112
Views
31
CrossRef citations to date
0
Altmetric
Review

Nonviral delivery vehicles for use in short hairpin RNA-based cancer therapies

&
Pages 373-382 | Published online: 10 Jan 2014

References

  • Wolff JA, Malone RW, Williams P et al. Direct gene transfer into mouse muscle in vivo. Science247(4949 Pt 1), 1465–1468 (1990).
  • Nishkawa M, Huang L. Nonviral vectors in the new millennium: delivery barriers in gene transfer. Hum. Gene Ther.12(8), 861–870 (2001).
  • Matzke MA, Birchler JA. RNAi-mediated pathways in the nucleus. Nat. Rev. Genet.6(1), 24–35 (2005).
  • Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev.16(8), 948–958 (2002).
  • Stein U, Stege A, Walther W, Lage H. Complete in vivo reversal of the multidrug resistance (MDR) phenotype in a breast cancer model by jet-injection of anti-MDR1 short hairpin RNA-encoding plasmid DNA. Mol. Ther. (2006) (In Press).
  • Lage H. Potential applications of RNA interference technology in the treatment of cancer. Future Oncol.1(1), 103–113 (2005).
  • Bantounas I, Phylactoula LA, Uney JB. RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J. Mol. Endocrinol.33(3), 545–557 (2004).
  • Wadhwa R, Kaul SC, Miyagishi M, Taira K. Vectors for RNA interference. Curr. Opin. Mol. Ther.6(4), 367–372 (2004).
  • Marsden PA. RNA interference as potential therapy – not so fast. N. Engl. J. Med.355(9), 953–954 (2006).
  • Grimm D, Streetz KL, Jopling CL et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature441(7092), 537–541 (2006).
  • Balter M. Gene therapy on trial. Science288(5468), 951–957 (2000).
  • Check E. A tragic setback. Nature420(6912), 116–118 (2002).
  • Nishikawa M, Hashida M. Nonviral approaches satisfying various requirements for effective in vivo gene therapy. Biol. Pharm. Bull.25(3), 275–283 (2002).
  • Walther W, Stein U, Fichtner I et al. Nonviral in vivo gene delivery into tumors using a novel low volume jet-injection technology. Gene Ther.8(3), 173–180 (2001).
  • Schatzlein AG, Zinselmeyer BH, Elouzi A et al. Preferential liver gene expression with polypropylenimine dendrimers. J. Control. Release101(1–3), 247–258 (2005).
  • Kircheis R, Blessing T, Brunner S, Wightman L, Wagner E. Tumor targeting with surface-shielded ligand–polycation DNA complexes. J. Control. Release72(1–3), 165–170 (2001).
  • Barron LG, Gagne L, Szoka FC Jr. Lipoplex-mediated gene delivery to the lung occurs within 60 minutes of intravenous administration. Hum. Gene Ther.10(10), 1683–1694 (1999).
  • Hughes JA, Rao GA. Targeted polymers for gene delivery. Expert Opin. Drug Deliv.2(1), 145–157 (2005).
  • Hilgenbrink AR, Low PS. Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J. Pharm. Sci.94(10), 2135–2146 (2005).
  • Anwer K, Logan M, Tagliaferri F et al. Synthetic glycopeptide-based delivery systems for systemic gene targeting to hepatocytes. Pharm. Res.17(4), 451–459 (2000).
  • Singh M. Transferrin as a targeting ligand for liposomes and anticancer drugs. Curr. Pharm. Des.5(6), 443–451 (1999).
  • Li D, Wang QQ, Tang GP et al. Receptor-mediated gene delivery using polyethylenimine (PEI) coupled with polypeptides targeting FGF receptors on cells surface. J. Zhejiang Univ. Sci. B7(11), 906–911 (2006).
  • Liu X, Tian P, Yu Y et al. Enhanced antitumor effect of EGF R-targeted p21WAF-1 and GM-CSF gene transfer in the established murine hepatoma by peritumoral injection. Cancer Gene Ther.9(1), 100–108 (2002).
  • Backer MV, Gaynutdinov TI, Patel V et al. Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Mol. Cancer Ther.4(9), 1423–1429 (2005).
  • Mori T. Cancer-specific ligands identified from screening of peptide-display libraries. Curr. Pharm. Des.10(19), 2335–2343 (2004).
  • Lee JF, Stovall GM, Ellington AD. Aptamer therapeutics advance. Curr. Opin. Chem. Biol.10(3), 282–289 (2006).
  • Farokhzad OC, Cheng J, Teply BA et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl Acad. Sci. USA103(16), 6315–6320 (2006).
  • Nimjee SM, Rusconi CP, Sullenger BA. Aptamers: an emerging class of therapeutics. Annu. Rev. Med.56, 555–583 (2005).
  • Park TG, Jeong JH, Kim SW. Current status of polymeric gene delivery systems. Adv. Drug Deliv. Rev.58(4), 467–486 (2006).
  • Gpdbey WT, Barry MA, Saggau P, Wu KK, Mikos AG. Poly(ethylenimine)-mediated transfection: a new paradigm for gene delivery. J. Biomed. Mater. Res.51(3), 321–328 (2000).
  • Thomas M, Klibanov AM. Enhancing polyethylenimine’s delivery of plasmid DNA into mammalian cells. Proc. Natl Acad. Sci. USA99(23), 14640–14645 (2002).
  • Boussif O, Lezoualc’h F, Zanta MA et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA92(16), 7297–7301 (1995).
  • Garnett MC. Gene-delivery systems using cationic polymers. Crit. Rev. Ther. Drug Carrier Syst.16(2), 147–207 (1999).
  • Wightman L, Kircheis R, Rossler V et al. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J. Gene Med.3(4), 362–372 (2001).
  • Jeong JH, Song SH, Lim DW, Lee H, Park TG. DNA transfection using linear poly(ethylenimine) prepared by controlled acid hydrolysis of poly(2-ethyl-2-oxazoline). J. Control. Release73(2–3), 391–399 (2001).
  • Petersen H, Fechner PM, Martin AL et al. Polyethylenimine-graft-poly(ethylene glycol) copolymers: influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjug. Chem.13(4), 845–854 (2002).
  • Chiu SJ, Ueno NT, Lee RJ. Tumor-targeted gene delivery via anti-HER2 antibody (trastuzumab, Herceptin) conjugated polyethylenimine. J. Control. Release97(2), 357–369 (2004).
  • Merdan T, Callahan J, Petersen H et al. Polyethylene glycol (PEG)ylated polyethylenimine-Fab´ antibody fragment conjugates for targeted gene delivery to human ovarian carcinoma cells. Bioconjug. Chem.14(5), 989–996 (2003).
  • Min SH, Lee DC, Lim MJ et al. A composite gene delivery system consisting of polyethylenimine and an amphipathic peptide KALA. J. Gene Med.8(12), 1425–1434 (2006).
  • Guan H, Zhou Z, Wang H et al. A small interfering RNA targeting vascular endothelial growth factor inhibits Ewing’s sarcoma growth in a xenograft mouse model. Clin. Cancer Res.11(7), 2662–2669 (2005).
  • Moriguchi R, Kogure K, Akita H et al. A multifunctional envelope-type nano device for novel gene delivery of siRNA plasmids. Int. J. Pharm.301(1–2), 277–285 (2005).
  • Dufes C, Uchegbu IF, Schatzlein AG. Dendrimers in gene delivery. Adv. Drug Deliv. Rev.57(15), 2177–2202 (2005).
  • Urdea MS, Horn T. Dendrimer development. Science261(5121), 534 (1993).
  • Alper J. Rising chemical “stars” could play many roles. Science251(5001), 1562–1564 (1991).
  • Bielinska AU, Chen C, Johnson J, Baker JR Jr. DNA complexing with polyamidoamine dendrimers: implications for transfection. Bioconjug. Chem.10(5), 843–850 (1999).
  • Majoros IJ, Thomas TP, Mehta CB, Baker JR Jr. Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy. J. Med. Chem.48(19), 5892–5899 (2005).
  • Kim JB, Choi JS, Nam K et al. Enhanced transfection of primary cortical cultures using arginine-grafted PAMAM dendrimer, PAMAM–Arg. J. Control. Release114(1), 110–117 (2006).
  • Shukla R, Thomas TP, Peters JL et al. HER2 specific tumor targeting with dendrimer conjugated anti-HER2 mAb. Bioconjug. Chem.17(5), 1109–1115 (2006).
  • Tack F, Bakker A, Maes S et al. Modified poly(propylene imine) dendrimers as effective transfection agents for catalytic DNA enzymes (DNAzymes). J. Drug Target.14(2), 69–86 (2006).
  • Read ML, Singh S, Ahmed Z et al. A versatile reducible polycation-based system for efficient delivery of a broad range of nucleic acids. Nucleic Acids Res.33(9), E86 (2005).
  • Mamede M, Saga T, Ishimori T et al. Hepatocyte targeting of 111In-labeled oligo-DNA with avidin or avidin-dendrimer complex. J. Control. Release95(1), 133–141 (2004).
  • Xiong XY, Tam KC, Gan LH. Polymeric nanostructures for drug delivery applications based on pluronic copolymer systems. J. Nanosci. Nanotechnol.6(9–10), 2638–2650 (2006).
  • Jang JS, Kim SY, Lee SB et al. Poly(ethylene glycol)/poly(ε-caprolactone) diblock copolymeric nanoparticles for non-viral gene delivery: the role of charge group and molecular weight in particle formation, cytotoxicity and transfection. J. Control. Release113(2), 173–182 (2006).
  • Conwell CC, Huang L. Recent advances in non-viral gene delivery. Adv. Genet.53, 3–18 (2005).
  • Seth P. Vector-mediated cancer gene therapy: an overview. Cancer Biol. Ther.4(5), 512–517 (2005).
  • Gardlik R, Palffy R, Hodosy J et al. Vectors and delivery systems in gene therapy. Med. Sci. Monit.11(4), RA110–RA121 (2005).
  • Dang JM, Leong KW. Natural polymers for gene delivery and tissue engineering. Adv. Drug Deliv. Rev.58(4), 487–499 (2006).
  • Storrie H, Mooney DJ. Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering. Adv. Drug Deliv. Rev.58(4), 500–514 (2006).
  • Tiera MJ, Winnik FO, Fernandes JC. Synthetic and natural polycations for gene therapy: state of the art and new perspectives. Curr. Gene Ther.6(1), 59–71 (2006).
  • Sano A, Maeda M, Nagahara S et al. Atelocollagen for protein and gene delivery. Adv. Drug Deliv. Rev.55(12), 1651–1677 (2003).
  • Wang J, Lee IL, Lim WS et al. Evaluation of collagen and methylated collagen as gene carriers. Int. J. Pharm.279(1–2), 115–126 (2004).
  • Cohen-Sacks H, Elazar V, Gao J et al. Delivery and expression of pDNA embedded in collagen matrices. J. Control. Release95(2), 309–320 (2004).
  • Kushibiki T, Nagata-Nakajima N, Sugai M, Shimizu A, Tabata Y. Enhanced anti-fibrotic activity of plasmid DNA expressing small interference RNA for TGF-β type II receptor for a mouse model of obstructive nephropathy by cationized gelatin prepared from different amine compounds. J. Control. Release110(3), 610–617 (2006).
  • Matsumoto G, Kushibiki T, Kinoshita Y et al. Cationized gelatin delivery of a plasmid DNA expressing small interference RNA for VEGF inhibits murine squamous cell carcinoma. Cancer Sci.97(4), 313–321 (2006).
  • Chandy T, Sharma CP. Chitosan – as a biomaterial. Biomater. Artif. Cells Artif. Organs18(1), 1–24 (1990).
  • Leong KW, Mao HQ, Truong-Le VL et al. DNA-polycation nanospheres as non-viral gene delivery vehicles. J. Control. Release53(1–3), 183–193 (1998).
  • Borchard G. Chitosans for gene delivery. Adv. Drug Deliv. Rev.52(2), 145–150 (2001).
  • Koping-Hoggard M, Tubulekas I, Guan H et al. Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther.8(14), 1108–1121 (2001).
  • Hwang SJ, Bellocq NC, Davis ME. Effects of structure of β-cyclodextrin-containing polymers on gene delivery. Bioconjug. Chem.12(2), 280–290 (2001).
  • Pun SH, Bellocq NC, Liu A et al. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjug. Chem.15(4), 831–840 (2004).
  • Li S. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J. Biomed. Mater. Res.48(3), 342–353 (1999).
  • Hedley ML. Formulations containing poly(lactide-co-glycolide) and plasmid DNA expression vectors. Expert Opin. Biol. Ther.3(6), 903–910 (2003).
  • Dhiman N, Dutta M, Khuller GK. Poly (dl-lactide-co-glycolide) based delivery systems for vaccines and drugs. Indian J. Exp. Biol.38(8), 746–752 (2000).
  • Singh M, Fang JH, Kazzaz J et al. A modified process for preparing cationic polylactide-co-glycolide microparticles with adsorbed DNA. Int. J. Pharm.327(1–2), 1–5 (2006).
  • Cheng J, Teply BA, Sherifi I et al. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials28(5), 869–876 (2007).
  • Wasungul L, Hoekstra D. Cationic lipids, lipoplexes and intracellular delivery of genes. J. Control. Release116(2), 255–264 (2006).
  • Dass CR, Choong PF. Selective gene delivery for cancer therapy using cationic liposomes: in vivo proof of applicability. J. Control. Release113(2), 155–163 (2006).
  • Oberle V, Bakowsky U, Zuhorn IS, Hoekstra D. Lipoplex formation under equilibrium conditions reveals a three-step mechanism. Biophys. J.79(3), 1447–1454 (2000).
  • Hashida M, Kawakami S, Yamashita F. Lipid carrier systems for targeted drug and gene delivery. Chem. Pharm. Bull.53(8), 871–880 (2005).
  • Fumoto S, Kawakami S, Ito Y et al. Enhanced hepatocyte-selective in vivo gene expression by stabilized galactosylated liposome/plasmid DNA complex using sodium chloride for complex formation. Mol. Ther.10(4), 719–729 (2004).
  • Kawakami S, Hattori Y, Lu Y et al. Effect of cationic charge on receptor-mediated transfection using mannosylated cationic liposome/plasmid DNA complexes following the intravenous administration in mice. Pharmazie59(5), 405–408 (2004).
  • Shi N, Zhang Y, Zhu C, Borador J, Pardridge WM. Brain-specific expression of an exogenous gene after i.v. administration. Proc. Natl Acad. Sci. USA98(22), 12754–12759 (2001).
  • Hofland HE, Masson C, Iginla S et al. Folate-targeted gene transfer in vivo. Mol. Ther.5(6), 739–744 (2002).
  • Zhang Y, Boado RJ, Pardridge WM. In vivo knockdown of gene expression in brain cancer with intravenous RNAi in adult rats. J. Gene Med.5(12), 1039–1045 (2003).
  • Pardridge WM. Intravenous, non-viral RNAi gene therapy of brain cancer. Expert Opin. Biol. Ther.4(7), 1103–1113 (2004).
  • Zhang Y, Zhang YF, Bryant J et al. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin. Cancer Res.10(11), 3667–3677 (2004).
  • Mellor HR, Davies LA, Caspar H et al. Optimising non-viral gene delivery in a tumour spheroid model. J. Gene Med.8(9), 1160–1170 (2006).
  • Hashimoto M, Morimoto M, Saimoto H et al. Gene transfer by DNA/mannosylated chitosan complexes into mouse peritoneal macrophages. Biotechnol. Lett.28(11), 815–821 (2006).
  • Moffatt S, Wiehle S, Cristiano RJ. A multifunctional PEI-based cationic polyplex for enhanced systemic p53-mediated gene therapy. Gene Ther.13(21), 1512–1523 (2006).
  • Kang HC, Kim S, Lee M, Bae YH. Polymeric gene carrier for insulin secreting cells: poly(l-lysine)-γ-sulfonylurea for receptor mediated transfection. J. Control. Release105(1–2), 164–176 (2005).
  • Zhu SG, Xiang JJ, Li XL et al. Poly(l-lysine)-modified silica nanoparticles for the delivery of antisense oligonucleotides. Biotechnol. Appl. Biochem.39(Pt 2), 179–187 (2004).
  • Vincent L, Varet J, Pille JY et al. Efficacy of dendrimer-mediated angiostatin and TIMP-2 gene delivery on inhibition of tumor growth and angiogenesis: in vitro and in vivo studies. Int. J. Cancer105(3), 419–429 (2003).
  • Koping-Hoggard M, Mel’Nikova YS, Varum KM, Lindman B, Artursson P. Relationship between the physical shape and the efficiency of oligomeric chitosan as a gene delivery system in vitro and in vivo. J. Gene Med.5(2), 130–141 (2003).
  • Hu-Lieskivan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res.65(19), 8984–8992 (2005).
  • Wallace DG, Rosenblatt J. Collagen gel systems for sustained delivery and tissue engineering. Adv. Drug Deliv. Rev.55(12), 1631–1649 (2003).
  • Ochiya T, Nagahara S, Sano A, Itoh H, Terada M. Biomaterials for gene delivery: atelocollagen-mediated controlled release of molecular medicines. Curr. Gene Ther.1(1), 31–52 (2001).
  • Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J. Control. Release109(1–3), 256–274 (2005).
  • Denis-Mize KS, Dupuis M, Singh M et al. Mechanisms of increased immunogenicity for DNA-based vaccines adsorbed onto cationic microparticles. Cell. Immunol.225(1), 12–20 (2003).
  • Saora P, Tyagi P, Allen TM. Ligand-targeted liposomes for cancer treatment. Curr. Drug Deliv.2(4), 369–381 (2005).
  • Carpenter M, Epperly MW, Agarwal A et al. Inhalation delivery of manganese superoxide dismutase–plasmid/liposomes protects the murine lung from irradiation damage. Gene Ther.12(8), 685–693 (2005).
  • Goyal P, Goyal K, Vijala Kumar SG et al. Liposomal drug delivery systems – clinical applications. Acta Pharm.55(1), 1–25 (2005).
  • Kushibiki T, Nagata-Nakajima N, Sugai M, Shimizu A, Tabata Y. Delivery of plasmid DNA expressing small interference RNA for TGF-β type II receptor by cationized gelatin to prevent interstitial renal fibrosis. J. Control. Release105(3), 318–331 (2005).
  • Niola F, Evangelisti C, Campagnolo L et al. A plasmid-encoded VEGF siRNA reduces glioblastoma angiogenesis and its combination with interleukin-4 blocks tumor growth in a xenograft mouse model. Cancer Biol. Ther.5(2), 174–179 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.