79
Views
11
CrossRef citations to date
0
Altmetric
Review

Spectrum of pediatric gliomas: implications for the development of future therapies

Pages S51-S60 | Published online: 10 Jan 2014

References

  • Mellinghoff IK, Wang MY, Vivanco I et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med.353(19), 2012–2024 (2005).
  • Wang MY, Lu KV, Zhu S et al. Mammalian target of rapamycin inhibition promotes response to epidermal growth factor receptor kinase inhibitors in PTEN-deficient and PTEN-intact glioblastoma cells. Cancer Res.66(16), 7864–7869 (2006).
  • Kleihues P, Cavenee WK. Pathology and Genetics of Tumours of the Nervous System. World Health Organization Classification of Tumours. Kleihues P and Sobin LH (Eds). IARC Press, Lyon, France (2000).
  • Cohen KJ, Broniscer A, Glod J. Pediatric glial tumors. Curr. Treat. Options Oncol.2(6), 529–536 (2001).
  • Kleinman GM, Schoene WC, Walshe TM 3rd, Richardson EP Jr. Malignant transformation in benign cerebellar astrocytoma. Case report. J. Neurosurg.49(1), 111–118 (1978).
  • van der Wal EJ, Azzarelli B, Edwards-Brown M. Malignant transformation of a chiasmatic pilocytic astrocytoma in a patient with diencephalic syndrome. Pediatr. Radiol.33(3), 207–210 (2003).
  • Hukin J, Siffert J, Velasquez L, Zagzag D, Allen J. Leptomeningeal dissemination in children with progressive low-grade neuroepithelial tumors. Neuro-oncology4(4), 253–260 (2002).
  • Ceppa EP, Bouffet E, Griebel R, Robinson C, Tihan T. The pilomyxoid astrocytoma and its relationship to pilocytic astrocytoma: report of a case and a critical review of the entity. J. Neurooncol.81(2), 191–196 (2007).
  • Komotar RJ, Burger PC, Carson BS et al. Pilocytic and pilomyxoid hypothalamic/chiasmatic astrocytomas. Neurosurgery54(1), 72–79; discussion 79–80 (2004).
  • Tihan T, Fisher PG, Kepner JL et al. Pediatric astrocytomas with monomorphous pilomyxoid features and a less favorable outcome. J. Neuropathol. Exp. Neurol.58(10), 1061–1068 (1999).
  • Thiagalingam S, Flaherty M, Billson F, North K. Neurofibromatosis type 1 and optic pathway gliomas: follow-up of 54 patients. Ophthalmology111(3), 568–577 (2004).
  • Kluwe L, Hagel C, Tatagiba M et al. Loss of NF1 alleles distinguish sporadic from NF1-associated pilocytic astrocytomas. J. Neuropathol. Exp. Neurol.60(9), 917–920 (2001).
  • von Deimling A, Louis DN, Menon AG et al. Deletions on the long arm of chromosome 17 in pilocytic astrocytoma. Acta Neuropathol. (Berl.)86(1), 81–85 (1993).
  • Sanoudou D, Tingby O, Ferguson-Smith MA, Collins VP, Coleman N. Analysis of pilocytic astrocytoma by comparative genomic hybridization. Br. J. Cancer82(6), 1218–1222 (2000).
  • Addo-Yobo SO, Straessle J, Anwar A et al. Paired overexpression of ErbB3 and Sox10 in pilocytic astrocytoma. J. Neuropathol. Exp. Neurol.65(8), 769–775 (2006).
  • Cheng Y, Pang JC, Ng HK et al. Pilocytic astrocytomas do not show most of the genetic changes commonly seen in diffuse astrocytomas. Histopathology37(5), 437–444 (2000).
  • Rorive S, Maris C, Debeir O et al. Exploring the distinctive biological characteristics of pilocytic and low-grade diffuse astrocytomas using microarray gene expression profiles. J. Neuropathol. Exp. Neurol.65(8), 794–807 (2006).
  • Rickman DS, Bobek MP, Misek DE et al. Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis. Cancer Res.61(18), 6885–6891 (2001).
  • Matsumoto T, Fujii T, Yabe M et al. MIB-1 and p53 immunocytochemistry for differentiating pilocytic astrocytomas and astrocytomas from anaplastic astrocytomas and glioblastomas in children and young adults. Histopathology33(5), 446–452 (1998).
  • Maher EA, Brennan C, Wen PY et al. Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities. Cancer Res.66(23), 11502–11513 (2006).
  • Tso CL, Freije WA, Day A et al. Distinct transcription profiles of primary and secondary glioblastoma subgroups. Cancer Res.66(1), 159–167 (2006).
  • Ganigi PM, Santosh V, Anandh B, Chandramouli BA, Sastry Kolluri VR. Expression of p53, EGFR, pRb and bcl-2 proteins in pediatric glioblastoma multiforme: a study of 54 patients. Pediatr. Neurosurg.41(6), 292–299 (2005).
  • Korshunov A, Sycheva R, Gorelyshev S, Golanov A. Clinical utility of fluorescence in situ hybridization (FISH) in nonbrainstem glioblastomas of childhood. Mod. Pathol.18(9), 1258–1263 (2005).
  • Pollack IF, Finkelstein SD, Burnham J et al. Age and TP53 mutation frequency in childhood malignant gliomas: results in a multi-institutional cohort. Cancer Res.61(20), 7404–7407 (2001).
  • Pollack IF, Hamilton RL, James CD et al. Rarity of PTEN deletions and EGFR amplification in malignant gliomas of childhood: results from the Children’s Cancer Group 945 cohort. J. Neurosurg.105(5 Suppl), 418–424 (2006).
  • Raffel C, Frederick L, O’Fallon JR et al. Analysis of Oncogene and tumor suppressor gene alterations in pediatric malignant astrocytomas reveals reduced survival for patients with PTEN mutations. Clin. Cancer Res.5(12), 4085–4090 (1999).
  • Gutmann DH, Hedrick NM, Li J et al. Comparative gene expression profile analysis of neurofibromatosis 1-associated and sporadic pilocytic astrocytomas. Cancer Res.62(7), 2085–2091 (2002).
  • Perry A. Pathology of low-grade gliomas: an update of emerging concepts. Neurooncology5(3), 168–178 (2003).
  • Fisher PG, Breiter SN, Carson BS et al. A clinicopathologic reappraisal of brain stem tumor classification. Identification of pilocystic astrocytoma and fibrillary astrocytoma as distinct entities. Cancer89(7), 1569–1576 (2000).
  • Korshunov A, Golanov A, Sycheva R, Timirgaz V. The histologic grade is a main prognostic factor for patients with intracranial ependymomas treated in the microneurosurgical era: an analysis of 258 patients. Cancer100(6), 1230–1237 (2004).
  • Ernestus RI, Schroder R, Stutzer H, Klug N. The clinical and prognostic relevance of grading in intracranial ependymomas. Br. J. Neurosurg.11(5), 421–428 (1997).
  • Sutton LN, Goldwein J, Perilongo G et al. Prognostic factors in childhood ependymomas. Pediatr. Neurosurg.16(2), 57–65 (1990).
  • Bouffet E, Perilongo G, Canete A, Massimino M. Intracranial ependymomas in children: a critical review of prognostic factors and a plea for cooperation. Med. Pediatr. Oncol.30(6), 319–329; discussion 329–331 (1998).
  • Schiffer D, Chio A, Giordana MT et al. Histologic prognostic factors in ependymoma. Childs Nerv. Syst.7(4), 177–182 (1991).
  • Schiffer D, Giordana MT. Prognosis of ependymoma. Childs Nerv. Syst.14(8), 357–361 (1998).
  • Kurt E, Zheng PP, Hop WC et al. Identification of relevant prognostic histopathologic features in 69 intracranial ependymomas, excluding myxopapillary ependymomas and subependymomas. Cancer106(2), 388–395 (2006).
  • Prayson RA. Clinicopathologic study of 61 patients with ependymoma including MIB-1 immunohistochemistry. Ann. Diagn. Pathol.3(1), 11–18 (1999).
  • Mendrzyk F, Korshunov A, Benner A et al. Identification of gains on 1q and epidermal growth factor receptor overexpression as independent prognostic markers in intracranial ependymoma. Clin. Cancer Res.12(7 Pt 1), 2070–2079 (2006).
  • Tabori U, Ma J, Carter M et al. Human telomere reverse transcriptase expression predicts progression and survival in pediatric intracranial ependymoma. J. Clin. Oncol.24(10), 1522–1528 (2006).
  • Huang B, Starostik P, Kuhl J, Tonn JC, Roggendorf W. Loss of heterozygosity on chromosome 22 in human ependymomas. Acta Neuropathol. (Berl.)103(4), 415–420 (2002).
  • Rajaram V, Gutmann DH, Prasad SK, Mansur DB, Perry A. Alterations of protein 4.1 family members in ependymomas: a study of 84 cases. Mod. Pathol.18(7), 991–997 (2005).
  • Lukashova VZI, Kneitz S, Monoranu CM et al. Ependymoma gene expression profiles associated with histological subtype, proliferation, and patient survival. Acta Neuropathol. (Berl.)113(3), 325–337 (2007).
  • Taylor MD, Poppleton H, Fuller C et al., Radial glia cells are candidate stem cells of ependymoma. Cancer Cell8(4), 323–335 (2005).
  • Kreiger PA, Okada Y, Simon S et al. Losses of chromosomes 1p and 19q are rare in pediatric oligodendrogliomas. Acta Neuropathol. (Berl.)109(4), 387–392 (2005).
  • Raghavan R, Balani J, Perry A et al. Pediatric oligodendrogliomas: a study of molecular alterations on 1p and 19q using fluorescence in situ hybridization. J. Neuropathol. Exp. Neurol.62(5), 530–537 (2003).
  • Pollack IF, Finkelstein SD, Burnham J et al. Association between chromosome 1p and 19q loss and outcome in pediatric malignant gliomas: results from the CCG-945 cohort. Pediatr. Neurosurg.39(3), 114–121 (2003).
  • Ichikawa T, Wakisaka A, Daido S et al. A case of solitary subependymal giant cell astrocytoma: two somatic hits of TSC2 in the tumor, without evidence of somatic mosaicism. J. Mol. Diagn.7(4), 544–549 (2005).
  • Lopes MB, Altermatt HJ, Scheithauer BW, Shepherd CW, VandenBerg SR. Immunohistochemical characterization of subependymal giant cell astrocytomas. Acta Neuropathol. (Berl.)91(4), 368–375 (1996).
  • Chan JA, Zhang H, Roberts PS et al. Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J. Neuropathol. Exp. Neurol.63(12), 1236–1242 (2004).
  • Franz DN, Leonard J, Tudor C et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann. Neurol.59(3), 490–498 (2006).
  • Kepes JJ, Rubinstein LJ, Eng LF. Pleomorphic xanthoastrocytoma: a distinctive meningocerebral glioma of young subjects with relatively favorable prognosis. A study of 12 cases. Cancer44(5), 1839–1852 (1979).
  • Marton E, Feletti A, Orvieto E, Longatti P. Malignant progression in pleomorphic xanthoastrocytoma: personal experience and review of the literature. J. Neurol. Sci.252(2), 144–153 (2007).
  • Nakajima T, Kumabe T, Shamoto H et al. Malignant transformation of pleomorphic xanthoastrocytoma. Acta Neurochir. (Wien)148(1), 67–71; discussion 71 (2006).
  • Fouladi M, Jenkins J, Burger P et al. Pleomorphic xanthoastrocytoma: favorable outcome after complete surgical resection. Neuro-oncology3(3), 184–192 (2001).
  • Giannini C, Scheithauer BW, Burger PC et al. Pleomorphic xanthoastrocytoma: what do we really know about it? Cancer85(9), 2033–2045 (1999).
  • Martinez-Diaz H, Kleinschmidt-DeMasters BK, Powell SZ, Yachnis AT. Giant cell glioblastoma and pleomorphic xanthoastrocytoma show different immunohistochemical profiles for neuronal antigens and p53 but share reactivity for class III β-tubulin. Arch. Pathol. Lab. Med.127(9), 1187–1191 (2003).
  • Kaulich K, Blaschke B, Numann A et al. Genetic alterations commonly found in diffusely infiltrating cerebral gliomas are rare or absent in pleomorphic xanthoastrocytomas. J. Neuropathol. Exp. Neurol.61(12), 1092–1099 (2002).
  • Weber RG, Hoischen A, Ehrler M et al. Frequent loss of chromosome 9, homozygous CDKN2A/p14(ARF)/CDKN2B deletion and low TSC1 mRNA expression in pleomorphic xanthoastrocytomas. Oncogene26(7), 1088–1097 (2007).
  • Rubinstein LJ, Herman MM. The astroblastoma and its possible cytogenic relationship to the tanycyte. An electron microscopic, immunohistochemical, tissue- and organ-culture study. Acta Neuropathol. (Berl.)78(5), 472–483 (1989).
  • Brat DJ, Hirose Y, Cohen KJ, Feuerstein BG, Burger PC. Astroblastoma: clinicopathologic features and chromosomal abnormalities defined by comparative genomic hybridization. Brain Pathol.10(3), 342–352 (2000).
  • Thiessen B, Finlay J, Kulkarni R, Rosenblum MK. Astroblastoma: does histology predict biologic behavior? J. Neurooncol.40(1), 59–65 (1998).
  • Bonnin JM, Rubinstein LJ. Astroblastomas: a pathological study of 23 tumors, with a postoperative follow-up in 13 patients. Neurosurgery25(1), 6–13 (1989).
  • Kato M, Yano H, Okumura A et al. A non-infantile case of desmoplastic infantile astrocytoma. Childs Nerv. Syst.20(7), 499–501 (2004).
  • Kros JM, Delwel EJ, de Jong TH et al. Desmoplastic infantile astrocytoma and ganglioglioma: a search for genomic characteristics. Acta Neuropathol. (Berl.)104(2), 144–148 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.