127
Views
14
CrossRef citations to date
0
Altmetric
Review

Dendritic cell vaccines for leukemia patients

, &
Pages 275-283 | Published online: 10 Jan 2014

References

  • Banchereau J, Brière F, Caux C et al. Immunobiology of dendritic cells. Annu. Rev. Immunol.18, 767–811 (2000).
  • Banchereau J, Schuler-Thurner B, Palucka AK, Schuler G. Dendritic cells as vectors for therapy. Cell106, 271–274 (2001).
  • Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ. Dendritic cell immunotherapy: mapping the way. Nat. Med.10, 475–480 (2004).
  • Mailliard RB, Dallal RM, Son YI, Lotze MT. Dendritic cells promote T-cell survival or death depending upon their maturation state and presentation of antigen. Immunol. Invest.29, 177–185 (2000).
  • Bigotti G, Coli A, Castagnola D. Distribution of Langerhans cells and HLA class II molecules in prostatic carcinomas of different histopathological grade. Prostate19, 73–87 (1991).
  • Tsuge T, Yamakawa M, Tsukamoto M. Infiltrating dendritic/Langerhans cells in primary breast cancer. Breast Cancer Res. Treat.59, 141–152 (2000).
  • Shimamura H, Cumberland R, Hiroishi K, Watkins SC, Lotze MT, Baar J. Murine dendritic cell-induced tumor apoptosis is partially mediated by nitric oxide. J. Immunother.25, 226–234 (2002).
  • Kolb HJ, Mittermüller J, Clemm C et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood76, 2462–2465 (1990).
  • Kolb HJ, Schmid C, Barrett AJ, Schendel DJ. Graft-versus-leukemia reactions in allogeneic chimeras. Blood103, 767–776 (2004).
  • Greiner J, Döhner H, Schmitt M. Cancer vaccines for patients with acute myeloid leukemia (AML) – definition of leukemia-associated antigens (LAAs) and current clinical protocols targeting LAAs. Haematologica91, 1656–1664 (2006).
  • Hao JS, Shan BE. Immune enhancement and anti-tumour activity of IL-23. Cancer Immunol. Immunother.55, 1426–1431 (2006).
  • Steinman RM, Adams JC, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. IV. Identification and distribution in mouse spleen. J. Exp. Med.141, 804–820 (1975).
  • Yamazaki S, Patel M, Harper A et al. Effective expansion of alloantigen-specific Foxp3+ CD25+ CD4+ regulatory T cells by dendritic cells during the mixed leukocyte reaction. Proc. Natl Acad. Sci. USA103, 2758–2763 (2006).
  • Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. J. Exp. Med.179, 1109–1118 (1994).
  • Jonuleit H, Kuhn U, Muller G et al. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur. J. Immunol.27, 3135–3142 (1997).
  • Babatz J, Rollig C, Oelschlagel U et al. Large-scale immunomagnetic selection of CD14+ monocytes to generate dendritic cells for cancer immunotherapy: a Phase I study. J. Hematother. Stem Cell Res.12, 515–523 (2003).
  • Berger TG, Feuerstein B, Strasser E et al. Large-scale generation of mature monocyte-derived dendritic cells for clinical application in Cell Factories™. J. Immunol. Methods268, 131–140 (2002).
  • Houtenbos I, Westers TM, Ossenkoppele GJ, van de Loosdrecht AA. Leukaemic dendritic cell vaccination for patients with acute myeloid leukaemia. Br. J. Haematol.134, 445–446; Author reply 446–447 (2006).
  • Feuerstein B, Berger TG, Maczek C et al. A method for the production of cryopreserved aliquots of antigen-preloaded, mature dendritic cells ready for clinical use. J. Immunol. Methods245, 15–29 (2000).
  • Glaser A, Schuler-Thurner B, Feuerstein B et al. Collection of MNCs with two cell separators for adoptive immunotherapy in patients with stage IV melanoma. Transfusion41, 117–122 (2001).
  • Dzionek A, Sohma Y, Nagafune J et al. BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen-capture and is a potent inhibitor of interferon-α/β induction. J. Exp. Med.194, 1823–1834 (2001).
  • Dzionek A, Fuchs A, Schmidt P et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J. Immunol.165, 6037–6046 (2000).
  • Jiang W, Swiggard WJ, Heufler C et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature375, 151–155 (1995).
  • Engering A, Geijtenbeek TB, van Vliet SJ et al. The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J. Immunol.168, 2118–2126 (2002).
  • Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer. Nat. Rev. Immunol.5, 296–306 (2005).
  • Nestle FO, Farkas A, Conrad C. Dendritic-cell-based therapeutic vaccination against cancer. Curr. Opin. Immunol.17, 163–169 (2005).
  • Cignetti A, Bryant E, Allione B, Vitale A, Foa R, Cheever MA. CD34+ acute myeloid and lymphoid leukemic blasts can be induced to differentiate into dendritic cells. Blood94, 2048–2055 (1999).
  • Kohler T, Plettig R, Wetzstein W et al. Cytokine-driven differentiation of blasts from patients with acute myelogenous and lymphoblastic leukemia into dendritic cells. Stem Cells18, 139–147 (2000).
  • Choudhury A, Liang JC, Thomas EK et al. Dendritic cells derived in vitro from acute myelogenous leukemia cells stimulate autologous antileukemic T cell responses. Blood93, 780–786 (1999).
  • Kufner S, Fleischer RP, Kroell T et al. Serum-free generation and quantification of functionally active leukemia-derived DC is possible from malignant blasts in acute myeloid leukemia and myelodysplastic syndromes. Cancer Immunol. Immunother.54, 953–970 (2005).
  • Li L, Reinhardt P, Schmitt A et al. Dendritic cells generated from acute myeloid leukemia (AML) blasts maintain the expression of immunogenic leukemia associated antigens. Cancer Immunol. Immunother.54, 685–693 (2005).
  • Li L, Schmitt A, Reinhardt P et al. Reconstitution of CD40 and CD80 in dendritic cells generated from blasts of patients with acute myeloid leukemia. Cancer Immun.3, 8 (2003).
  • Li L, Giannopoulos K, Reinhardt P et al. Immunotherapy for patients with acute myeloid leukemia using autologous dendritic cells generated from leukemic blasts. Int. J. Oncol.28, 855–861 (2006).
  • Fröhling S, Skelin S, Liebisch C et al. Comparison of cytogenetic and molecular cytogenetic detection of chromosome abnormalities in 240 consecutive adult patients with acute myeloid leukemia. J. Clin. Oncol.20, 2480–2485 (2002).
  • Kessler JH, Beekman NJ, Bres-Vloemans SA et al. Efficient identification of novel HLA-A 0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis. J. Exp. Med.193, 73–88 (2001).
  • Oka Y, Udaka K, Tsuboi A et al. Cancer immunotherapy targeting Wilms’ tumor gene WT1 product. J. Immunol.164, 1873–1880 (2000).
  • Greiner J, Ringhoffer M, Taniguchi M et al. Characterization of several leukemia-associated antigens inducing humoral immune responses in acute and chronic myeloid leukemia (AML/CML). Int. J. Cancer106, 224–231 (2003).
  • Weigel BJ, Panoskaltsis-Mortari A, Diers M et al. Dendritic cells pulsed or fused with AML cellular antigen provide comparable in vivo antitumor protective responses. Exp. Hematol.34, 1403–1412 (2006).
  • Lee JJ, Kook H, Park MS et al. Immunotherapy using autologous monocyte-derived dendritic cells pulsed with leukemic cell lysates for acute myeloid leukemia relapse after autologous peripheral blood stem cell transplantation. J. Clin. Apher.19, 66–70 (2004).
  • Orsini E, Guarini A, Chiaretti S, Mauro FR, Foa R. The circulating dendritic cell compartment in patients with chronic lymphocytic leukemia is severely defective and unable to stimulate an effective T-cell response. Cancer Res.63, 4497–4506 (2003).
  • Gilliet M, Liu YJ. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J. Exp. Med.195, 695–704 (2002).
  • Vuillier F, Maloum K, Thomas EK, Jouanne C, Dighiero G, Scott-Algara D. Functional monocyte-derived dendritic cells can be generated in chronic lymphocytic leukaemia. Br. J. Haematol.115, 831–844 (2001).
  • Goddard RV, Prentice AG, Copplestone JA, Kaminski ER. In vitro dendritic cell-induced T cell responses to B cell chronic lymphocytic leukaemia enhanced by IL-15 and dendritic cell-B-CLL electrofusion hybrids. Clin. Exp. Immunol.131, 82–89 (2003).
  • Goddard RV, Prentice AG, Copplestone JA, Kaminski ER. Generation in vitro of B-cell chronic lymphocytic leukaemia-proliferative and specific HLA class-II-restricted cytotoxic T-cell responses using autologous dendritic cells pulsed with tumour cell lysate. Clin. Exp. Immunol.126, 16–28 (2001).
  • Kokhaei P, Adamson L, Palma M et al. Generation of DC-based vaccine for therapy of B-CLL patients. Comparison of two methods for enriching monocytic precursors. Cytotherapy8, 318–326 (2006).
  • Allgeier T, Garhammer S, Nossner E et al. Dendritic cell-based immunogens for B-cell chronic lymphocytic leukemia. Cancer Lett.245, 275–283 (2007).
  • Suresh K, Fraser G, Scheid E, Leber B, Gauldie J, Foley R. Generation of in vitro B-CLL specific HLA class I restricted CTL responses using autologous dendritic cells pulsed with necrotic tumor lysate. Leuk. Lymphoma47, 297–306 (2006).
  • Giannopoulos K, Li L, Bojarska-Junak A et al. Expression of RHAMM/CD168 and other tumor associated antigens in patients with B-cell chronic lymphocytic leukemia. Int. J. Oncol.29, 95–103 (2006).
  • Hus I, Roliński J, Tabarkiewicz J et al. Allogeneic dendritic cells pulsed with tumor lysates or apoptotic bodies as immunotherapy for patients with early stage B-cell chronic lymphocytic leukemia (B-CLL). Leukemia19, 1621–1627 (2005).
  • Mahnke K, Schmitt E, Bonifaz L, Enk AH, Jonuleit H. Immature, but not inactive: the tolerogenic function of immature dendritic cells. Immunol. Cell Biol.80, 477–483 (2002).
  • Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu. Rev. Immunol.21, 685–711 (2003).
  • Steinman RM, Hawiger D, Liu K et al. Dendritic cell function in vivo during the steady state: a role in peripheral tolerance. Ann. NY Acad. Sci.987, 15–25 (2003).
  • Banerjee DK, Dhodapkar MV, Matayeva E, Steinman RM, Dhodapkar KM. Expansion of FOXP3 high regulatory T cells by human dendritic cells (DCs) invitro and after injection of cytokine-matured DCs in myeloma patients. Blood108, 2655–2661 (2006).
  • Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol.4, 330–336 (2003).
  • Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv. Immunol.74, 181–273 (2000).
  • Watson NF, Ramage JM, Madjd Z et al. Immunosurveillance is active in colorectal cancer as downregulation but not complete loss of MHC class I expression correlates with a poor prognosis. Int. J. Cancer118, 6–10 (2006).
  • Vollmer M, Li L, Schmitt A et al. Expression of human leucocyte antigens and costimulatory molecules on blasts of patients with acute myeloid leukaemia. Br. J. Haematol.120, 1000–1008 (2003).
  • Fayad L, Keating MJ, Reuben JM et al. Interleukin-6 and interleukin-10 levels in chronic lymphocytic leukemia: correlation with phenotypic characteristics and outcome. Blood97, 256–263 (2001).
  • Tinhofer I, Marschitz I, Kos M et al. Differential sensitivity of CD4+ and CD8+ T lymphocytes to the killing efficacy of Fas (Apo-1/CD95) ligand+ tumor cells in B chronic lymphocytic leukemia. Blood91, 4273–4281 (1998).
  • Bruserud O, Ulvestad E. Soluble Fas/Apo-1 (CD95) levels during T cell activation in the presence of acute myelogenous leukemia accessory cells; contributions from local release and variations in systemic levels. Cancer Immunol. Immunother.49, 377–387 (2000).
  • Hatfield KJ, Olsnes AM, Gjertsen BT, Bruserud O. Antiangiogenic therapy in acute myelogenous leukemia: targeting of vascular endothelial growth factor and interleukin 8 as possible antileukemic strategies. Curr. Cancer Drug Targets5, 229–248 (2005).
  • Allavena P, Marchesi F, Mantovani A. The role of chemokines and their receptors in tumor progression and invasion: potential new targets of biological therapy. Curr. Cancer Therapy Rev.12, 81–92 (2005).
  • Olsnes AM, Motorin D, Ryningen A, Zaritskey AY, Bruserud O. T lymphocyte chemotactic chemokines in acute myelogenous leukemia (AML): local release by native human AML blasts and systemic levels of CXCL10 (IP-10), CCL5 (RANTES) and CCL17 (TARC). Cancer Immunol. Immunother.55, 830–840 (2006).
  • Speiser DE, Lienard D, Rufer N et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J. Clin. Invest.115, 739–746 (2005).
  • Klinman DM, Currie D, Gursel I, Verthelyi D. Use of CpG oligodeoxynucleotides as immune adjuvants. Immunol. Rev.199, 201–216 (2004).
  • Li L, Reinhardt P, Hus I et al. Dendritic cells (DC) generated from AML blasts express leukemia in the autologous host after DC vaccination. Blood104, 1812 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.