78
Views
14
CrossRef citations to date
0
Altmetric
Review

Chemokines and squamous cancer of the head and neck: targets for therapeutic intervention?

&
Pages 351-360 | Published online: 10 Jan 2014

References

  • Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J. Clin.55(2), 74–108 (2005).
  • McMahon S, Chen AY. Head and neck cancer. Cancer Metastasis Rev.22(1), 21–24 (2003).
  • Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet357(9255), 539–545 (2001).
  • Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity12(2), 121–127 (2000).
  • Bacon K, Baggiolini M, Broxmeyer H et al. Chemokine/chemokine receptor nomenclature. J. Interferon Cytokine Res.22(10), 1067–1068 (2002).
  • Cocchi F, DeVico AL, Garzino-Demo A et al. Identification of RANTES, MIP-1 α, and MIP-1 β as the major HIV-suppressive factors produced by CD8+ T cells. Science270(5243), 1811–1815 (1995).
  • Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu. Rev. Immunol.18, 217–242 (2000).
  • Kunkel EJ, Butcher EC. Chemokines and the tissue-specific migration of lymphocytes. Immunity16(1), 1–4 (2002).
  • Rot A, von Andrian UH. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol.22, 891–928 (2004).
  • Parkinson EK, Graham GJ, Daubersies P et al. Hemopoietic stem cell inhibitor (SCI/MIP-1 α) also inhibits clonogenic epidermal keratinocyte proliferation. J. Invest. Dermatol.101(2), 113–117 (1993).
  • Venkatakrishnan G, Salgia R, Groopman JE. Chemokine receptors CXCR-1/2 activate mitogen-activated protein kinase via the epidermal growth factor receptor in ovarian cancer cells. J. Biol. Chem.275(10), 6868–6875 (2000).
  • Bonacchi A, Romagnani P, Romanelli RG et al. Signal transduction by the chemokine receptor CXCR3: activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes. J. Biol. Chem.276(13), 9945–9954 (2001).
  • Chandrasekar B, Melby PC, Sarau HM et al. Chemokine–cytokine cross-talk. The ELR+ CXC chemokine LIX (CXCL5) amplifies a proinflammatory cytokine response via a phosphatidylinositol 3-kinase–NF-κB pathway. J. Biol. Chem.278(7), 4675–4686 (2003).
  • Chandrasekar B, Bysani S, Mummidi S. CXCL16 signals via Gi, phosphatidylinositol 3-kinase, Akt, I κB kinase, and nuclear factor-κB and induces cell–cell adhesion and aortic smooth muscle cell proliferation. J. Biol. Chem.279(5), 3188–3196 (2004).
  • Schraufstatter IU, Chung J, Burger M. IL-8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signaling pathways. Am. J. Physiol. Lung Cell Mol. Physiol.280(6), L1094–L1103 (2001).
  • Wang D, Sai J, Carter G et al. PAK1 kinase is required for CXCL1-induced chemotaxis. Biochemistry41(22), 7100–7107 (2002).
  • Tan W, Martin D, Gutkind JS. The Gα13-Rho signaling axis is required for SDF-1-induced migration through CXCR4. J. Biol. Chem.281(51), 39542–39549 (2006).
  • Liu-Bryan R, Pay S, Schraufstatter IU, Rose DM. The CXCR1 tail mediates β1 integrin-dependent cell migration via MAP kinase signaling. Biochem. Biophys. Res. Commun.332(1), 117–125 (2005).
  • Van Damme J, Struyf S, Opdenakker G. Chemokine-protease interactions in cancer. Semin. Cancer Biol.14(3), 201–208 (2004).
  • Dhawan P, Richmond A. Role of CXCL1 in tumorigenesis of melanoma. J. Leukoc. Biol.72(1), 9–18 (2002).
  • Balentien E, Mufson BE, Shattuck RL, Derynck R, Richmond A. Effects of MGSA/GRO α on melanocyte transformation. Oncogene6(7), 1115–1124 (1991).
  • Zhou Y, Zhang J, Liu Q et al. The chemokine GRO-α (CXCL1) confers increased tumorigenicity to glioma cells. Carcinogenesis26(12), 2058–2068 (2005).
  • Robinson S, Tani M, Strieter RM, Ransohoff RM, Miller RH. The chemokine growth-regulated oncogene-α promotes spinal cord oligodendrocyte precursor proliferation. J. Neurosci.18(24), 10457–10463 (1998).
  • Wu Q, Miller RH, Ransohoff RM et al. Elevated levels of the chemokine GRO-1 correlate with elevated oligodendrocyte progenitor proliferation in the jimpy mutant. J. Neurosci.20(7), 2609–2617 (2000).
  • Tsai HH, Frost E, To V et al. The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Cell110(3), 373–383 (2002).
  • Metzner B, Hofmann C, Heinemann C et al. Overexpression of CXC-chemokines and CXC-chemokine receptor type II constitute an autocrine growth mechanism in the epidermoid carcinoma cells KB and A431. Oncol. Rep.6(6), 1405–1410 (1999).
  • Wang B, Hendricks DT, Wamunyokoli F, Parker MI. A growth-related oncogene/CXC chemokine receptor 2 autocrine loop contributes to cellular proliferation in esophageal cancer. Cancer Res.66(6), 3071–3077 (2006).
  • Feng G, Ohmori Y, Chang PL. Production of chemokine CXCL1/KC by okadaic acid through the nuclear factor-κB pathway. Carcinogenesis27(1), 43–52 (2006).
  • Dhawan P, Richmond A. A novel NF-κB-inducing kinase–MAPK signaling pathway up-regulates NF-κB activity in melanoma cells. J. Biol. Chem.277(10), 7920–7928 (2002).
  • Amiri KI, Ha HC, Smulson ME, Richmond A. Differential regulation of CXC ligand 1 transcription in melanoma cell lines by poly(ADP–ribose) polymerase-1. Oncogene25(59), 7714–7722 (2006).
  • Muller A, Homey B, Soto H et al. Involvement of chemokine receptors in breast cancer metastasis. Nature410(6824), 50–56 (2001).
  • Miller LJ, Kurtzman SH, Wang Y et al. Expression of interleukin-8 receptors on tumor cells and vascular endothelial cells in human breast cancer tissue. Anticancer Res.18(1A), 77–81 (1998).
  • Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin. Cancer Biol.14(3), 171–179 (2004).
  • Bachelder RE, Wendt MA, Mercurio AM. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res.62(24), 7203–7206 (2002).
  • Brown MJ, Nijhara R, Hallam JA et al. Chemokine stimulation of human peripheral blood T lymphocytes induces rapid dephosphorylation of ERM proteins, which facilitates loss of microvilli and polarization. Blood102(12), 3890–3899 (2003).
  • Singh S, Singh UP, Grizzle WE, Lillard JW Jr. CXCL12–CXCR4 interactions modulate prostate cancer cell migration, metalloproteinase expression and invasion. Lab. Invest.84(12), 1666–1676 (2004).
  • Zhang J, Sarkar S, Yong VW. The chemokine stromal cell derived factor-1 (CXCL12) promotes glioma invasiveness through MT2-matrix metalloproteinase. Carcinogenesis26(12), 2069–2077 (2005).
  • Murakami T, Cardones AR, Finkelstein SE et al. Immune evasion by murine melanoma mediated through CC chemokine receptor-10. J. Exp. Med.198(9), 1337–1347 (2003).
  • Simonetti O, Goteri G, Lucarini G et al. Potential role of CCL27 and CCR10 expression in melanoma progression and immune escape. Eur. J. Cancer42(8), 1181–1187 (2006).
  • Moskovits N, Kalinkovich A, Bar J, Lapidot T, Oren M. p53 attenuates cancer cell migration and invasion through repression of SDF-1/CXCL12 expression in stromal fibroblasts. Cancer Res.66(22), 10671–10676 (2006).
  • Harris CC. p53: at the crossroads of molecular carcinogenesis and risk assessment. Science262(5142), 1980–1981 (1993).
  • Orimo A, Weinberg RA. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle5(15), 1597–1601 (2006).
  • Orimo A, Gupta PB, Sgroi DC et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell121(3), 335–348 (2005).
  • Kurose K, Gilley K, Matsumoto S et al. Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat. Genet.32(3), 355–357 (2002).
  • Paterson RF, Ulbright TM, MacLennan GT et al. Molecular genetic alterations in the laser-capture-microdissected stroma adjacent to bladder carcinoma. Cancer98(9), 1830–1836 (2003).
  • Wong CW, Lee A, Shientag L et al. Apoptosis: an early event in metastatic inefficiency. Cancer Res.61(1), 333–338 (2001).
  • Kassenbrock CK, Hunter S, Garl P, Johnson GL, Anderson SM. Inhibition of Src family kinases blocks epidermal growth factor (EGF)-induced activation of Akt, phosphorylation of c-Cbl, and ubiquitination of the EGF receptor. J. Biol. Chem.277(28), 24967–24975 (2002).
  • Swan EA, Jasser SA, Holsinger FC et al. Acquisition of anoikis resistance is a critical step in the progression of oral tongue cancer. Oral Oncol.39(7), 648–655 (2003).
  • Sanchez-Sanchez N, Riol-Blanco L, De La Rosa G et al. Chemokine receptor CCR7 Induces intracellular signaling that inhibits apoptosis of mature dendritic cells. Blood104, 619–625 (2004).
  • Carmeliet P. Angiogenesis in life, disease and medicine. Nature438(7070), 932–936 (2005).
  • Koch AE, Polverini PJ, Kunkel SL et al. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science258(5089), 1798–1801 (1992).
  • Lin EY, Li JF, Gnatovskiy L et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res.66(23), 11238–11246 (2006).
  • Heidemann J, Ogawa H, Dwinell MB et al. Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J. Biol. Chem.278(10), 8508–8515 (2003).
  • Sodhi A, Montaner S, Patel V et al. Akt plays a central role in sarcomagenesis induced by Kaposi’s sarcoma herpesvirus-encoded G protein-coupled receptor. Proc. Natl Acad. Sci. USA101(14), 4821–4826 (2004).
  • Sun Q, Matta H, Lu G, Chaudhary PM. Induction of IL-8 expression by human herpesvirus 8 encoded vFLIP K13 via NF-κB activation. Oncogene25(19), 2717–2726 (2006).
  • Strieter RM, Belperio JA, Phillips RJ, Keane MP. CXC chemokines in angiogenesis of cancer. Semin. Cancer Biol.14(3), 195–200 (2004).
  • Romagnani P, Annunziato F, Lasagni L et al. Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. J. Clin. Invest.107(1), 53–63 (2001).
  • Lasagni L, Francalanci M, Annunziato F et al. An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J. Exp. Med.197(11), 1537–1549 (2003).
  • Shintani S, Ishikawa T, Nonaka T et al. Growth-regulated oncogene-1 expression is associated with angiogenesis and lymph node metastasis in human oral cancer. Oncology66(4), 316–322 (2004).
  • Miyazaki H, Patel V, Wang H et al. Growth factor-sensitive molecular targets identified in primary and metastatic head and neck squamous cell carcinoma using microarray analysis. Oral Oncol.42(3), 240–256 (2006).
  • Miyazaki H, Patel V, Wang H et al. Downregulation of CXCL5 inhibits squamous carcinogenesis. Cancer Res.66(8), 4279–4284 (2006).
  • Delilbasi CB, Okura M, Iida S, Kogo M. Investigation of CXCR4 in squamous cell carcinoma of the tongue. Oral Oncol.40(2), 154–157 (2004).
  • Wang J, Xi L, Hunt JL et al. Expression pattern of chemokine receptor 6 (CCR6) and CCR7 in squamous cell carcinoma of the head and neck identifies a novel metastatic phenotype. Cancer Res.64(5), 1861–1866 (2004).
  • Wang J, Zhang X, Thomas SM et al. Chemokine receptor 7 activates phosphoinositide-3 kinase-mediated invasive and prosurvival pathways in head and neck cancer cells independent of EGFR. Oncogene24(38), 5897–5904 (2005).
  • Hoffmann TK, Bier H, Whiteside TL. Targeting the immune system: novel therapeutic approaches in squamous cell carcinoma of the head and neck. Cancer Immunol. Immunother.53(12), 1055–1067 (2004).
  • Whiteside TL. Immunobiology of head and neck cancer. Cancer Metastasis Rev.24(1), 95–105 (2005).
  • Morgan RA, Dudley ME, Wunderlich JR et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science314(5796), 126–129 (2006).
  • Kershaw MH, Wang G, Westwood JA et al. Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum. Gene Ther.13(16), 1971–1980 (2002).
  • Hillinger S, Yang SC, Batra RK et al. CCL19 reduces tumour burden in a model of advanced lung cancer. Br. J. Cancer94(7), 1029–1034 (2006).
  • Robinson SC, Scott KA, Wilson JL et al. A chemokine receptor antagonist inhibits experimental breast tumor growth. Cancer Res.63(23), 8360–8365 (2003).
  • Keane MP, Belperio JA, Xue YY, Burdick MD, Strieter RM. Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer. J. Immunol.172(5), 2853–2860 (2004).
  • Wente MN, Keane MP, Burdick MD et al. Blockade of the chemokine receptor CXCR2 inhibits pancreatic cancer cell-induced angiogenesis. Cancer Lett.241(2), 221–227 (2006).
  • Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science272(5263), 872–877 (1996).
  • De Clercq E. The bicyclam AMD3100 story. Nat. Rev. Drug Discov.2(7), 581–587 (2003).
  • Doranz BJ, Grovit-Ferbas K, Sharron MP et al. A small-molecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 coreceptor. J. Exp. Med.186(8), 1395–1400 (1997).
  • Ichiyama K, Yokoyama-Kumakura S, Tanaka Y et al. A duodenally absorbable CXC chemokine receptor 4 antagonist, KRH-1636, exhibits a potent and selective anti-HIV-1 activity. Proc. Natl Acad. Sci. USA100(7), 4185–4190 (2003).
  • Fujii N, Nakashima H, Tamamura H. The therapeutic potential of CXCR4 antagonists in the treatment of HIV. Expert Opin. Investig. Drugs12(2), 185–195 (2003).
  • Vabeno J, Nikiforovich GV, Marshall GR. Insight into the binding mode for cyclopentapeptide antagonists of the CXCR4 receptor. Chem. Biol. Drug Des.67(5), 346–354 (2006).
  • Zeng Z, Samudio IJ, Munsell M et al. Inhibition of CXCR4 with the novel RCP168 peptide overcomes stroma-mediated chemoresistance in chronic and acute leukemias. Mol. Cancer Ther.5(12), 3113–3121 (2006).
  • Burns JM, Summers BC, Wang Y et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J. Exp. Med.203(9), 2201–2213 (2006).
  • Yeudall WA, Wrighton KH. Cell cycle deregulation in head and neck cancer. In: Head and Neck Cancer: Emerging Perspectives. Ensley JF, Gutkind JS, Jacobs JR, Lippmann SE (Eds). Academic Press, CA, USA 101–116 (2003).
  • Snyder EL, Saenz CC, Denicourt C et al. Enhanced targeting and killing of tumor cells expressing the CXC chemokine receptor 4 by transducible anticancer peptides. Cancer Res.65(23), 10646–10650 (2005).
  • Keane MM, Rubinstein Y, Cuello M et al. Inhibition of NF-κB activity enhances TRAIL mediated apoptosis in breast cancer cell lines. Breast Cancer Res. Treat.64(2), 211–219 (2000).
  • Karin M, Cao Y, Greten FR, Li ZW. NF-κB in cancer: from innocent bystander to major culprit. Nat. Rev. Cancer2(4), 301–310 (2002).
  • Karin M, Greten FR. NF-κB: linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol.5(10), 749–759 (2005).
  • Dolcet X, Llobet D, Pallares J, Matias-Guiu X. NF-κB in development and progression of human cancer. Virchows Arch.446(5), 475–482 (2005).
  • Singh S, Khar A. Biological effects of curcumin and its role in cancer chemoprevention and therapy. Anticancer Agents Med. Chem.6(3), 259–270 (2006).
  • Hipp MS, Urbich C, Mayer P et al. Proteasome inhibition leads to NF-κB-independent IL-8 transactivation in human endothelial cells through induction of AP-1. Eur. J. Immunol.32(8), 2208–2217 (2002).
  • Keshamouni VG, Arenberg DA, Reddy RC et al. PPAR-γ activation inhibits angiogenesis by blocking ELR+CXC chemokine production in non-small cell lung cancer. Neoplasia7(3), 294–301 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.