74
Views
13
CrossRef citations to date
0
Altmetric
Review

Emerging therapies for malignant glioma

, &
Pages S29-S36 | Published online: 10 Jan 2014

References

  • Nicholas MK, Lukas RV, Jafri NF, Faoro L, Salgia R. Epidermal growth factor receptor-mediated signal transduction in the development and treatment of gliomas. Clin. Cancer Res.12(6), 7261–7270 (2006).
  • Kopelovich l, Fay JR, Sigman CC, Crowell JA. The mammalian target of rapamycin as a potential target for cancer chemoprevention. Cancer Epidemiol. Biomarkers Prev.16(7), 1330–1340 (2007).
  • Maehama T. PTEN: its deregulation and tumorigenesis. Biol. Pharm. Bull.30(9), 1624–1627 (2007).
  • Bredel M, Pollack IF, Freund JM, Hanilton AD, Sebti SM. Inhibition of Ras and related G-proteins as a therapeutic strategy for blocking malignant glioma growth. Neurosurgery43, 124–131 (1998)
  • Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene26, 5541–5552 (2007).
  • Mellinghoff IK, Wang MY, Vivanco I et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med.353, 2012–2024 (2005).
  • Lassman AB, Rossi MR, Raizer JJ et al. Molecular study of malignant gliomas treated with epidermal growth factor receptor inhibitors: tissue analysis from North American Brain Tumor Consortium Trials 01–03 and 00–01. Clin. Cancer Res.11, 7841–7850 (2005).
  • Haas-Kogan DA, Prados MD, Tihan T et al. Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib. J. Natl Cancer Inst.97, 880–887 (2005).
  • Paez JG, Janne PA, Lee JC et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science304, 1497–1500 (2004).
  • Lynch TJ, Bell DW, Sordella R et al. Activating mutationsin the epidermal growth factor receptor underlying responsiveness of non-small cell lung cancer to gefitinib. N. Engl. J. Med.350, 2129–2139 (2004).
  • Mellinghoff IK, Cloughesy TF, Mischel PS. PTEN-mediated resistance to epidermal growth factor receptor kinase inhibitors. Clin. Cancer Res.13, 378–381 (2007).
  • Ramos TC, Figueredo J, Catala M et al. Treatment of high-grade glioma patients with the humanized anti-epidermal growth factor receptor (EGFR) antibody h-R3: report from a Phase I/II trial. Cancer Biol. Ther.5, 375–379 (2006).
  • Combs SE, Heeger S, Haselmann R et al. Treatment of primary glioblastoma multiforme with cetuximab, radiotherapy and temozolomide (GERT)-Phase I/II trial: study protocol. BMC Cancer6, 133 (2006).
  • Wygoda Z, Kula D, Bierzynska-Macszyn G et al. Use of monoclonal anti-EGFR antibody in the radioimmunotherapy of malignant gliomas in the context of EGFR expression in grade III and IV tumors. Hybridoma25, 125–132 (2006).
  • Emrich JG, Brady LW, Quang TS et al. Radioiodinated (I-125) monoclonal antibody 425 in the treatment of high grade glioma patients: ten-year synopsis of a novel treatment. Am. J. Clin. Oncol.25, 541–546 (2002).
  • Quang TS, Brady LW. Radioimmunotherapy as a novel treatment regimen: 125I-labeled monoclonal antibody 425 in the treatment of high grade brain gliomas. Int. J. Radiat. Oncol. Biol. Phys.58, 972–975 (2004).
  • Huang SM, Li J, Harari PM. Monoclonal antibody blockade of the epidermal growth factor receptor in cancer therapy. Cancer Chemother. Biol. Response Modif.19, 339–352 (2001).
  • Bjornst M, Houghton PJ. The TOR pathway: a target for cancer therapy. Nature Rev.4, 335–348 (2004).
  • Galanis E, Buckner JC, Maurer MJ et al. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group study. J. Clin. Oncol.23, 5294–5304 (2005).
  • Chang SM, Wen P, Cloughesy T et al. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest. New Drugs23, 357–361 (2005).
  • Neshat MS, Mellinghoff IK, Tran C et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl Acad. Sci. USA98, 10031–10033 (2001).
  • Doherty L, Gigas DC, Kesari S et al. Pilot study of the combination of EGFR and mTOR inhibitors in recurrent malignant gliomas. Neurology67, 156–158 (2006).
  • Fan QW, Cheng CK, Nicolaides TP et al. A dual phosphoinositide-3-kinase α/mTOR inhibitor cooperates with blockade of epidermal growth factor receptor in PTEN-mutant glioma. Cancer Res.67, 7960–7965 (2007).
  • Panner A, Parsa AT, Pieper RO. Use of APO2L/TRAIL with mTOR inhibitors in the treatment of glioblastoma multiforme. Exp. Rev. Anticancer Ther.6(9), 1313–1322 (2006).
  • Jones PA, Baylin SB. The epigenomics of cancer. Cell128, 683–692 (2007).
  • Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352, 987–996 (2005).
  • Hau P, Stupp R, Hegi ME. MGMT methylation status: the advent of stratified therapy in glioblastoma? Dis. Markers.23, 97–104 (2007).
  • Gensert JM, Baranova OV, Weinstein DE, Ratan RR. CD81, a cell cycle regulator, is a novel target for histone deacetylase inhibition in glioma cells. Neurobiol. Dis.26, 671–680 (2007).
  • Kamitani H, Taniura S, Wanatabe K et al. Histone acetylation may suppress human glioma cell proliferation when p21 WAF/Cip1 and gelsolin are induced. Neuro-oncology4, 95–101 (2002).
  • Munster P, Marchion D, Bicaku E et al. Phase I trial of histone deacetylase inhibition by valproic acid followed by the topoisomerase II inhibitor epirubicin in advanced solid tumors: a clinical and translational study. J. Clin. Oncol.25, 1955–1966 (2007).
  • Glaser KB. HDAC inhibitors: clinical update and mechanism based potential. Biochem. Pharmacol.74, 659–671 (2007).
  • Hockley E, Richon VM, Woodman B et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc. Natl. Acad. Sci.100, 2041–2046 (2003).
  • Entin-Meer M, Yang X, VandenBerg SR et al.In vivo efficacy of novel histone deacetylase inhibitor in combination with radiation for the treatment of gliomas. Neuro-oncology9, 82–88 (2007).
  • Feldkamp MM, Lau N, Roncari L, Guha A. Isotype-specific Ras.GTP-levels predict the efficacy of farnesyl transferase inhibitors against human astrocytes regardless of Ras mutational status. Cancer Res.61, 4425–4431 (2001).
  • Guha A. Ras activation in astrocytomas and neurofibromas. Can. J. Neurol. Sci.25, 267–281 (1998).
  • Feldkamp MM, Lau N, Guha A. Growth inhibition of astrocytoma cells by farnesyl transferase inhibitors is mediated by a combination of anti-proliferative, pro-apoptotic and anti-angiogenic effects. Oncogene18, 7514–7526 (1999).
  • Cloughesy TA, Kuhn J, Robins IA et al. Phase I trial of tipifarnib in patients with recurrent malignant glioma taking enzyme-inducing antiepileptic drugs: a North American Brain Tumor Consortium Study. J. Clin. Oncol.23, 6647–6656 (2005).
  • Cloughesy TF, Wen PY, Robins HI et al. Phase II trial of tipifarnib in patients with recurrent malignant glioma either receiving or not receiving enzyme-inducing antiepileptic drugs: a North American Brain Tumor Consortium Study. J. Clin. Oncol.24, 3651–3656 (2005).
  • Fouladi M, Nicholson HS, Zhou T et al. A Phase II study of the farnesyl transferase inhibitor tipifarnib, in children with recurrent or progressive high-grade glioma, medulloblastoma/primitive neuroectodermal tumor, or brainstem glioma: a Children’s Oncology Group Study. Cancer PMID 17932894 (2007) (Epub ahead of print).
  • Delmas C, Heliez C, Cohen-Jonathan E et al. Farnesyltransferase inhibitor R115777, reverses the resistance of human glioma cell lines to ionizing radiation. Int. J. Cancer100, 43–49 (2002).
  • Cohen-Jonathan E, Laprie A, Delannes M et al. Phase I trial of tipifarnib (R115777) concurrent with radiotherapy in patients with glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys.68(5), 1396–1401 (2007).
  • Folkman J. Targeting angiogenesis: therapeutic implications. N. Engl. J. Med.285(21), 1182–1186 (1971).
  • Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell86(3), 353–364 (1996).
  • Tuettenberg J, Friedel C, Vajkoczy P. Angiogenesis in mammalian glioma–a target for antitumor therapy? Crit. Rev. Oncol. Hematol.59, 181–193 (2006).
  • Criscuolo GR, Merrill ML, Oldfield EH. Further characterization of malignant glioma-derived vascular permeability factor. J. Neurosurg.69(2), 254–262 (1988).
  • Lennmyr F, Ata KA, Funa K, Olsson Y. Expression of vascular endothelial growth factor (VEGF)and its receptors (Flk-1 and Flt-1) following permanent and transient occlusion of the middle cerebral artery in the rat. J. Neuropathol. Exp. Neurol.57(9), 874–882 (1998).
  • Hurwitz H, Fehrenbacher L, Novotny W et al. Bevacizumab plus irinotecan, fluorouracil and leucovorin for metastatic colorectal cancer. N. Engl. J. Med.350, 2336–2342 (2004).
  • Stark-Vance V. Bevacizumab and CPT-11 in the treatment of relapsed malignant glioma. Proceedings of the World Federation of Neuro-Oncology 2nd Quadrennial Meeting, Edinburgh, UK 5 May–8 May 2005.
  • Vredenburgh J, Desjardins A, Herndon II JE et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin. Cancer Res.13(4), 1253–1259 (2007).
  • Vredenburgh J, Desjardins A, Herndon II JE et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol.25, 4722–4729 (2007).
  • Conrad H, Friedman H, Reardon D. A I/II trial of single agent PTK787/ZK222584 (PTK/ZK), a novel oral angiogenesis inhibitor in patients with recurrent glioblastoma multiforme (GBM). Proc. Annu. Meet. Am. Soc. Clin. Oncol.22, 1512 (2004).
  • Batchelor TT, Sorenson AG, di Tomaso E et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell11, 83–85 (2007).
  • Damiano V, Melisi D, Bianco C et al. Cooperative antitumor effect of multitargeted kinase inhibitor and ionizing radiation in glioblastoma. Clin. Cancer Res.11, 5839–5844 (2005).
  • Melchert M, List A. The Thalidomide saga. Int. J. Biochem. Cell Biol.39, 1489–1499 (2007).
  • Chang Sm, Lamborn KR, Malec M et al. Phase II study f temozolomide and thalidomide with radiation therapy for newly diagnosed glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys.60, 353–357 (2004).
  • Rabbani G, Benzil D, Wallam MM et al. Combination therapy with thalidomide, temozolomideand tamoxifen improves quality of life in patients with malignant astrocytomas. Anticancer Res.27(4C), 2729–2736 (2007).
  • Riva M, Imbesi F, Beghi E et al. Temozolomide and thalidomide in the treatment of glioblastoma multiforme. Anticancer Res.27(2), 1067–1071 (2007).
  • Taga T, Suzuki A, Gonzalez-Gomez I et al. alpha v-integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and renascin. Int. J. Cancer98, 690–697 (2002).
  • Omuro AMP, Faivre S, Raymond E. Lessons learned from the targeted therapy of malignant gliomas. Mol. Cancer Ther.6(7), 1909–1919 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.