90
Views
46
CrossRef citations to date
0
Altmetric
Review

Inhibition of angiogenesis and invasion in malignant gliomas

, &
Pages 1537-1560 | Published online: 10 Jan 2014

References

  • World Health Organization Classification of Tumours. Pathology and Genetics: Tumours of the Nervous System. Kleihues P, Cavenee W (Eds). IARC Press, Lyon, France (2000).
  • Stupp R, Mason W, van den Bent M et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352(10), 987–996 (2005).
  • Wong E, Hess K, Gleason M et al. Outcomes and prognostic factors in recurrent glioma patients enrolled onto Phase II clinical trials. J. Clin. Oncol.17(8), 2572–2578 (1999).
  • Ferrara N, Kerbel R. Angiogenesis as a therapeutic target. Nature438(7070), 967–974 (2005).
  • Gasparini G, Longo R, Toi M, Ferrara N. Angiogenic inhibitors: a new therapeutic strategy in oncology. Nat. Clin. Pract. Oncol.2(11), 562–577 (2005).
  • Vredenburgh J, Desjardins A, Herndon JE et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin. Cancer Res.13(4), 1253–1259 (2007).
  • Kerbel R, Yu J, Tran J et al. Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev.20(1–2), 79–86 (2001).
  • Sweeney C, Miller K, Sledge GJ. Resistance in the anti-angiogenic era: nay-saying or a word of caution? Trends Mol. Med.9(1), 24–29 (2003).
  • Rubenstein JL, Kim J, Ozawa T et al. Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia2(4), 306–314 (2000).
  • Rao JS. Molecular mechanisms of glioma invasiveness: the role of proteases. Nat. Rev. Cancer3(7), 489–501 (2003).
  • Coultas L, Chawengsaksophak K, Rossant J. Endothelial cells and VEGF in vascular development. Nature438(7070), 937–945 (2005).
  • Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat. Med.6(4), 389–395 (2000).
  • Carmeliet P. Angiogenesis in life, disease and medicine. Nature438(7070), 932–936 (2005).
  • Bergers G, Benjamin L. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer3(6), 401–410 (2003).
  • Folkman J. What is the evidence that tumors are angiogenesis dependent? J. Natl Cancer Inst.82(1), 4–6 (1990).
  • Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell86(3), 353–364 (1996).
  • Hanahan D, Weinberg R. The hallmarks of cancer. Cell100(1), 57–70 (2000).
  • Naumov G, Bender E, Zurakowski D et al. A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J. Natl Cancer Inst.98(5), 316–325 (2006).
  • Folkman J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med.285(21), 1182–1186 (1971).
  • Hurwitz H, Fehrenbacher L, Novotny W et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med.350(23), 2335–2342 (2004).
  • Brem S, Cotran R, Folkman J. Tumor angiogenesis: a quantitative method for histologic grading. J. Natl Cancer Inst.48(2), 347–356 (1972).
  • Brem S, Tsanaclis A, Gately S, Gross J, Herblin W. Immunolocalization of basic fibroblast growth factor to the microvasculature of human brain tumors. Cancer70(11), 2673–2680 (1992).
  • Leon S, Folkerth R, Black P. Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer77(2), 362–372 (1996).
  • Burger P, Vogel F, Green S, Strike T. Glioblastoma multiforme and anaplastic astrocytoma. Pathologic criteria and prognostic implications. Cancer56(5), 1106–1111 (1985).
  • Benjamin L, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J. Clin. Invest.103(2), 159–165 (1999).
  • Holash J, Maisonpierre PC, Compton D et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science284(5422), 1994–1998 (1999).
  • Vajkoczy P, Farhadi M, Gaumann A et al. Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2. J. Clin. Invest.109(6), 777–785 (2002).
  • Zagzag D, Hooper A, Friedlander D et al.In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis. Exp. Neurol.159(2), 391–400 (1999).
  • Zagzag D, Zhong H, Scalzitti J, Laughner E, Simons J, Semenza G. Expression of hypoxia-inducible factor 1α in brain tumors: association with angiogenesis, invasion, and progression. Cancer88(11), 2606–2618 (2000).
  • Zagzag D, Amirnovin R, Greco MA et al. Vascular apoptosis and involution in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Lab. Invest.80(6), 837–849 (2000).
  • Carmeliet P, Jain R. Angiogenesis in cancer and other diseases. Nature407(6801), 249–257 (2000).
  • Brat D, Castellano-Sanchez A, Kaur B, Van Meir E. Genetic and biologic progression in astrocytomas and their relation to angiogenic dysregulation. Adv. Anat. Pathol.9(1), 24–36 (2002).
  • Kaur B, Khwaja F, Severson E, Matheny S, Brat D, Van Meir E. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-oncology7(2), 134–153 (2005).
  • Fischer I, Gagner J, Law M, Newcomb E, Zagzag D. Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathol.15(4), 297–310 (2005).
  • Kargiotis O, Rao J, Kyritsis A. Mechanisms of angiogenesis in gliomas. J. Neurooncol.78(3), 281–293 (2006).
  • Tuettenberg J, Friedel C, Vajkoczy P. Angiogenesis in malignant glioma – a target for antitumor therapy? Crit. Rev. Oncol. Hematol.59(3), 181–193 (2006).
  • Reiss Y, Machein M, Plate K. The role of angiopoietins during angiogenesis in gliomas. Brain Pathol.15(4), 311–317 (2005).
  • Dunn I, Heese O, Black P. Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. J. Neurooncol.50(1–2), 121–137 (2000).
  • Kaur B, Tan C, Brat D, Post D, Van Meir E. Genetic and hypoxic regulation of angiogenesis in gliomas. J. Neurooncol.70(2), 229–243 (2004).
  • Koivunen J, Aaltonen V, Peltonen J. Protein kinase C (PKC) family in cancer progression. Cancer Lett.235(1), 1–10 (2006).
  • Pore N, Liu S, Haas-Kogan D, O’Rourke D, Maity A. PTEN mutation and epidermal growth factor receptor activation regulate vascular endothelial growth factor (VEGF) mRNA expression in human glioblastoma cells by transactivating the proximal VEGF promoter. Cancer Res.63(1), 236–241 (2003).
  • Guo W, Giancotti F. Integrin signalling during tumour progression. Nat. Rev. Mol. Cell Biol.5(10), 816–826 (2004).
  • Lakka S, Gondi C, Rao J. Proteases and glioma angiogenesis. Brain Pathol.15(4), 327–341 (2005).
  • Lakka SS, Gondi CS, Dinh DH et al. Specific interference of urokinase-type plasminogen activator receptor and matrix metalloproteinase-9 gene expression induced by double-stranded RNA results in decreased invasion, tumor growth, and angiogenesis in gliomas. J. Biol. Chem.280(23), 21882–21892 (2005).
  • Serini G, Valdembri D, Bussolino F. Integrins and angiogenesis: a sticky business. Exp. Cell Res.312(5), 651–658 (2006).
  • Wang D, Anderson J, Gladson C. The role of the extracellular matrix in angiogenesis in malignant glioma tumors. Brain Pathol.15(4), 318–326 (2005).
  • Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro-oncology7(4), 452–464 (2005).
  • Bertolini F, Shaked Y, Mancuso P, Kerbel R. The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat. Rev. Cancer6(11), 835–845 (2006).
  • Coussens L, Werb Z. Inflammation and cancer. Nature420(6917), 860–867 (2002).
  • Grunewald M, Avraham I, Dor Y et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell124(1), 175–189 (2006).
  • Kaplan R, Psaila B, Lyden D. Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev.25(4), 521–529 (2006).
  • Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat. Med.9(6), 702–712 (2003).
  • Rege T, Fears C, Gladson C. Endogenous inhibitors of angiogenesis in malignant gliomas: nature’s antiangiogenic therapy. Neuro-oncology7(2), 106–121 (2005).
  • Gagner J, Law M, Fischer I, Newcomb E, Zagzag D. Angiogenesis in gliomas: imaging and experimental therapeutics. Brain Pathol.15(4), 342–363 (2005).
  • de Bouard S, Guillamo J. Angiogenesis and anti-angiogenic strategies for glioblastoma. Bull. Cancer92(4), 360–372 (2005).
  • Kieran M. Anti-angiogenic chemotherapy in central nervous system tumors. Cancer Treat. Res.117, 337–349 (2004).
  • Jain R, Di Tomaso E, Duda DG et al. Angiogenesis in brain tumors. Nat. Rev. Neurosci.8, 610–622 (2007).
  • Purow B, Fine H. Antiangiogenic therapy for primary and metastatic brain tumors. Hematol. Oncol. Clin. North Am.18(5), 1161–1181 (2004).
  • Plate K, Breier G, Weich H, Risau W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature359(6398), 845–848 (1992).
  • Plate K. Mechanisms of angiogenesis in the brain. J. Neuropathol. Exp. Neurol.58(4), 313–320 (1999).
  • Plate K, Breier G, Weich H, Mennel H, Risau W. Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int. J. Cancer59(4), 520–529 (1994).
  • Ferrara N, Gerber H, LeCouter J. The biology of VEGF and its receptors. Nat. Med.9(6), 669–676 (2003).
  • Roy H, Bhardwaj S, Yla-Herttuala S. Biology of vascular endothelial growth factors. FEBS Lett.580(12), 2879–2887 (2006).
  • Yamazaki Y, Morita T. Molecular and functional diversity of vascular endothelial growth factors. Mol. Divers.10(4), 515–527 (2006).
  • Ellis L. The role of neuropilins in cancer. Mol. Cancer Ther.5(5), 1099–1107 (2006).
  • Forsythe J, Jiang B, Iyer N et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell Biol.16(9), 4604–4613 (1996).
  • Hicklin D, Ellis L. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol.23(5), 1011–1027 (2005).
  • Rak J, Mitsuhashi Y, Bayko L et al. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res.55(20), 4575–4580 (1995).
  • Jiang B, Zheng J, Aoki M, Vogt P. Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc. Natl Acad. Sci. USA97(4), 1749–1753 (2000).
  • Woods S, McGlade C, Guha A. Phosphatidylinositol 3´-kinase and MAPK/ERK kinase 1/2 differentially regulate expression of vascular endothelial growth factor in human malignant astrocytoma cells. Neuro-oncology4(4), 242–252 (2002).
  • Maity A, Pore N, Lee J, Solomon D, O’Rourke D. Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3´-kinase and distinct from that induced by hypoxia. Cancer Res.60(20), 5879–5886 (2000).
  • Guo P, Hu B, Gu W et al. Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am. J. Pathol.162(4), 1083–1093 (2003).
  • Tsai J, Goldman C, Gillespie G. Vascular endothelial growth factor in human glioma cell lines: induced secretion by EGF, PDGF-BB, and bFGF. J. Neurosurg.82(5), 864–873 (1995).
  • Wang D, Huang H, Kazlauskas A, Cavenee W. Induction of vascular endothelial growth factor expression in endothelial cells by platelet-derived growth factor through the activation of phosphatidylinositol 3-kinase. Cancer Res.59(7), 1464–1472 (1999).
  • Cheng S, Huang H, Nagane M et al. Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proc. Natl Acad. Sci. USA93(16), 8502–8507 (1996).
  • Ferrara N. VEGF as a therapeutic target in cancer. Oncology69(Suppl. 3), 11–16 (2005).
  • Ferrara N, Hillan K, Gerber H, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov.3(5), 391–400 (2004).
  • Gerber H, Ferrara N. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res.65(3), 671–680 (2005).
  • Im S, Gomez-Manzano C, Fueyo J et al. Antiangiogenesis treatment for gliomas: transfer of antisense-vascular endothelial growth factor inhibits tumor growth in vivo. Cancer Res.59(4), 895–900 (1999).
  • Lee C, Heijn M, di Tomaso E et al. Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res.60(19), 5565–5570 (2000).
  • Kozin S, Boucher Y, Hicklin D, Bohlen P, Jain R, Suit H. Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer Res.61(1), 39–44 (2001).
  • Kunkel P, Ulbricht U, Bohlen P et al. Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res.61(18), 6624–6628 (2001).
  • Sathornsumetee S, Hjelmeland A, Keir S et al. AAL881, a novel small molecule inhibitor of RAF and vascular endothelial growth factor receptor activities, blocks the growth of malignant glioma. Cancer Res.66(17), 8722–8730 (2006).
  • Albert D, Tapang P, Magoc T et al. Preclinical activity of ABT-869, a multitargeted receptor tyrosine kinase inhibitor. Mol. Cancer Ther.5(4), 995–1006 (2006).
  • Goudar R, Shi Q, Hjelmeland M et al. Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition. Mol. Cancer Ther.4(1), 101–112 (2005).
  • Traxler P, Allegrini P, Brandt R et al. AEE788: a dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res.64(14), 4931–4941 (2004).
  • Jones-Bolin S, Zhao H, Hunter K, Klein-Szanto A, Ruggeri B. The effects of the oral, pan-VEGF-R kinase inhibitor CEP-7055 and chemotherapy in orthotopic models of glioblastoma and colon carcinoma in mice. Mol. Cancer Ther.5(7), 1744–1753 (2006).
  • Fong T, Shawver L, Sun L et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res.59(1), 99–106 (1999).
  • Ma J, Li S, Reed K, Guo P, Gallo J. Pharmacodynamic-mediated effects of the angiogenesis inhibitor SU5416 on the tumor disposition of temozolomide in subcutaneous and intracerebral glioma xenograft models. J. Pharmacol. Exp. Ther.305(3), 833–839 (2003).
  • Jane E, Premkumar D, Pollack I. Coadministration of sorafenib with rottlerin potently inhibits cell proliferation and migration in human malignant glioma cells. J. Pharmacol. Exp. Ther.319(3), 1070–1080 (2006).
  • Farhadi M, Capelle H, Erber R, Ullrich A, Vajkoczy P. Combined inhibition of vascular endothelial growth factor and platelet-derived growth factor signaling: effects on the angiogenesis, microcirculation, and growth of orthotopic malignant gliomas. J. Neurosurg.102(2), 363–370 (2005).
  • Schueneman A, Himmelfarb E, Geng L et al. SU11248 maintenance therapy prevents tumor regrowth after fractionated irradiation of murine tumor models. Cancer Res.63(14), 4009–4016 (2003).
  • Damiano V, Melisi D, Bianco C et al. Cooperative antitumor effect of multitargeted kinase inhibitor ZD6474 and ionizing radiation in glioblastoma. Clin. Cancer Res.11(15), 5639–5644 (2005).
  • Frederick B, Gustafson D, Bianco C, Ciardiello F, Dimery I, Raben D. ZD6474, an inhibitor of VEGFR and EGFR tyrosine kinase activity in combination with radiotherapy. Int. J. Radiat. Oncol. Biol. Phys.64(1), 33–37 (2006).
  • Rich J, Sathornsumetee S, Keir S et al. ZD6474, a novel tyrosine kinase inhibitor of vascular endothelial growth factor receptor and epidermal growth factor receptor, inhibits tumor growth of multiple nervous system tumors. Clin. Cancer Res.11(22), 8145–8157 (2005).
  • Goldbrunner R, Bendszus M, Wood J, Kiderlen M, Sasaki M, Tonn J. PTK787/ZK222584, an inhibitor of vascular endothelial growth factor receptor tyrosine kinases, decreases glioma growth and vascularization. Neurosurgery55(2), 426–432; discussion 432 (2004).
  • Holash J, Davis S, Papadopoulos N et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc. Natl Acad. Sci. USA99(17), 11393–11398 (2002).
  • Wachsberger P, Burd R, Cardi C et al. VEGF trap in combination with radiotherapy improves tumor control in u87 glioblastoma. Int. J. Radiat. Oncol. Biol. Phys.67(5), 1526–1537 (2007).
  • Jain R, Duda D, Clark J, Loeffler J. Lessons from Phase III clinical trials on anti-VEGF therapy for cancer. Nat. Clin. Pract. Oncol.3(1), 24–40 (2006).
  • Vredenburgh JJ, Desjardins A, Herndon JE et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol.25, 4722–4729 (2007).
  • Escudier B, Eisen T, Stadler W et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med.356(2), 125–134 (2007).
  • Motzer G, Hutson TE, Tomczak P et al. Sunitinib versus interferon alpha in metastatic renal cell carcinoma. N. Engl. J. Med.356, 115–124 (2007).
  • Conrad C, Friedman H, Reardon D et al. A Phase I/II trial of single-agent PTK 787/ZK 222584 (PTK/ZK), a novel, oral angiogenesis inhibitor, in patients with recurrent glioblastoma multiforme (GBM). Presented at: The ASCO Annual Meeting. New Orleans, LA, USA, 5–8 June 2004.
  • Reardon D, Friedman H, Brada M et al. A Phase I/II trial of PTK 787/ZK 222584 (PTK/ZK), a multi-VEGF receptor tyrosine kinase inhibitor, in combination with either temozolomide or lomustine for patients with recurrent glioblastoma multiforme (GBM). Presented at: The Society for Neuro-Oncology Annual Meeting. Toronto, Canada, 18–21 November 2004.
  • Drevs J, Zirrgiebel U, Schmidt-Gersbach C et al. Soluble markers for the assessment of biological activity with PTK787/ZK 222584 (PTK/ZK), a vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor in patients with advanced colorectal cancer from two Phase I trials. Ann. Oncol.16(4), 558–565 (2005).
  • Morabito A, De Maio E, Di Maio M, Normanno N, Perrone F. Tyrosine kinase inhibitors of vascular endothelial growth factor receptors in clinical trials: current status and future directions. Oncologist11(7), 753–764 (2006).
  • Batchelor T, Sorensen A, di Tomaso E et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell11(1), 83–95 (2007).
  • Raymond E, Brandes A, Van Oosterom A et al. Multicentre Phase II study of imatinib mesylate in patients with recurrent glioblastoma: an EORTC: NDDG/BTG Intergroup Study. Presented at: The ASCO Annual Meeting. New Orleans, LA, USA, 5–8 June 2004.
  • van den Bent M, Brandes A, Frenay M et al. Multicentre Phase II study of imatinib mesylate (Gleevec®) in patients with recurrent anaplastic oligodendroglioma (AOD)/mixed oligoastrocytoma (MOA) and anaplastic astrocytoma (AA)/low grade astrocytoma (LGA): an EORTC New Drug Development Group (NDDG) and Brain Tumor Group (BTG) study. Presented at: The ASCO Annual Meeting. Orlando, FL, USA, 13–17 May 2005.
  • Wen P, Yung W, Lamborn K et al. Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99–08. Clin. Cancer Res.12(16), 4899–4907 (2006).
  • Dresemann G. Imatinib and hydroxyurea in pretreated progressive glioblastoma multiforme: a patient series. Ann. Oncol.16(10), 1702–1708 (2005).
  • Coomber B. Suramin inhibits C6 glioma-induced angiogenesis in vitro. J. Cell. Biochem.58(2), 199–207 (1995).
  • D’Amato R, Loughnan M, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc. Natl Acad. Sci. USA91(9), 4082–4085 (1994).
  • Gagliardi A, Kassack M, Kreimeyer A, Muller G, Nickel P, Collins D. Antiangiogenic and antiproliferative activity of suramin analogues. Cancer Chemother. Pharmacol.41(2), 117–124 (1998).
  • Takano S, Gately S, Engelhard H, Tsanaclis A, Brem S. Suramin inhibits glioma cell proliferation in vitro and in the brain. J. Neurooncol.21(3), 189–201 (1994).
  • Fine H, Figg W, Jaeckle K et al. Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. J. Clin. Oncol.18(4), 708–715 (2000).
  • Fine H, Wen P, Maher E et al. Phase II trial of thalidomide and carmustine for patients with recurrent high-grade gliomas. J. Clin. Oncol.21(12), 2299–2304 (2003).
  • Marx G, Pavlakis N, McCowatt S et al. Phase II study of thalidomide in the treatment of recurrent glioblastoma multiforme. J. Neurooncol.54(1), 31–38 (2001).
  • Kesari S, Schiff D, Henson JW et al. Phase II study of temozolomide, thalidomide and celecoxib for newly-diagnosed glioblastoma in adults. Neuro-Oncology (2007) (In Press).
  • Chang S, Lamborn K, Malec M et al. Phase II study of temozolomide and thalidomide with radiation therapy for newly diagnosed glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys.60(2), 353–357 (2004).
  • Grossman S, Phuphanich S, Lesser G et al. Toxicity, efficacy, and pharmacology of suramin in adults with recurrent high-grade gliomas. J. Clin. Oncol.19(13), 3260–3266 (2001).
  • Laterra J, Grossman S, Carson K, Lesser G, Hochberg F, Gilbert M. Suramin and radiotherapy in newly diagnosed glioblastoma: Phase 2 NABTT CNS Consortium study. Neuro-oncology6(1), 15–20 (2004).
  • Chi A, Wen P. Inhibiting kinases in malignant gliomas. Expert Opin. Ther. Targets11(4), 473–496 (2007).
  • Wen P, Kesari S, Drappatz J. Malignant gliomas: strategies to increase the effectiveness of targeted molecular treatment. Expert Rev. Anticancer Ther.6(5), 733–754 (2006).
  • Nabors L, Mikkelsen T, Rosenfeld SS et al. Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. J. Clin. Oncol.25, 1651–1657 (2007).
  • Reardon D, Fink K, Nabors B et al. Phase IIa trial of cilengitide (EMD121974) single-agent therapy in patients (pts) with recurrent glioblastoma (GBM): EMD 121974–009. Presented at: The ASCO Annual Meeting. Chicago, IL, USA, 1–5 June 2007.
  • Stupp R, Goldbrunner R, Neyns B et al. Phase I/IIa trial of cilengitide (EMD121974) and temozolomide with concomitant radiotherapy, followed by temozolomide and cilengitide maintenance therapy in patients (pts) with newly diagnosed glioblastoma (GBM). Presented at: The ASCO Annual Meeting. Chicago, IL, USA, 1–5 June 2007.
  • Reardon D, Quinn J, Vredenburgh J et al. Phase II trial of irinotecan plus celecoxib in adults with recurrent malignant glioma. Cancer103(2), 329–338 (2005).
  • Levin V, Giglio P, Puduvalli V et al. Combination chemotherapy with 13-cis-retinoic acid and celecoxib in the treatment of glioblastoma multiforme. J. Neurooncol.78(1), 85–90 (2006).
  • Solomon S, McMurray J, Pfeffer M et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N. Engl. J. Med.352(11), 1071–1080 (2005).
  • Hanahan D, Bergers G, Bergsland E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J. Clin. Invest.105(8), 1045–1047 (2000).
  • Bello L, Carrabba G, Giussani C et al. Low-dose chemotherapy combined with an antiangiogenic drug reduces human glioma growth in vivo. Cancer Res.61(20), 7501–7506 (2001).
  • Bertolini F, Paul S, Mancuso P et al. Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res.63(15), 4342–4346 (2003).
  • Man S, Bocci G, Francia G et al. Antitumor effects in mice of low-dose (metronomic) cyclophosphamide administered continuously through the drinking water. Cancer Res.62(10), 2731–2735 (2002).
  • Kamen B, Rubin E, Aisner J, Glatstein E. High-time chemotherapy or high time for low dose. J. Clin. Oncol.18(16), 2935–2937 (2000).
  • Browder T, Butterfield C, Kraling B et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res.60(7), 1878–1886 (2000).
  • Hahnfeldt P, Folkman J, Hlatky L. Minimizing long-term tumor burden: the logic for metronomic chemotherapeutic dosing and its antiangiogenic basis. J. Theor. Biol.220(4), 545–554 (2003).
  • Kerbel R, Kamen B. The anti-angiogenic basis of metronomic chemotherapy. Nat. Rev. Cancer4(6), 423–436 (2004).
  • Klement G, Huang P, Mayer B et al. Differences in therapeutic indexes of combination metronomic chemotherapy and an anti-VEGFR-2 antibody in multidrug-resistant human breast cancer xenografts. Clin. Cancer Res.8(1), 221–232 (2002).
  • Stoll B, Migliorini C, Kadambi A, Munn L, Jain R. A mathematical model of the contribution of endothelial progenitor cells to angiogenesis in tumors: implications for antiangiogenic therapy. Blood102(7), 2555–2561 (2003).
  • Vacca A, Iurlaro M, Ribatti D et al. Antiangiogenesis is produced by nontoxic doses of vinblastine. Blood94(12), 4143–4155 (1999).
  • Kong D, Lee J, Kim W et al. A pilot study of metronomic temozolomide treatment in patients with recurrent temozolomide-refractory glioblastoma. Oncol. Rep.16(5), 1117–1121 (2006).
  • Kieran MW, Turner CD, Rubin JB et al. A feasibility trial of antiangiogenic (metronomic) chemotherapy in pediatric patients with recurrent or progressive cancer. J. Pediatr. Hematol. Oncol.27, 573–581 (2005).
  • Fulton D, Urtasun R, Forsyth P. Phase II study of prolonged oral therapy with etoposide (VP16) for patients with recurrent malignant glioma. J. Neurooncol.27(2), 149–155 (1996).
  • Herrlinger U, Rieger J, Steinbach J, Nagele T, Dichgans J, Weller M. UKT-04 trial of continuous metronomic low-dose chemotherapy with methotrexate and cyclophosphamide for recurrent glioblastoma. J. Neurooncol.71(3), 295–299 (2005).
  • Kesari S, Schiff D, Doherty L et al. Phase II study of metronomic chemotherapy for recurrent malignant gliomas in adults. Neuro-oncology9(3), 354–363 (2007).
  • Hochberg FH, Pruitt A. Assumptions in the radiotherapy of glioblastoma. Neurology30(9), 907–911 (1980).
  • Kelly PJ, Daumas-Duport C, Kispert DB, Kall BA, Scheithauer BW, Illig JJ. Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J. Neurosurg.66(6), 865–874 (1987).
  • Lefranc F, Brotchi J, Kiss R. Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J. Clin. Oncol.23(10), 2411–2422 (2005).
  • Salhia B, Tran NL, Symons M, Winkles JA, Rutka JT, Berens ME. Molecular pathways triggering glioma cell invasion. Expert Rev. Mol. Diagn.6(4), 613–626 (2006).
  • Nakada M, Nakada S, Demuth T, Tran NL, Hoelzinger DB, Berens ME. Molecular targets of glioma invasion. Cell. Mol. Life Sci.64(4), 458–478 (2007).
  • Newton HB. Molecular neuro-oncology and the development of targeted therapeutic strategies for brain tumors. Part 3: brain tumor invasiveness. Expert Rev. Anticancer Ther.4(5), 803–821 (2004).
  • Giese A, Bjerkvig R, Berens ME, Westphal M. Cost of migration: invasion of malignant gliomas and implications for treatment. J. Clin. Oncol.21(8), 1624–1636 (2003).
  • Gunia S, Hussein S, Radu DL et al. CD44s-targeted treatment with monoclonal antibody blocks intracerebral invasion and growth of 9L gliosarcoma. Clin. Exp. Metastasis17(3), 221–230 (1999).
  • Murai T, Miyazaki Y, Nishinakamura H et al. Engagement of CD44 promotes Rac activation and CD44 cleavage during tumor cell migration. J. Biol. Chem.279(6), 4541–4550 (2004).
  • Sasaki H, Yoshida K, Ikeda E et al. Expression of the neural cell adhesion molecule in astrocytic tumors: an inverse correlation with malignancy. Cancer82(10), 1921–1931 (1998).
  • Suzuki T, Izumoto S, Fujimoto Y, Maruno M, Ito Y, Yoshimine T. Clinicopathological study of cellular proliferation and invasion in gliomatosis cerebri: important role of neural cell adhesion molecule L1 in tumour invasion. J. Clin. Pathol.58(2), 166–171 (2005).
  • Izumoto S, Ohnishi T, Arita N, Hiraga S, Taki T, Hayakawa T. Gene expression of neural cell adhesion molecule L1 in malignant gliomas and biological significance of L1 in glioma invasion. Cancer Res.56(6), 1440–1444 (1996).
  • Asano K, Duntsch CD, Zhou Q et al. Correlation of N-cadherin expression in high grade gliomas with tissue invasion. J. Neurooncol.70(1), 3–15 (2004).
  • Uhm JH, Gladson CL, Rao JS. The role of integrins in the malignant phenotype of gliomas. Front. Biosci.4, E188–E199 (1999).
  • Riemenschneider MJ, Mueller W, Betensky RA, Mohapatra G, Louis DN. In situ analysis of integrin and growth factor receptor signaling pathways in human glioblastomas suggests overlapping relationships with focal adhesion kinase activation. Am. J. Pathol.167(5), 1379–1387 (2005).
  • Taga T, Suzuki A, Gonzalez-Gomez I et al. α v-integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int. J. Cancer98(5), 690–697 (2002).
  • Naldini L, Tamagnone L, Vigna E et al. Extracellular proteolytic cleavage by urokinase is required for activation of hepatocyte growth factor/scatter factor. EMBO J.11(13), 4825–4833 (1992).
  • Zhang X, Fei Z, Bu X et al. Expression and significance of urokinase type plasminogen activator gene in human brain gliomas. J. Surg. Oncol.74(2), 90–94 (2000).
  • Bhattacharya A, Lakka SS, Mohanam S, Boyd D, Rao JS. Regulation of the urokinase-type plasminogen activator receptor gene in different grades of human glioma cell lines. Clin. Cancer Res.7(2), 267–276 (2001).
  • Gondi CS, Lakka SS, Yanamandra N et al. Adenovirus-mediated expression of antisense urokinase plasminogen activator receptor and antisense cathepsin B inhibits tumor growth, invasion, and angiogenesis in gliomas. Cancer Res.64(12), 4069–4077 (2004).
  • Klein G, Vellenga E, Fraaije MW, Kamps WA, de Bont ES. The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Crit. Rev. Oncol. Hematol.50(2), 87–100 (2004).
  • Fingleton B. Matrix metalloproteinase inhibitors for cancer therapy: the current situation and future prospects. Expert Opin. Ther. Targets7(3), 385–397 (2003).
  • Purcell WT, Rudek MA, Hidalgo M. Development of matrix metalloproteinase inhibitors in cancer therapy. Hematol. Oncol. Clin. North Am.16(5), 1189–1227 (2002).
  • Nakada M, Okada Y, Yamashita J. The role of matrix metalloproteinases in glioma invasion. Front. Biosci.8, E261–E269 (2003).
  • Sawaya R, Go Y, Kyritisis AP et al. Elevated levels of Mr 92,000 type IV collagenase during tumor growth in vivo. Biochem. Biophys. Res. Commun.251(2), 632–636 (1998).
  • Forsyth PA, Wong H, Laing TD et al. Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br. J. Cancer79(11–12), 1828–1835 (1999).
  • Sawaya RE, Yamamoto M, Gokaslan ZL et al. Expression and localization of 72 kDa type IV collagenase (MMP-2) in human malignant gliomas in vivo. Clin. Exp. Metastasis14(1), 35–42 (1996).
  • Nakamura M, Ishida E, Shimada K et al. Frequent LOH on 22q12.3 and TIMP-3 inactivation occur in the progression to secondary glioblastomas. Lab. Invest.85(2), 165–175 (2005).
  • Lu KV, Jong KA, Rajasekaran AK, Cloughesy TF, Mischel PS. Upregulation of tissue inhibitor of metalloproteinases (TIMP)-2 promotes matrix metalloproteinase (MMP)-2 activation and cell invasion in a human glioblastoma cell line. Lab. Invest.84(1), 8–20 (2004).
  • Mikkelsen T, Yan PS, Ho KL, Sameni M, Sloane BF, Rosenblum ML. Immunolocalization of cathepsin B in human glioma: implications for tumor invasion and angiogenesis. J. Neurosurg.83(2), 285–290 (1995).
  • Rempel SA, Rosenblum ML, Mikkelsen T et al. Cathepsin B expression and localization in glioma progression and invasion. Cancer Res.54(23), 6027–6031 (1994).
  • Sivaparvathi M, Sawaya R, Wang SW et al. Overexpression and localization of cathepsin B during the progression of human gliomas. Clin. Exp. Metastasis13(1), 49–56 (1995).
  • Strojnik T, Kos J, Zidanik B, Golouh R, Lah T. Cathepsin B immunohistochemical staining in tumor and endothelial cells is a new prognostic factor for survival in patients with brain tumors. Clin. Cancer Res.5(3), 559–567 (1999).
  • Yanamandra N, Gumidyala KV, Waldron KG et al. Blockade of cathepsin B expression in human glioblastoma cells is associated with suppression of angiogenesis. Oncogene23(12), 2224–2230 (2004).
  • Gondi CS, Lakka SS, Dinh DH, Olivero WC, Gujrati M, Rao JS. RNAi-mediated inhibition of cathepsin B and uPAR leads to decreased cell invasion, angiogenesis and tumor growth in gliomas. Oncogene23(52), 8486–8496 (2004).
  • Fukuda ME, Iwadate Y, Machida T et al. Cathepsin D is a potential serum marker for poor prognosis in glioma patients. Cancer Res.65(12), 5190–5194 (2005).
  • Flannery T, McQuaid S, McGoohan C et al. Cathepsin S expression: an independent prognostic factor in glioblastoma tumours – a pilot study. Int. J. Cancer119(4), 854–860 (2006).
  • Zajc I, Hreljac I, Lah T. Cathepsin L affects apoptosis of glioblastoma cells: a potential implication in the design of cancer therapeutics. Anticancer Res.26(5A), 3357–3364 (2006).
  • Bjarnason JB, Fox JW. Snake venom metalloendopeptidases: reprolysins. Methods Enzymol.248, 345–368 (1995).
  • Wildeboer D, Naus S, Amy Sang QX, Bartsch JW, Pagenstecher A. Metalloproteinase disintegrins ADAM8 and ADAM19 are highly regulated in human primary brain tumors and their expression levels and activities are associated with invasiveness. J. Neuropathol. Exp. Neurol.65(5), 516–527 (2006).
  • Kodama T, Ikeda E, Okada A et al. ADAM12 is selectively overexpressed in human glioblastomas and is associated with glioblastoma cell proliferation and shedding of heparin-binding epidermal growth factor. Am. J. Pathol.165(5), 1743–1753 (2004).
  • Held-Feindt J, Paredes EB, Blomer U et al. Matrix-degrading proteases ADAMTS4 and ADAMTS5 (disintegrins and metalloproteinases with thrombospondin motifs 4 and 5) are expressed in human glioblastomas. Int. J. Cancer118(1), 55–61 (2006).
  • Zheng X, Jiang F, Katakowski M et al. Inhibition of ADAM17 reduces hypoxia-induced brain tumor cell invasiveness. Cancer Sci.98(5), 674–684 (2007).
  • Hecker TP, Grammer JR, Gillespie GY, Stewart J Jr, Gladson CL. Focal adhesion kinase enhances signaling through the Shc/extracellular signal-regulated kinase pathway in anaplastic astrocytoma tumor biopsy samples. Cancer Res.62(9), 2699–2707 (2002).
  • Zagzag D, Friedlander DR, Margolis B et al. Molecular events implicated in brain tumor angiogenesis and invasion. Pediatr. Neurosurg.33(1), 49–55 (2000).
  • Liu TJ, LaFortune T, Honda T et al. Inhibition of both focal adhesion kinase and insulin-like growth factor-I receptor kinase suppresses glioma proliferation in vitro and in vivo. Mol. Cancer Ther.6(4), 1357–1367 (2007).
  • Iwadate Y, Sakaida T, Saegusa T et al. Proteome-based identification of molecular markers predicting chemosensitivity to each category of anticancer agents in human gliomas. Int. J. Oncol.26(4), 993–998 (2005).
  • Chan AY, Coniglio SJ, Chuang YY et al. Roles of the Rac1 and Rac3 GTPases in human tumor cell invasion. Oncogene24(53), 7821–7829 (2005).
  • Ding Q, Stewart J Jr, Prince CW et al. Promotion of malignant astrocytoma cell migration by osteopontin expressed in the normal brain: differences in integrin signaling during cell adhesion to osteopontin versus vitronectin. Cancer Res.62(18), 5336–5343 (2002).
  • Manning TJ Jr, Parker JC, Sontheimer H. Role of lysophosphatidic acid and rho in glioma cell motility. Cell Motil. Cytoskeleton45(3), 185–199 (2000).
  • Salhia B, Rutten F, Nakada M et al. Inhibition of Rho-kinase affects astrocytoma morphology, motility, and invasion through activation of Rac1. Cancer Res.65(19), 8792–8800 (2005).
  • Malchinkhuu E, Sato K, Horiuchi Y et al. Role of p38 mitogen-activated kinase and c-Jun terminal kinase in migration response to lysophosphatidic acid and sphingosine-1-phosphate in glioma cells. Oncogene24(44), 6676–6688 (2005).
  • Annabi B, Bouzeghrane M, Moumdjian R, Moghrabi A, Beliveau R. Probing the infiltrating character of brain tumors: inhibition of RhoA/ROK-mediated CD44 cell surface shedding from glioma cells by the green tea catechin EGCg. J. Neurochem.94(4), 906–916 (2005).
  • Joy AM, Beaudry CE, Tran NL et al. Migrating glioma cells activate the PI3-K pathway and display decreased susceptibility to apoptosis. J. Cell Sci.116(Pt 21), 4409–4417 (2003).
  • Hoelzinger DB, Mariani L, Weis J et al. Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia7(1), 7–16 (2005).
  • Nagai S, Washiyama K, Kurimoto M, Takaku A, Endo S, Kumanishi T. Aberrant nuclear factor- κB activity and its participation in the growth of human malignant astrocytoma. J. Neurosurg.96(5), 909–917 (2002).
  • Tran NL, McDonough WS, Savitch BA, Sawyer TF, Winkles JA, Berens ME. The tumor necrosis factor-like weak inducer of apoptosis (TWEAK)-fibroblast growth factor-inducible 14 (Fn14) signaling system regulates glioma cell survival via NFκB pathway activation and BCL-XL/BCL-W expression. J. Biol. Chem.280(5), 3483–3492 (2005).
  • Nicholas MK, Lukas RV, Jafri NF, Faoro L, Salgia R. Epidermal growth factor receptor-mediated signal transduction in the development and therapy of gliomas. Clin. Cancer Res.12(24), 7261–7270 (2006).
  • Lal A, Glazer CA, Martinson HM et al. Mutant epidermal growth factor receptor up-regulates molecular effectors of tumor invasion. Cancer Res.62(12), 3335–3339 (2002).
  • Penar PL, Khoshyomn S, Bhushan A, Tritton TR. Inhibition of epidermal growth factor receptor-associated tyrosine kinase blocks glioblastoma invasion of the brain. Neurosurgery40(1), 141–151 (1997).
  • Lamszus K, Brockmann MA, Eckerich C et al. Inhibition of glioblastoma angiogenesis and invasion by combined treatments directed against vascular endothelial growth factor receptor-2, epidermal growth factor receptor, and vascular endothelial-cadherin. Clin. Cancer Res.11(13), 4934–4940 (2005).
  • Newton HB. Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 2: PI3K/Akt/PTEN, mTOR, SHH/PTCH and angiogenesis. Expert Rev. Anticancer Ther.4(1), 105–128 (2004).
  • Park CM, Park MJ, Kwak HJ et al. Ionizing radiation enhances matrix metalloproteinase-2 secretion and invasion of glioma cells through Src/epidermal growth factor receptor-mediated p38/Akt and phosphatidylinositol 3-kinase/Akt signaling pathways. Cancer Res.66(17), 8511–8519 (2006).
  • Kubiatowski T, Jang T, Lachyankar MB et al. Association of increased phosphatidylinositol 3-kinase signaling with increased invasiveness and gelatinase activity in malignant gliomas. J. Neurosurg.95(3), 480–488 (2001).
  • Furukawa K, Kumon Y, Harada H et al. PTEN gene transfer suppresses the invasive potential of human malignant gliomas by regulating cell invasion-related molecules. Int. J. Oncol.29(1), 73–81 (2006).
  • Gimbrone MA Jr, Leapman SB, Cotran RS, Folkman J. Tumor dormancy in vivo by prevention of neovascularization. J. Exp. Med.136(2), 261–276 (1972).
  • Lamszus K, Kunkel P, Westphal M. Invasion as limitation to anti-angiogenic glioma therapy. Acta Neurochir. Suppl.88, 169–177 (2003).
  • Schiffer D, Chio A, Giordana MT, Mauro A, Migheli A, Vigliani MC. The vascular response to tumor infiltration in malignant gliomas. Morphometric and reconstruction study. Acta Neuropathol.77(4), 369–378 (1989).
  • Wesseling P, van der Laak JA, de Leeuw H, Ruiter DJ, Burger PC. Quantitative immunohistological analysis of the microvasculature in untreated human glioblastoma multiforme. Computer-assisted image analysis of whole-tumor sections. J. Neurosurg.81(6), 902–909 (1994).
  • Nagano N, Sasaki H, Aoyagi M, Hirakawa K. Invasion of experimental rat brain tumor: early morphological changes following microinjection of C6 glioma cells. Acta Neuropathol.86(2), 117–125 (1993).
  • Sakariassen PO, Prestegarden L, Wang J et al. Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proc. Natl Acad. Sci. USA103(44), 16466–16471 (2006).
  • Pedersen PH, Edvardsen K, Garcia-Cabrera I et al. Migratory patterns of lac-z transfected human glioma cells in the rat brain. Int. J. Cancer62(6), 767–771 (1995).
  • Kusters B, Leenders WP, Wesseling P et al. Vascular endothelial growth factor-A(165) induces progression of melanoma brain metastases without induction of sprouting angiogenesis. Cancer Res.62(2), 341–345 (2002).
  • Leenders W, Kusters B, Pikkemaat J et al. Vascular endothelial growth factor-A determines detectability of experimental melanoma brain metastasis in GD-DTPA-enhanced MRI. Int. J. Cancer105(4), 437–443 (2003).
  • Leenders WP, Kusters B, Verrijp K et al. Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin. Cancer Res.10(18 Pt 1), 6222–6230 (2004).
  • Bottaro DP, Liotta LA. Cancer: out of air is not out of action. Nature423(6940), 593–595 (2003).
  • Steeg PS. Angiogenesis inhibitors: motivators of metastasis? Nat. Med.9(7), 822–823 (2003).
  • Podar K, Tonon G, Sattler M et al. The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc. Natl Acad. Sci. USA103(51), 19478–19483 (2006).
  • Levin V, Phuphanich S, Yung W et al. Randomized, double-blind, placebo-controlled trial of marimastat in glioblastoma multiforme patients following surgery and irradiation. J. Neurooncol.78(3), 295–302 (2006).
  • Groves M, Puduvalli V, Hess K et al. Phase II trial of temozolomide plus the matrix metalloproteinase inhibitor, marimastat, in recurrent and progressive glioblastoma multiforme. J. Clin. Oncol.20(5), 1383–1388 (2002).
  • Yung W, Albright R, Olson J et al. A Phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse. Br. J. Cancer83(5), 588–593 (2000).
  • Abounader R, Laterra J. Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro-oncology7(4), 436–451 (2005).
  • Zhang Y, Vande Woude G. HGF/SF-met signaling in the control of branching morphogenesis and invasion. J. Cell. Biochem.88(2), 408–417 (2003).
  • Lamszus K, Laterra J, Westphal M, Rosen EM. Scatter factor/hepatocyte growth factor (SF/HGF) content and function in human gliomas. Biochem. Int. J. Dev. Neurosci.17(5–6), 517–530 (1999).
  • Brockmann MA, Ulbricht U, Gruner K, Fillbrandt R, Westphal M, Lamszus K. Glioblastoma and cerebral microvascular endothelial cell migration in response to tumor-associated growth factors. Neurosurgery52(6), 1391–1399; discussion 1399 (2003).
  • Blouw B, Song H, Tihan T et al. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell4(2), 133–146 (2003).
  • Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio P. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell3(4), 347–361 (2003).
  • Brockmann M, Papadimitriou A, Brandt M, Fillbrandt R, Westphal M, Lamszus K. Inhibition of intracerebral glioblastoma growth by local treatment with the scatter factor/hepatocyte growth factor-antagonist NK4. Clin. Cancer Res.9(12), 4578–4585 (2003).
  • Martens T, Schmidt NO, Eckerich C et al. A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin. Cancer Res.12(20 Pt 1), 6144–6152 (2006).
  • Burgess T, Coxon A, Meyer S et al. Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. Cancer Res.66(3), 1721–1729 (2006).
  • Reardon D, Akabani G, Coleman R et al. Salvage radioimmunotherapy with murine iodine-131-labeled antitenascin monoclonal antibody 81C6 for patients with recurrent primary and metastatic malignant brain tumors: Phase II study results. J. Clin. Oncol.24(1), 115–122 (2006).
  • Wick W, Naumann U, Weller M. Transforming growth factor-β: a molecular target for the future therapy of glioblastoma. Curr. Pharm. Des.12(3), 341–349 (2006).
  • Bogdahn U, Mahapatra A, Olyushin V et al. A Phase IIb actively controlled study with the TGF-β-2 inhibitor AP 12009 for recurrent or refractory anaplastic astrocytoma. Presented at: The ASCO Annual Meeting. Chicago, IL, USA, 1–5 June 2007.
  • Hau P, Bogdahn U, Olyushin V et al. Results of a Phase IIb study in recurrent or refractory glioblastoma patients with the TGF-β-2 inhibitor AP 12009. Presented at: The ASCO Annual Meeting. Chicago, IL, USA, 1–5 June 2007.
  • Schlingensiepen K, Schlingensiepen R, Steinbrecher A et al. Targeted tumor therapy with the TGF-β2 antisense compound AP 12009. Cytokine Growth Factor Rev.17(1–2), 129–139 (2006).
  • Del Bufalo D, Ciuffreda L, Trisciuoglio D et al. Antiangiogenic potential of the mammalian target of rapamycin inhibitor temsirolimus. Cancer Res.66(11), 5549–5554 (2006).
  • Zhong H, Chiles K, Feldser D et al. Modulation of hypoxia-inducible factor 1α expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res.60(6), 1541–1545 (2000).
  • Su J, Mayo L, Donner D, Durden D. PTEN and phosphatidylinositol 3´-kinase inhibitors up-regulate p53 and block tumor-induced angiogenesis: evidence for an effect on the tumor and endothelial compartment. Cancer Res.63(13), 3585–3592 (2003).
  • Das R, Mahabeleshwar G, Kundu G. Osteopontin induces AP-1-mediated secretion of urokinase-type plasminogen activator through c-Src-dependent epidermal growth factor receptor transactivation in breast cancer cells. J. Biol. Chem.279(12), 11051–11064 (2004).
  • Lund CV, Nguyen MT, Owens GC et al. Reduced glioma infiltration in Src-deficient mice. J. Neurooncol.78(1), 19–29 (2006).
  • Angers-Loustau A, Hering R, Werbowetski TE, Kaplan DR, Del Maestro RF. SRC regulates actin dynamics and invasion of malignant glial cells in three dimensions. Mol. Cancer Res.2(11), 595–605 (2004).
  • Schittenhelm M, Shiraga S, Schroeder A et al. Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies. Cancer Res.66(1), 473–481 (2006).
  • Shor A, Keschman E, Lee F et al. Dasatinib inhibits migration and invasion in diverse human sarcoma cell lines and induces apoptosis in bone sarcoma cells dependent on SRC kinase for survival. Cancer Res.67(6), 2800–2808 (2007).
  • Alitalo K, Tammela T, Petrova T. Lymphangiogenesis in development and human disease. Nature438(7070), 946–953 (2005).
  • Casanovas O, Hicklin D, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell8(4), 299–309 (2005).
  • Yoshiji H, Harris S, Thorgeirsson U. Vascular endothelial growth factor is essential for initial but not continued in vivo growth of human breast carcinoma cells. Cancer Res.57(18), 3924–3928 (1997).
  • Erber R, Thurnher A, Katsen A et al. Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J.18(2), 338–340 (2004).
  • Orimo A, Gupta P, Sgroi D et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell121(3), 335–348 (2005).
  • Glade Bender J, Cooney E, Kandel J, Yamashiro D. Vascular remodeling and clinical resistance to antiangiogenic cancer therapy. Drug Resist. Updat.7(4–5), 289–300 (2004).
  • Huang J, Soffer S, Kim E et al. Vascular remodeling marks tumors that recur during chronic suppression of angiogenesis. Mol. Cancer Res.2(1), 36–42 (2004).
  • Yu J, Rak J, Coomber B, Hicklin D, Kerbel R. Effect of p53 status on tumor response to antiangiogenic therapy. Science295(5559), 1526–1528 (2002).
  • Jubb A, Oates A, Holden S, Koeppen H. Predicting benefit from anti-angiogenic agents in malignancy. Nat. Rev. Cancer6(8), 626–635 (2006).
  • Willett C, Boucher Y, di Tomaso E et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat. Med.10(2), 145–147 (2004).
  • Willett C, Boucher Y, Duda D et al. Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a Phase I trial in rectal cancer patients. J. Clin. Oncol.23(31), 8136–8139 (2005).
  • Jubb A, Hurwitz H, Bai W et al. Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer. J. Clin. Oncol.24(2), 217–227 (2006).
  • Ince W, Jubb A, Holden S et al. Association of k-ras, b-raf, and p53 status with the treatment effect of bevacizumab. J. Natl Cancer Inst.97(13), 981–989 (2005).
  • Duda D, Cohen K, di Tomaso E et al. Differential CD146 expression on circulating versus tissue endothelial cells in rectal cancer patients: implications for circulating endothelial and progenitor cells as biomarkers for antiangiogenic therapy. J. Clin. Oncol.24(9), 1449–1453 (2006).
  • Monestiroli S, Mancuso P, Burlini A et al. Kinetics and viability of circulating endothelial cells as surrogate angiogenesis marker in an animal model of human lymphoma. Cancer Res.61(11), 4341–4344 (2001).
  • Shaked Y, Emmenegger U, Man S et al. Optimal biologic dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity. Blood106(9), 3058–3061 (2005).
  • Peles E, Lidar Z, Simon A, Grossman R, Nass D, Ram Z. Angiogenic factors in the cerebrospinal fluid of patients with astrocytic brain tumors. Neurosurgery55(3), 562–567; discussion 567–568 (2004).
  • Sampath P, Weaver C, Sungarian A, Cortez S, Alderson L, Stopa E. Cerebrospinal fluid (vascular endothelial growth factor) and serologic (recoverin) tumor markers for malignant glioma. Cancer Control11(3), 174–180 (2004).
  • Drevs J, Schneider V. The use of vascular biomarkers and imaging studies in the early clinical development of anti-tumour agents targeting angiogenesis. J. Intern. Med.260(6), 517–529 (2006).
  • Gulani V, Sundgren P. Diffusion tensor magnetic resonance imaging. J. Neuroophthalmol.26(1), 51–60 (2006).
  • Hylton N. Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. J. Clin. Oncol.24(20), 3293–3298 (2006).
  • Provenzale J. Imaging of angiogenesis: clinical techniques and novel imaging methods. AJR Am. J. Roentgenol.188(1), 11–23 (2007).
  • Warmuth C, Gunther M, Zimmer C. Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology228(2), 523–532 (2003).
  • Chen EW, Delaloye S, Silverman DH et al. Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with 18Ffluorothymidine positron emission tomography: a pilot study. J. Clin. Oncol.25, 4714–4721 (2007).
  • Rehman S, Jayson G. Molecular imaging of antiangiogenic agents. Oncologist10(2), 92–103 (2005).
  • Liang Y, Diehn M, Watson N et al. Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc. Natl Acad. Sci. USA102(16), 5814–5819 (2005).
  • Maher E, Brennan C, Wen P et al. Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities. Cancer Res.66(23), 11502–11513 (2006).
  • Mischel P, Shai R, Shi T et al. Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene22(15), 2361–2373 (2003).
  • Shai R, Shi T, Kremen T et al. Gene expression profiling identifies molecular subtypes of gliomas. Oncogene22(31), 4918–4923 (2003).
  • Tso C, Freije W, Day A et al. Distinct transcription profiles of primary and secondary glioblastoma subgroups. Cancer Res.66(1), 159–167 (2006).
  • Karcher S, Steiner H, Ahmadi R et al. Different angiogenic phenotypes in primary and secondary glioblastomas. Int. J. Cancer118(9), 2182–2189 (2006).
  • Carlson MR, Pope WB, Horvath S et al. Relationship between survival and edema in malignant gliomas: role of vascular endothelial growth factor and neuronal pentraxin 2. Clin. Cancer Res.13(9), 2592–2598 (2007).
  • Godard S, Getz G, Delorenzi M et al. Classification of human astrocytic gliomas on the basis of gene expression: a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. Cancer Res.63(20), 6613–6625 (2003).
  • Freije W, Castro-Vargas F, Fang Z et al. Gene expression profiling of gliomas strongly predicts survival. Cancer Res.64(18), 6503–6510 (2004).
  • Rich J, Hans C, Jones B et al. Gene expression profiling and genetic markers in glioblastoma survival. Cancer Res.65(10), 4051–4058 (2005).
  • Singh S, Hawkins C, Clarke I et al. Identification of human brain tumour initiating cells. Nature432(7015), 396–401 (2004).
  • Bao S, Wu Q, Sathornsumetee S et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res.66(16), 7843–7848 (2006).
  • Bao S, Wu Q, McLendon R et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature (2006).
  • Calabrese C, Poppleton H, Kocak M et al. A perivascular niche for brain tumor stem cells. Cancer Cell11(1), 69–82 (2007).

Website

  • US National Library of Medicine www.clinicaltrials.gov

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.