77
Views
12
CrossRef citations to date
0
Altmetric
Review

Cancer stem cells and brain tumors: uprooting the bad seeds

&
Pages 1581-1590 | Published online: 10 Jan 2014

References

  • Stewart BW, Kleihues P. World Cancer Report. IARC Press, Lyon, France (2003).
  • De Groot JF, Aldape KD, Colman H. High grade astrocytomas. In: Principles of Neuro-Oncology. Schiff D, O’Neill BP (Eds). McGraw Hill, NY, USA 259–288 (2005).
  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. WHO Classification of Tumours of the Central Nervous System (4th Edition). IARC Press, Lyon, France (2007).
  • Rossi ML, Hughes JT, Esiri MM, Coakham HB, Brownell DB. Immunohistological study of mononuclear cell infiltrate in malignant gliomas. Acta Neuropathol. (Berl.)74(3), 269–277 (1987).
  • Rossi ML, Jones NR, Candy E et al. The mononuclear cell infiltrate compared with survival in high-grade astrocytomas. Acta Neuropathol. (Berl.)78(2), 189–193 (1989).
  • Graeber MB, Scheithauer BW, Kreutzberg GW. Microglia in brain tumors. Glia40(2), 252–259 (2002).
  • Watters JJ, Schartner JM, Badie B. Microglia function in brain tumors. J. Neurosci. Res.81(3), 447–455 (2005).
  • Platten M, Kretz A, Naumann U et al. Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas. Ann. Neurol.54(3), 388–392 (2003).
  • Sliwa M, Markovic D, Gabrusiewicz K et al. The invasion promoting effect of microglia on glioblastoma cells is inhibited by cyclosporin A. Brain130(Pt 2), 476–489 (2007).
  • Daginakatte GC, Gutmann DH. Neurofibromatosis-1 (NF1) heterozygous brain microglia elaborate paracrine factors that promote NF1-deficient astrocyte and glioma growth. Hum. Mol. Genet.16(9), 1098–1112 (2007).
  • Rubin JB, Kung AL, Klein RS et al. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc. Natl Acad. Sci. USA100(23), 13513–13518 (2003).
  • Yang L, Jackson E, Woerner BM, Perry A, Piwnica-Worms D, Rubin JB. Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo. Cancer Res.67(2), 651–658 (2007).
  • Warrington NM, Woerner BM, Daginakatte GC et al. Spatiotemporal differences in CXCL12 expression and cyclic AMP underlie the unique pattern of optic glioma growth in neurofibromatosis type 1. Cancer Res.67(18), 8588–8595 (2007).
  • Listernick R, Charrow J, Greenwald M, Mets M. Natural history of optic pathway tumors in children with neurofibromatosis type 1: a longitudinal study. J. Pediatr.125(1), 63–66 (1994).
  • Gong X, He X, Qi L, Zuo H, Xie Z. Stromal cell derived factor-1 acutely promotes neural progenitor cell proliferation in vitro by a mechanism involving the ERK1/2 and PI-3K signal pathways. Cell Biol. Int.30(5), 466–471 (2006).
  • Claps CM, Corcoran KE, Cho KJ, Rameshwar P. Stromal derived growth factor-1α as a beacon for stem cell homing in development and injury. Curr. Neurovasc. Res.2(4), 319–329 (2005).
  • Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro. Oncol.7(2), 134–153 (2005).
  • Bao S, Wu Q, Sathornsumetee S et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res.66(16), 7843–7848 (2006).
  • Calabrese C, Poppleton H, Kocak M et al. A perivascular niche for brain tumor stem cells. Cancer Cell11(1), 69–82 (2007).
  • Farin A, Suzuki SO, Weiker M, Goldman JE, Bruce JN, Canoll P. Transplanted glioma cells migrate and proliferate on host brain vasculature: a dynamic analysis. Glia53(8), 799–808 (2006).
  • Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res.67(8), 3560–3564 (2007).
  • Ramírez-Castillejo C, Sánchez-Sánchez F, Andreu-Agulló C et al. Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat. Neurosci.9(3), 331–339 (2006).
  • Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med.3(7), 730–737 (1997).
  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100(7), 3983–3988 (2003).
  • Li C, Heidt DG, Dalerba P et al. Identification of pancreatic cancer stem cells. Cancer Res.67(3), 1030–1037 (2007).
  • Prince ME, Sivanandan R, Kaczorowski A et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl Acad. Sci. USA104(3), 973–9789 (2007).
  • O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature445(7123), 106–110 (2007).
  • Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res.65(23), 10946–10951 (2005).
  • Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res.63(18), 5821–5828 (2003).
  • Hemmati HD, Nakano I, Lazareff JA et al. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl Acad. Sci. USA100(25), 15178–15183 (2003).
  • Taylor MD, Poppleton H, Fuller C et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell8(4), 323–335 (2005).
  • Singh SK, Hawkins C, Clarke ID et al. Identification of human brain tumour initiating cells. Nature432(7015), 396–401 (2004).
  • Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature414(6859), 105–111 (2001).
  • Galli R, Binda E, Orfanelli U et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res.64(19), 7011–7021 (2004).
  • Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia39(3), 193–206 (2002).
  • Lee J, Kotliarova S, Kotliarov Y et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell9(5), 391–403 (2006).
  • Dahlstrand J, Zimmerman LB, McKay RD, Lendahl U. Characterization of the human nestin gene reveals a close evolutionary relationship to neurofilaments. J. Cell Sci.103(Pt 2), 589–597 (1992).
  • Tohyama T, Lee VM, Rorke LB, Marvin M, McKay RD, Trojanowski JQ. Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumor cells. Lab. Invest.66(3), 303–313 (1992).
  • Zappone MV, Galli R, Catena R et al. Sox2 regulatory sequences direct expression of a (β)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development127(11), 2367–2382 (2000).
  • Hegedus B, Dasgupta B, Shin JE et al. Neurofibromatosis-1 regulates neuronal and glial cell differentiation from neuroglial progenitors in vivo by both cAMP- and Ras-dependent mechanisms. Cell Stem Cell (2007) (In Press).
  • Nakano I, Paucar AA, Bajpai R et al. Maternal embryonic leucine zipper kinase (MELK) regulates multipotent neural progenitor proliferation. J. Cell Biol.170(3), 413–427 (2005).
  • Beier D, Hau P, Proescholdt M et al. CD133+ and CD133- glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res.67(9), 4010–4015 (2007).
  • Yuan X, Curtin J, Xiong Y et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene23(58), 9392–9400 (2004).
  • Ligon KL, Huillard E, Mehta S et al. Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron53(4), 503–517 (2007).
  • Sanai N, Tramontin AD, Quiñones-Hinojosa A et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature427(6976), 740–744 (2004).
  • Eriksson PS, Perfilieva E, Björk-Eriksson T et al. Neurogenesis in the adult human hippocampus. Nat. Med.4(11), 1313–1317 (1998).
  • Alvarez-Buylla A, Lim DA. For the long run: maintaining germinal niches in the adult brain. Neuron41(5), 683–686 (2004).
  • Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol.425(4), 479–494 (2000).
  • Shen Q, Goderie SK, Jin L et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science304(5675), 1338–1340 (2004).
  • Goodrich LV, Milenkovic L, Higgins KM, Scott MP. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science277(5329), 1109–1113 (1997).
  • Raffel C, Jenkins RB, Frederick L et al. Sporadic medulloblastomas contain PTCH mutations. Cancer Res.57(5), 842–845 (1997).
  • Reifenberger J, Wolter M, Weber RG et al. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res.58(9), 1798–1803 (1998).
  • Palma V, Ruiz i Altaba A. Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex. Development131(2), 337–345 (2004).
  • Taylor MD, Liu L, Raffel C et al. Mutations in SUFU predispose to medulloblastoma. Nat. Genet.31(3), 306–310 (2002).
  • Kinzler KW, Bigner SH, Bigner DD et al. Identification of an amplified, highly expressed gene in a human glioma. Science236(4797), 70–73 (1987).
  • Wallace VA. Purkinje-cell-derived sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr. Biol.9(8), 445–448 (1999).
  • Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by sonic hedgehog. Neuron22(1), 103–114 (1999).
  • Corrales JD, Rocco GL, Blaess S, Guo Q, Joyner AL. Spatial pattern of sonic hedgehog signaling through Gli genes during cerebellum development. Development131(22), 5581–5590 (2004).
  • Corrales JD, Blaess S, Mahoney EM, Joyner AL. The level of sonic hedgehog signaling regulates the complexity of cerebellar foliation. Development133(9), 1811–1821 (2006).
  • Dahmane N, Sánchez P, Gitton Y et al. The sonic hedgehog–Gli pathway regulates dorsal brain growth and tumorigenesis. Development128(24), 5201–5212 (2001).
  • Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A. Hedgehog-Gli1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr. Biol.17(2), 165–172 (2007).
  • Huang H, Mahler-Araujo BM, Sankila A et al. APC mutations in sporadic medulloblastomas. Am. J. Pathol.156(2), 433–437 (2000).
  • Zurawel RH, Chiappa SA, Allen C, Raffel C. Sporadic medulloblastomas contain oncogenic β-catenin mutations. Cancer Res.58(5), 896–899 (1998).
  • Dahmen RP, Koch A, Denkhaus D et al. Deletions of AXIN1, a component of the WNT/wingless pathway, in sporadic medulloblastomas. Cancer Res.61(19), 7039–7043 (2001).
  • McMahon AP, Bradley A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell62(6), 1073–1085 (1990).
  • Thomas KR, Musci TS, Neumann PE, Capecchi MR. Swaying is a mutant allele of the proto-oncogene Wnt-1. Cell67(5), 969–976 (1991).
  • Lie DC, Colamarino SA, Song HJ et al. Wnt signaling regulates adult hippocampal neurogenesis. Nature437(7063), 1370–1375 (2005).
  • Willert K, Brown JD, Danenberg E et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature423(6938), 448–452 (2003).
  • Wei Q, Clarke L, Scheidenhelm DK et al. High-grade glioma formation results from postnatal pten loss or mutant epidermal growth factor receptor expression in a transgenic mouse glioma model. Cancer Res.66(15), 7429–7437 (2006).
  • Holland EC, Hively WP, DePinho RA, Varmus HE. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev.12(23), 3675–3685 (1998).
  • Jackson EL, Garcia-Verdugo JM, Gil-Perotin S et al. PDGFR α-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron51(2), 187–199 (2006).
  • Lokker NA, Sullivan CM, Hollenbach SJ, Israel MA, Giese NA. Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res.62(13), 3729–3735 (2002).
  • Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev.15(15), 1913–1925 (2001).
  • Clarke ID, Dirks PB. A human brain tumor-derived PDGFR-α deletion mutant is transforming. Oncogene22(5), 722–733 (2003).
  • Dasgupta B, Gutmann DH. Neurofibromin regulates neural stem cell proliferation, survival, and astroglial differentiation in vitro and in vivo. J. Neurosci.25(23), 5584–5594 (2005).
  • Bajenaru ML, Hernandez MR, Perry A et al. Optic nerve glioma in mice requires astrocyte Nf1 gene inactivation and Nf1 brain heterozygosity. Cancer Res.63(24), 8573–8577 (2003).
  • Zhu Y, Harada T, Liu L et al. Inactivation of NF1 in CNS causes increased glial progenitor proliferation and optic glioma formation. Development132(24), 5577–5588 (2005).
  • Groszer M, Erickson R, Scripture-Adams SD et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science294(5549), 2186–2189 (2001).
  • Groszer M, Erickson R, Scripture-Adams DD et al. PTEN negatively regulates neural stem cell self-renewal by modulating G0–G1 cell cycle entry. Proc. Natl Acad. Sci. USA103(1), 111–116 (2006).
  • Xiao A, Yin C, Yang C, Di Cristofano A, Pandolfi PP, Van Dyke T. Somatic induction of Pten loss in a preclinical astrocytoma model reveals major roles in disease progression and avenues for target discovery and validation. Cancer Res.65(12), 5172–5180 (2005).
  • Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am. J. Pathol.170(5), 1445–1453 (2007).
  • Gil-Perotin S, Marin-Husstege M, Li J et al. Loss of p53 induces changes in the behavior of subventricular zone cells: implication for the genesis of glial tumors. J. Neurosci.26(4), 1107–1116 (2006).
  • Molofsky AV, He S, Bydon M, Morrison SJ, Pardal R. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev.19(12), 1432–1437 (2005).
  • Bruggeman SW, Valk-Lingbeek ME, van der Stoop PP et al. Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes Dev.19(12), 1438–1443 (2005).
  • Reilly KM, Loisel DA, Bronson RT, McLaughlin ME, Jacks T. Nf1; Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nat. Genet.26(1), 109–113 (2000).
  • Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev.14(8), 994–1004 (2000).
  • Zhu Y, Guignard F, Zhao D et al. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell8(2), 119–130 (2005).
  • Kim HT, Kim IS, Lee IS et al. Human neurospheres derived from the fetal central nervous system are regionally and temporally specified but are not committed. Exp. Neurol.199(1), 222–235 (2006).
  • Hitoshi S, Tropepe V, Ekker M, van der Kooy D. Neural stem cell lineages are regionally specified, but not committed, within distinct compartments of the developing brain. Development129(1), 233–244 (2002).
  • Fu SL, Ma ZW, Yin L, Iannotti C, Lu PH, Xu XM. Region-specific growth properties and trophic requirements of brain- and spinal cord-derived rat embryonic neural precursor cells. Neuroscience135(3), 851–862 (2005).
  • Horiguchi S, Takahashi J, Kishi Y et al. Neural precursor cells derived from human embryonic brain retain regional specificity. J. Neurosci. Res.75(6), 817–824 (2004).
  • Sharma MK, Mansur DB, Reifenberger G et al. Distinct genetic signatures among pilocytic astrocytomas relate to their brain region origin. Cancer Res.67(3), 890–900 (2007).
  • Gilbertson RJ, Gutmann DH. Tumorigenesis in the brain: location, location, location. Cancer Res.67(12), 5579–5582 (2007).
  • Bao S, Wu Q, McLendon RE et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature444(7120), 756–760 (2006).
  • Hambardzumyan D, Squatrito M, Holland EC. Radiation resistance and stem-like cells in brain tumors. Cancer Cell10(6), 454–456 (2006).
  • Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat. Rev. Cancer5(4), 275–284 (2005).
  • Liu G, Yuan X, Zeng Z et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol. Cancer5, 67 (2006).
  • Eramo A, Ricci-Vitiani L, Zeuner A et al. Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ.13(7), 1238–1241 (2006).
  • Spira AI, Carducci MA. Differentiation therapy. Curr. Opin. Pharmacol.3(4), 338–343 (2003).
  • Ohno R, Asou N, Ohnishi K. Treatment of acute promyelocytic leukemia: strategy toward further increase of cure rate. Leukemia17(8), 1454–1463 (2003).
  • Sell S. Stem cell origin of cancer and differentiation therapy. Crit. Rev. Oncol. Hematol.51(1), 1–28 (2004).
  • Piccirillo SG, Reynolds BA, Zanetti N et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature444(7120), 761–765 (2006).
  • Aguado T, Carracedo A, Julien B et al. Cannabinoids induce glioma stem-like cell differentiation and inhibit gliomagenesis. J. Biol. Chem.282(9), 6854–6862 (2007).
  • Cheng T. Cell cycle inhibitors in normal and tumor stem cells. Oncogene23(43), 7256–7266 (2004).
  • Berman DM, Karhadkar SS, Hallahan AR et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science297(5586), 1559–1561 (2002).
  • Bar EE, Chaudhry A, Lin A et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells25(10), 2524–2533 (2007).
  • Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumours. Nat. Rev. Neurosci.8(8), 610–622 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.