83
Views
17
CrossRef citations to date
0
Altmetric
Review

Targeting epidermal growth factor receptor variant III: a novel strategy for the therapy of malignant glioma

, &
Pages S45-S50 | Published online: 10 Jan 2014

References

  • Wood GW, Morantz RA. In vitro reversal of depressed -lymphocyte function in the peripheral blood of brain tumor patients. J. Natl Cancer Inst.68(1), 27–33 (1982).
  • Wood GW, Morantz RA. Depressed T lymphocyte function in brain tumor patients: monocytes as suppressor cells. J. Neurooncol.1(2), 87–94 (1983).
  • Yamasaki T, Handa H, Yamashita J, Namba Y, Hanaoka M. Characteristic immunological responses to an experimental mouse brain tumor. Cancer Res.43(10), 4610–4617 (1983).
  • Grauer O, Poschl P, Lohmeier A, Adema GJ, Bogdahn U. Toll-like receptor triggered dendritic cell maturation and IL-12 secretion are necessary to overcome -cell inhibition by glioma-associated TG-β2. J. Neurooncol.82(2), 151–161 (2006).
  • Platten M, Wick W, Weller M. Malignant glioma biology: role for TGF-β in growth, motility, angiogenesis, and immune escape. Microsc. Res. Tech.52(4), 401–410 (2001).
  • Weller M, Fontana A. The failure of current immunotherapy for malignant glioma. Tumor-derived TGF-β, T-cell apoptosis, and the immune privilege of the brain. Brain Res. Brain Res. Rev.21(2), 128–151 (1995).
  • Olofsson A, Miyazono K, Kanzaki T, Colosetti P, Engstrom U, Heldin CH. Transforming growth factor-β1, -β2, and -β3 secreted by a human glioblastoma cell line. Identification of small and different forms of large latent complexes. J. Biol. Chem.267(27), 19482–19488 (1992).
  • Kuppner MC, Hamou MF, Sawamura Y, Bodmer S, de Tribolet N. Inhibition of lymphocyte function by glioblastoma-derived transforming growth factor β2. J. Neurosurg.71(2), 211–217 (1989).
  • Lauro GM, Di Lorenzo N, Grossi M, Maleci A, Guidetti B. Prostaglandin E2 as an immunomodulating factor released in vitro by human glioma cells. Acta Neuropathol.69(3–4), 278–282 (1986).
  • Nakano Y, Kuroda E, Kito T, Yokota A, Yamashita U. Induction of macrophagic prostaglandin E2 synthesis by glioma cells. J. Neurosurg.104(4), 574–582 (2006).
  • Ito A, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T. Augmentation of MHC class I antigen presentation via heat shock protein expression by hyperthermia. Cancer Immunol. Immunother.50(10), 515–522 (2001).
  • Prins RM, Liau LM. Cellular immunity and immunotherapy of brain tumors. Front. Biosci.9, 3124–3136 (2004).
  • Wiendl H, Mitsdoerffer M, Hofmeister V et al. A functional role of HLA-G expression in human gliomas: an alternative strategy of immune escape. J. Immunol.168(9), 4772–4780 (2002).
  • Wiendl H, Mitsdoerffer M, Weller M. Hide-and-seek in the brain: a role for HLA-G mediating immune privilege for glioma cells. Semin. Cancer Biol.13(5), 343–351 (2003).
  • El Andaloussi A, Han Y, Lesniak MS. Prolongation of survival following depletion of CD4+ CD25+ regulatory T-cells in mice with experimental brain tumors. J. Neurosurg.105(3), 430–437 (2006).
  • El Andaloussi A, Lesniak MS. An increase in CD4+ CD25+ FOXP3+ regulatory T-cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro-oncology8(3), 234–243 (2006).
  • El Andaloussi A, Lesniak MS. CD4(+) CD25(+) FoxP3(+) T-cell infiltration and heme oxygenase-1 expression correlate with tumor grade in human gliomas. J. Neurooncol.83(2), 145–152 (2007).
  • El Andaloussi A, Sonabend AM, Han Y, Lesniak MS. Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice with experimental brain tumors. Glia54(6), 526–535 (2006).
  • Fecci PE, Mitchell DA, Whitesides JF et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res.66(6), 3294–3302 (2006).
  • Fecci PE, Sweeney AE, Grossi PM et al. Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T cells. Clin. Cancer Res.12(14 Pt 1), 4294–4305 (2006).
  • Grauer OM, Nierkens S, Bennink E et al. CD4+ FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int. J. Cancer121(1), 95–105 (2007).
  • Hussain SF, Yang D, Suki D, Aldape K, Grimm E, Heimberger AB. The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro-oncology8(3), 261–279 (2006).
  • Learn CA, Fecci PE, Schmittling RJ et al. Profiling of CD4+, CD8+, and CD4+ CD25+ CD45RO+ FoxP3+ T cells in patients with malignant glioma reveals differential expression of the immunologic transcriptome compared with T cells from healthy volunteers. Clin. Cancer Res.12(24), 7306–7315 (2006).
  • Barnett JA, Urbauer DL, Murray GI, Fuller GN, Heimberger AB. Cytochrome P450 1B1 expression in glial cell tumors: an immunotherapeutic target. Clin. Cancer Res.13(12), 3559–3567 (2007).
  • Kumarakulasingham M, Rooney PH, Dundas SR et al. Cytochrome p450 profile of colorectal cancer: identification of markers of prognosis. Clin. Cancer Res.11(10), 3758–3765 (2005).
  • Downie D, McFadyen MC, Rooney PH et al. Profiling cytochrome P450 expression in ovarian cancer: identification of prognostic markers. Clin. Cancer Res.11(20), 7369–7375 (2005).
  • McFadyen MC, Cruickshank ME, Miller ID et al. Cytochrome P450 CYP1B1 over-expression in primary and metastatic ovarian cancer. Br. J. Cancer85(2), 242–246 (2001).
  • Gribben JG, Ryan DP, Boyajian R et al. Unexpected association between induction of immunity to the universal tumor antigen CYP1B1 and response to next therapy. Clin. Cancer Res.11(12), 4430–4436 (2005).
  • Liu G, Yu JS, Zeng G et al. AIM-2: a novel tumor antigen is expressed and presented by human glioma cells. J. Immunother. (1997)27(3), 220–226 (2004).
  • Eguchi J, Hatano M, Nishimura F et al. Identification of interleukin-13 receptor α2 peptide analogues capable of inducing improved antiglioma CTL responses. Cancer Res.66(11), 5883–5891 (2006).
  • Okano F, Storkus WJ, Chambers WH, Pollack IF, Okada H. Identification of a novel HLA-A*0201-restricted, cytotoxic T lymphocyte epitope in a human glioma-associated antigen, interleukin 13 receptor α2 chain. Clin. Cancer Res.8(9), 2851–2855 (2002).
  • Fossum B, Gedde-Dahl 3rd T, Breivik J et al. p21-ras-peptide-specific T-cell responses in a patient with colorectal cancer. CD4+ and CD8+ T cells recognize a peptide corresponding to a common mutation (13Gly-->Asp). Int. J. Cancer56(1), 40–45 (1994).
  • Fenton RG, Keller CJ, Hanna N, Taub DD. Induction of T-cell immunity against Ras oncoproteins by soluble protein or Ras-expressing Escherichia coli. J. Natl Cancer Inst.87(24), 1853–1861 (1995).
  • Heimberger AB, Hlatky R, Suki D et al. Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin. Cancer Res.11(4), 1462–1466 (2005).
  • Shinojima N, Tada K, Shiraishi S et al. Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res.63(20), 6962–6970 (2003).
  • Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, Collins VP. Genes for epidermal growth factor receptor, transforming growth factor α, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res.51(8), 2164–2172 (1991).
  • Bigner SH, Humphrey PA, Wong AJ et al. Characterization of the epidermal growth factor receptor in human glioma cell lines and xenografts. Cancer Res.50(24), 8017–8022 (1990).
  • Humphrey PA, Wong AJ, Vogelstein B et al. Amplification and expression of the epidermal growth factor receptor gene in human glioma xenografts. Cancer Res.48(8), 2231–2238 (1988).
  • Libermann TA, Nusbaum HR, Razon N et al. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature313(5998), 144–147 (1985).
  • Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B. Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc. Natl Acad. Sci. USA84(19), 6899–903 (1987).
  • Wikstrand CJ, McLendon RE, Friedman AH, Bigner DD. Cell surface localization and density of the tumor-associated variant of the epidermal growth factor receptor, EGFRvIII. Cancer Res.57(18), 4130–4140 (1997).
  • Sugawa N, Ekstrand AJ, James CD, Collins VP. Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc. Natl Acad. Sci. USA87(21), 8602–8606 (1990).
  • Ekstrand AJ, Longo N, Hamid ML et al. Functional characterization of an EGF receptor with a truncated extracellular domain expressed in glioblastomas with EGFR gene amplification. Oncogene9(8), 2313–2320 (1994).
  • Moscatello DK, Ramirez G, Wong AJ. A naturally occurring mutant human epidermal growth factor receptor as a target for peptide vaccine immunotherapy of tumors. Cancer Res.57(8), 1419–1424 (1997).
  • Heimberger AB, Crotty LE, Archer GE et al. Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors. Clin. Cancer Res.9(11), 4247–4254 (2003).
  • Ciesielski MJ, Kazim AL, Barth RF, Fenstermaker RA. Cellular antitumor immune response to a branched lysine multiple antigenic peptide containing epitopes of a common tumor-specific antigen in a rat glioma model. Cancer Immunol. Immunother.54(2), 107–119 (2005).
  • Heimberger AB, Hussain SF, Aldape K et al. ASCO annual meeting proceedings part I. J. Clin. Oncol.24(18S)(Suppl.), 2529 (2006).
  • Sampson JH, Alsape KD, Gilbert MR et al. 2007 ASCO annual meeting proceedings part I. J. Clin. Oncol.25(18S)(Suppl.), 2020 (2007).
  • Goldman B. Taming a mutinous mutant: an errant receptor becomes a prime cancer target. J. Natl Cancer Inst.99(7), 504–505 (2007).

Website

  • A service of the US National Institutes of Health, developed by the National Library of Medicine (2007). www.clinicaltrials.gov

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.