogenous leukemia. Pediatr. Transplant.9, 122–126 (2005).
  • Rodriguez V, Anderson PM, Litzow MR et al. Marrow irradiation with high-dose 153Samarium-EDTMP followed by chemotherapy and hematopoietic stem cell infusion for acute myelogenous leukemia. Leuk. Lymphoma47, 1583–1592 (2006).
  • Finlay IG, Mason MD, Shelley M. Radioisotopes for the palliation of metastatic bone cancer: a systematic review. Lancet Oncol.6, 392–400 (2005).
  • Etchebehere EC, Pereira Neto CA, Lima MC et al. Treatment of bone pain secondary to metastases using samarium-153-EDTMP. Sao Paulo Med. J.122, 208–212 (2004).
  • Sapienza MT, Ono CR, Guimaraes MI et al. Retrospective evaluation of bone pain palliation after samarium-153-EDTMP therapy. Rev. Hosp. Clin. Fac. Med. Sao Paulo59, 321–328 (2004).
  • Tap WD, Federman N, Eilber FC. Targeted therapies for soft-tissue sarcomas. Expert Rev. Anticancer Ther.7, 725–733 (2007).
  • Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov.5, 769–784 (2006).
  • Issa JP. DNA methylation as a therapeutic target in cancer. Clin. Cancer Res.13, 1634–1637 (2007).
  • Wurdinger T, Costa FF. Molecular therapy in the microRNA era. Pharmacogenomics J.7, 297–304 (2007).
  • Watanabe M, Takagi A, Matsuzaki T et al. Knowledge of epigenetic influence for prostate cancer therapy. Curr. Cancer Drug Targets6, 533–551 (2006).
  • DeLaney TF, Trofimov AV, Engelsman M, Suit HD. Advanced-technology radiation therapy in the management of bone and soft tissue sarcomas. Cancer Control12, 27–35 (2005).
  • Lee CT, Bilton SD, Famiglietti RM et al. Treatment planning with protons for pediatric retinoblastoma, medulloblastoma, and pelvic sarcoma: how do protons compare with other conformal techniques? Int. J. Radiat. Oncol. Biol. Phys.63, 362–372 (2005).
  • Anderson P, Salazar-Abshire M. Improving outcomes in difficult bone cancers using multimodality therapy, including radiation: physician and nursing perspectives. Curr. Oncol. Rep.8, 415–422 (2006).
  • Callstrom MR, Atwell TD, Charboneau JW et al. Painful metastases involving bone: percutaneous image-guided cryoablation-prospective trial interim analysis. Radiology241, 572–580 (2006).
  • Callstrom MR, Charboneau JW, Goetz MP et al. Image-guided ablation of painful metastatic bone tumors: a new and effective approach to a difficult problem. Skeletal Radiol.35, 1–15 (2006).
  • Anderson PM. Effectiveness of radiotherapy for osteosarcoma that responds to chemotherapy. Mayo. Clin. Proc.78, 145–146 (2003).
  • Machak GN, Tkachev SI, Solovyev YN et al. Neoadjuvant chemotherapy and local radiotherapy for high-grade osteosarcoma of the extremities. Mayo Clin. Proc.78, 147–155 (2003).
  • Tong RT, Boucher Y, Kozin SV et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res.64, 3731–3736 (2004).
  • Gorski DH, Beckett MA, Jaskowiak NT et al. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res.59, 3374–3378 (1999).
  • Liepe K, Runge R, Kotzerke J. The benefit of bone-seeking radiopharmaceuticals in the treatment of metastatic bone pain. J. Cancer Res. Clin. Oncol.131, 60–66 (2005).
  • Lewington VJ. Cancer therapy using bone-seeking isotopes. Phys. Med. Biol.41, 2027–2042 (1996).
  • Lewington VJ. Bone-seeking radionuclides for therapy. J. Nucl. Med.46(Suppl. 1), S38–S47 (2005).
  • Liepe K, Hliscs R, Kropp J et al. Rhenium-188-HEDP in the palliative treatment of bone metastases. Cancer Biother. Radiopharm.15, 261–265 (2000).
  • Liepe K, Hliscs R, Kropp J et al. Dosimetry of 188Re-hydroxyethylidene diphosphonate in human prostate cancer skeletal metastases. J. Nucl. Med.44, 953–960 (2003).
  • Liepe K, Runge R, Kotzerke J. Systemic radionuclide therapy in pain palliation. Am. J. Hosp. Palliat. Care22, 457–464 (2005).
  • Bruland OS, Nilsson S, Fisher DR, Larsen RH. High-linear energy transfer irradiation targeted to skeletal metastases by the α-emitter 223Ra: adjuvant or alternative to conventional modalities? Clin. Cancer Res.12, S6250–S6257 (2006).
  • Nilsson S, Larsen RH, Fossa SD et al. First clinical experience with α-emitting radium-223 in the treatment of skeletal metastases. Clin. Cancer Res.11, 4451–4459 (2005).
  • Henriksen G, Fisher DR, Roeske JC et al. Targeting of osseous sites with α-emitting 223Ra: comparison with the β-emitter 89Sr in mice. J. Nucl. Med.44, 252–259 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.