46
Views
9
CrossRef citations to date
0
Altmetric
Review

Molecular markers of chemotherapeutic response and toxicity in colorectal cancer

, &
Pages 489-501 | Published online: 10 Jan 2014

References

  • UK CR. CancerStats Monograph. Toms JR (Ed.). Cancer Research UK, London (2004).
  • Best L, Simmonds P, Baughan C et al. Palliative chemotherapy for advanced or metastatic colorectal cancer. Cochrane Database Syst. Rev.1(CD001545) (2000).
  • Meyerhardt JA, Mayer RJ. Systemic therapy for colorectal cancer. N. Engl. J. Med.352(5), 476–487 (2005).
  • Sobin L, Wittekind C. TNM Classification of Malignant Tumours. Wiley (2002).
  • Osborne CK, Yochmowitz MG, Knight WA III, McGuire WL. The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer46(Suppl. 12), 2884–2888 (1980).
  • Vogel CL, Cobleigh MA, Tripathy D et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J. Clin. Oncol.20(3), 719–726 (2002).
  • Robert J, Morvan VL, Smith D, Pourquier P, Bonnet J. Predicting drug response and toxicity based on gene polymorphisms. Crit. Rev. Oncol. Hematol.54(3), 171–196 (2005).
  • Longley D, Harkin D, Johnston P. 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer3, 330–338 (2003).
  • Salonga D, Danenberg KD, Johnson M et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin. Cancer Res.6(4), 1322–1327 (2000).
  • Adlard JW, Richman SD, Royston P et al. Assessment of multiple markers for association with response rate (RR) and failure-free survival (FFS) in patients with advanced colorectal cancer (CRC) treated with chemotherapy in the MRC CR08 (FOCUS) randomised trial. J. Clin. Oncol. (2004) (Abstract 9506).
  • Meropol NJ, Gold PJ, Diasio RB et al. Thymidine phosphorylase expression is associated with response to capecitabine plus irinotecan in patients with metastatic colorectal cancer. J. Clin. Oncol.24(25), 4069–4077 (2006).
  • Milano G, Etienne MC, Pierrefite V et al. Dihydropyrimidine dehydrogenase deficiency and fluorouracil-related toxicity. Br. J. Cancer79(3–4), 627–630 (1999).
  • Ridge SA, Sludden J, Brown O et al. Dihydropyrimidine dehydrogenase pharmacogenetics in Caucasian subjects. Br. J. Clin. Pharmacol.46(2), 151–156 (1998).
  • Collie-Duguid ES, Etienne MC, Milano G, McLeod HL. Known variant DPYD alleles do not explain DPD deficiency in cancer patients. Pharmacogenetics10(3), 217–223 (2000).
  • Van Kuilenburg AB, Meinsma R, Zoetekouw L, Van Gennip AH. Increased risk of grade IV neutropenia after administration of 5-fluorouracil due to a dihydropyrimidine dehydrogenase deficiency: high prevalence of the IVS14+1g>a mutation. Int. J. Cancer101(3), 253–258 (2002).
  • Raida M, Schwabe W, Hausler P et al. Prevalence of a common point mutation in the dihydropyrimidine dehydrogenase (DPD) gene within the 5´-splice donor site of introns 14 in patients with severe 5-fluorouracil (5-FU)- related toxicity compared with controls. Clin. Cancer Res.7(9), 2832–2839 (2001).
  • McLeod HL, Sargent DJ, Marsh S et al. Pharmacogenetic analysis of systemic toxicity and response after 5-fluorouracil (5FU)/CPT-11, 5FU/oxaliplatin (oxal), or CPT-11/oxal therapy for advanced colorectal cancer: results from an intergroup trial. J. Clin. Oncol. (2003) (Abstract 1013).
  • Seymour MT, Braun MS, Richman SD et al. Association of molecular markers with toxicity outcomes in a randomized trial of chemotherapy for advanced colorectal cancer (FOCUS). J. Clin. Oncol. (2006) (Abstract 2022).
  • Mattison LK, Fourie J, Hirao Y et al. The uracil breath test in the assessment of dihydropyrimidine dehydrogenase activity: pharmacokinetic relationship between expired 13CO2 and plasma [2–13C]dihydrouracil. Clin. Cancer Res.12(2), 549–555 (2006).
  • Popat S, Matakidou A, Houlston RS. Thymidylate synthase expression and prognosis in colorectal cancer: a systematic review and meta-analysis. J. Clin. Oncol.22(3), 529–536 (2004).
  • McShane LM, Altman DG, Sauerbrei W et al. Reporting recommendations for tumour MARKer prognostic studies (REMARK). Br. J. Cancer93(4), 387–391 (2005).
  • Kawakami K, Omura K, Kanehira E, Watanabe Y. Polymorphic tandem repeats in the thymidylate synthase gene is associated with its protein expression in human gastrointestinal cancers. Anticancer Res.19(4B), 3249–3252 (1999).
  • Pullarkat ST, Stoehlmacher J, Ghaderi V et al. Thymidylate synthase gene polymorphism determines response and toxicity of 5-FU chemotherapy. Pharmacogenomics J.1(1), 65–70 (2001).
  • Mandola MV, Stoehlmacher J, Zhang W et al. A 6 bp polymorphism in the thymidylate synthase gene causes message instability and is associated with decreased intratumoral TS mRNA levels. Pharmacogenetics14(5), 319–327 (2004).
  • Lecomte T, Ferraz J-M, Zinzindohoue F et al. Thymidylate synthase gene polymorphism predicts toxicity in colorectal cancer patients receiving 5-fluorouracil-based chemotherapy. Clin. Cancer Res.10(17), 5880–5888 (2004).
  • Canman CE, Lawrence TS, Shewach DS, Tang HY, Maybaum J. Resistance to fluorodeoxyuridine-induced DNA damage and cytotoxicity correlates with an elevation of deoxyuridine triphosphatase activity and failure to accumulate deoxyuridine triphosphate. Cancer Res.53(21), 5219–5224 (1993).
  • Ladner RD, Lynch FJ, Groshen S et al. dUTP nucleotidohydrolase isoform expression in normal and neoplastic tissues: association with survival and response to 5-fluorouracil in colorectal cancer. Cancer Res.60(13), 3493–3503 (2000).
  • Sohn KJ, Croxford R, Yates Z, Lucock M, Kim YI. Effect of the methylenetetrahydrofolate reductase C677T polymorphism on chemosensitivity of colon and breast cancer cells to 5-fluorouracil and methotrexate. J. Natl Cancer Inst.96(2), 134–144 (2004).
  • Cohen V, Panet-Raymond V, Sabbaghian N et al. Methylenetetrahydrofolate reductase polymorphism in advanced colorectal cancer: a novel genomic predictor of clinical response to fluoropyrimidine-based chemotherapy. Clin. Cancer Res.9(5), 1611–1615 (2003).
  • Chung DC, Rustgi AK. The hereditary nonpolyposis colorectal cancer syndrome: genetics and clinical implications. Ann. Intern. Med.138(7), 560–570 (2003).
  • Lanza G, Gafa R, Santini A et al. Immunohistochemical test for MLH1 and MSH2 expression predicts clinical outcome in stage II and III colorectal cancer patients. J. Clin. Oncol.24(15), 2359–2367 (2006).
  • Ribic CM, Sargent DJ, Moore MJ et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med.349(3), 247–257 (2003).
  • Carethers J, Chauhan D, Fink D et al. Mismatch repair proficiency and in vitro response to 5-fluorouracil. Gastroenterology117, 123–131 (1999).
  • Longley DB, Boyer J, Allen WL et al. The role of thymidylate synthase induction in modulating p53-regulated gene expression in response to 5-fluorouracil and antifolates. Cancer Res.62(9), 2644–2649 (2002).
  • Munro AJ, Lain S, Lane DP. p53 abnormalities and outcomes in colorectal cancer: a systematic review. Br. J. Cancer92(3), 434–444 (2005).
  • Russo A, Bazan V, Iacopetta B et al. The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: influence of tumor site, type of mutation, and adjuvant treatment. J. Clin. Oncol.23(30), 7518–7528 (2005).
  • Pommier Y, Pourquier P, Urasaki Y, Wu J, Laco GS. Topoisomerase I inhibitors: selectivity and cellular resistance. Drug Resist. Updat.2(5), 307–318 (1999).
  • Sanghani SP, Quinney SK, Fredenburg TB et al. Carboxylesterases expressed in human colon tumor tissue and their role in CPT-11 hydrolysis. Clin. Cancer Res.9(13), 4983–4991 (2003).
  • Haaz MC, Riche C, Rivory LP, Robert J. Biosynthesis of an aminopiperidino metabolite of irinotecan [7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecine] by human hepatic microsomes. Drug Metab. Dispos.26(8), 769–774 (1998).
  • Haaz MC, Rivory L, Riche C, Vernillet L, Robert J. Metabolism of irinotecan (CPT-11) by human hepatic microsomes: participation of cytochrome P-450 3A and drug interactions. Cancer Res.58(3), 468–472 (1998).
  • Dodds HM, Haaz M-C, Riou J-F, Robert J, Rivory LP. Identification of a new metabolite of CPT-11 (irinotecan): pharmacological properties and activation to SN-38. J. Pharmacol. Exp. Ther.286(1), 578–583 (1998).
  • Gagne J-F, Montminy V, Belanger P et al. Common human UGT1A polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). Mol. Pharmacol.62(3), 608–617 (2002).
  • Slatter JG, Schaaf LJ, Sams JP et al. Pharmacokinetics, metabolism, and excretion of irinotecan (CPT-11) following i.v. infusion of [14C]CPT-11 in cancer patients. Drug Metab. Dispos.28(4), 423–433 (2000).
  • Lalloo A, Luo F, Guo A et al. Membrane transport of camptothecin: facilitation by human P-glycoprotein (ABCB1) and multidrug resistance protein 2 (ABCC2). BMC Medicine2(1), 16 (2004).
  • Chu X-Y, Kato Y, Niinuma K et al. Multispecific organic anion transporter is responsible for the biliary excretion of the camptothecin derivative irinotecan and its metabolites in rats. J. Pharmacol. Exp. Ther.281(1), 304–314 (1997).
  • Chu XY, Kato Y, Ueda K et al. Biliary excretion mechanism of CPT-11 and its metabolites in humans: involvement of primary active transporters. Cancer Res.58(22), 5137–5143 (1998).
  • Bates SE, Medina-Perez WY, Kohlhagen G et al. ABCG2 mediates differential resistance to SN-38 (7-ethyl-10-hydroxycamptothecin) and homocamptothecins. J. Pharmacol. Exp. Ther.310(2), 836–842 (2004).
  • Sanghani SP, Quinney SK, Fredenburg TB et al. Hydrolysis of irinotecan and its oxidative metabolites, 7-ethyl-10-[4-n-(5-aminopentanoic acid)-1-piperidino] carbonyloxycamptothecin and 7-ethyl-10-[4-(1-piperidino)-1-amino]-carbonyloxycamptothecin, by human carboxylesterases CES1A1, CES2, and a newly expressed carboxylesterase isoenzyme, CES3. Drug Metab. Dispos.32(5), 505–511 (2004).
  • Humerickhouse R, Lohrbach K, Li L, Bosron WF, Dolan ME. Characterization of CPT-11 hydrolysis by human liver carboxylesterase isoforms hCE-1 and hCE-2. Cancer Res.60(5), 1189–1192 (2000).
  • Xu G, Zhang W, Ma MK, McLeod HL. Human carboxylesterase 2 is commonly expressed in tumor tissue and is correlated with activation of irinotecan. Clin. Cancer Res.8(8), 2605–2611 (2002).
  • Marsh S, Ming X, Yu J et al. Pharmacogenomic assessment of carboxylesterase 1 and 2. Genomics84, 661–668 (2004).
  • Wu MH. Determination and analysis of single nucleotide polymorphisms and haplotype structure of the human carboxylesterase 2 gene. Pharmacogenetics14, 595–605 (2004).
  • Charasson V, Bellott R, Meynard D et al. Pharmacogenetics of human carboxylesterase 2, an enzyme involved in the activation of irinotecan into SN-38. Clin. Pharmacol. Ther.76(6), 528–535 (2004).
  • Pavillard V, Charasson V, Laroche-Clary A, Soubeyran I, Robert J. Cellular parameters predictive of the clinical response of colorectal cancers to irinotecan. A preliminary study. Anticancer Res.24(2B), 579–585 (2004).
  • Santos A, Zanetta S, Cresteil T et al. Metabolism of irinotecan (CPT-11) by CYP3A4 and CYP3A5 in humans. Clin. Cancer Res.6(5), 2012–2020 (2000).
  • Floyd MD, Gervasini G, Masica AL et al. Genotype–phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European– and African–American men and women. Pharmacogenetics13(10), 595–606 (2003).
  • van Schaik RH, van der Heiden IP, van den Anker JN, Lindemans J. CYP3A5 variant allele frequencies in Dutch caucasians. Clin. Chem.48(10), 1668–1671 (2002).
  • Mathijssen RHJ, Marsh S, Karlsson MO et al. Irinotecan pathway genotype analysis to predict pharmacokinetics. Clin. Cancer Res.9(9), 3246–3253 (2003).
  • Mathijssen RHJ, de Jong FA, van Schaik RHN et al. Prediction of irinotecan pharmacokinetics by use of cytochrome P450 3A4 phenotyping probes. J. Natl Cancer Inst.96(21), 1585–1592 (2004).
  • Iyer L, Ramirez J, Shepard DR et al. Biliary transport of irinotecan and metabolites in normal and P-glycoprotein-deficient mice. Cancer Chemother. Pharmacol.49(4), 336–341 (2002).
  • Sai K, Kaniwa N, Itoda M et al. Haplotype analysis of ABCB1/MDR1 blocks in a Japanese population reveals genotype-dependent renal clearance of irinotecan. Pharmacogenetics13(12), 741–757 (2003).
  • de Jong FA, Scott-Horton TJ, Kroetz DL et al. Irinotecan-induced diarrhea: functional significance of the polymorphic ABCC2 transporter protein. Clin. Pharmacol. Ther.81(1), 42–49 (2007).
  • Chester JD, Joel SP, Cheeseman SL et al. Phase I and pharmacokinetic study of intravenous irinotecan plus oral ciclosporin in patients with fluorouracil-refractory metastatic colon cancer. J. Clin. Oncol.21(6), 1125–1132 (2003).
  • Vasudev NS, Jagdev S, Anthoney DA, Seymour MT. Intravenous irinotecan plus oral ciclosporin. Clin. Oncol. (R. Coll. Radiol.)17(8), 646–649 (2005).
  • Group UNCCS. PICCOLO: panitumumab, irinotecan and ciclosporin in colorectal cancer therapy. Version 1 (2006).
  • Candeil L, Gourdier I, Peyron D et al. ABCG2 overexpression in colon cancer cells resistant to SN38 and in irinotecan-treated metastases. Int. J. Cancer109(6), 848–854 (2004).
  • Chen ZS, Furukawa T, Sumizawa T et al. ATP-dependent efflux of CPT-11 and SN-38 by the multidrug resistance protein (MRP) and its inhibition by PAK-104P. Mol. Pharmacol.55(5), 921–928 (1999).
  • Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu. Rev. Pharmacol. Toxicol.40(1), 581–616 (2000).
  • Bosma PJ, Chowdhury JR, Bakker C et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N. Engl. J. Med.333(18), 1171–1175 (1995).
  • Ando Y, Saka H, Ando M et al. Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res.60(24), 6921–6926 (2000).
  • Ando Y, Ueoka H, Sugiyama T et al. Polymorphisms of UDP-glucuronosyltransferase and pharmacokinetics of irinotecan. Ther. Drug Monit.24(1), 111–116 (2002).
  • Sai K, Saeki M, Saito Y et al. UGT1A1 haplotypes associated with reduced glucuronidation and increased serum bilirubin in irinotecan-administered Japanese patients with cancer. Clin. Pharmacol. Ther.75(6), 501–515 (2004).
  • Marcuello E, Altes A, Menoyo A et al. UGT1A1 gene variations and irinotecan treatment in patients with metastatic colorectal cancer. Br. J. Cancer91(4), 678–682 (2004).
  • Iyer L, Das S, Janisch L et al. UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J.2(1), 43–47 (2002).
  • Rouits E, Boisdron-Celle M, Dumont A et al. Relevance of different UGT1A1 polymorphisms in irinotecan-induced toxicity: a molecular and clinical study of 75 patients. Clin. Cancer Res.10(15), 5151–5159 (2004).
  • Toffoli G, Cecchin E, Corona G et al. The role of UGT1A1*28 polymorphism in the pharmacodynamics and pharmacokinetics of irinotecan in patients with metastatic colorectal cancer. J. Clin. Oncol.24(19), 3061–3068 (2006).
  • McLeod HL, Parodi L, Sargent DJ et al. UGT1A1*28 toxicity and outcome in advanced colorectal cancer: results from the trial N9741. J. Clin. Oncol. (2006) (Abstract 3520).
  • Lankisch TO, Vogel A, Eilermann S et al. Identification and characterization of a functional TATA box polymorphism of the UDP glucuronosyltransferase 1A7 gene. Mol. Pharmacol.67(5), 1732–1739 (2005).
  • Yamanaka H, Nakajima M, Katoh M et al. A novel polymorphism in the promoter region of human UGT1A9 gene (UGT1A9*22) and its effects on the transcriptional activity. Pharmacogenetics14(5), 329–332 (2004).
  • Girard H, Court MH, Bernard O et al. Identification of common polymorphisms in the promoter of the UGT1A9 gene: evidence that UGT1A9 protein and activity levels are strongly genetically controlled in the liver. Pharmacogenetics14(8), 501–515 (2004).
  • Villeneuve L, Girard H, Fortier L-C, Gagne J-F, Guillemette C. Novel functional polymorphisms in the UGT1A7 and UGT1A9 glucuronidating enzymes in Caucasian and African–American subjects and their impact on the metabolism of 7-ethyl-10-hydroxycamptothecin and flavopiridol anticancer drugs. J. Pharmacol. Exp. Ther.307(1), 117–128 (2003).
  • Carlini LE, Meropol NJ, Bever J et al. UGT1A7 and UGT1A9 polymorphisms predict response and toxicity in colorectal cancer patients treated with capecitabine/irinotecan. Clin. Cancer Res.11(3), 1226–1236 (2005).
  • Kullak-Ublick GA, Becker MB. Regulation of drug and bile salt transporters in liver and intestine. Drug Metab. Rev.35(4), 305–317 (2003).
  • Sugatani J, Yamakawa K, Tonda E et al. The induction of human UDP-glucuronosyltransferase 1A1 mediated through a distal enhancer module by flavonoids and xenobiotics. Biochem. Pharmacol.67(5), 989–1000 (2004).
  • Paradiso A, Xu J, Mangia A et al. Topoisomerase-I, thymidylate synthase primary tumour expression and clinical efficacy of 5-FU/CPT-11 chemotherapy in advanced colorectal cancer patients. Int. J. Cancer111(2), 252–258 (2004).
  • Braun MS, Richman SD, Adlard JW et al. Association of topoisomerase-1 (Topo1) with the efficacy of chemotherapy in a randomized trial for advanced colorectal cancer patients (FOCUS). J. Clin. Oncol. (2006) (Abstract 10009).
  • Magrini R, Bhonde MR, Hanski ML et al. Cellular effects of CPT-11 on colon carcinoma cells: dependence on p53 and hMLH1 status. Int. J. Cancer101(1), 23–31 (2002).
  • Fedier A, Schwarz VA, Walt H et al. Resistance to topoisomerase poisons due to loss of DNA mismatch repair. Int. J. Cancer93(4), 571–576 (2001).
  • Fallik D, Borrini F, Boige V et al. Microsatellite instability is a predictive factor of the tumor response to irinotecan in patients with advanced colorectal cancer. Cancer Res.63(18), 5738–5744 (2003).
  • Kennedy RD, Quinn JE, Mullan PB, Johnston PG, Harkin DP. The role of BRCA1 in the cellular response to chemotherapy. J. Natl Cancer Inst.96(22), 1659–1668 (2004).
  • Fedier A, Steiner RA, Schwarz VA et al. The effect of loss of BRCA1 on the sensitivity to anticancer agents in p53-deficient cells. Int. J. Oncol.22(5), 1169–1173 (2003).
  • Park S-Y, Lam W, Cheng Y-C. X-ray repair cross-complementing gene I protein plays an important role in camptothecin resistance. Cancer Res.62(2), 459–465 (2002).
  • deBraud F, Munzone E, Nole F et al. Synergistic activity of oxaliplatin and 5-fluorouracil in patients with metastatic colorectal cancer with progressive disease while on or after 5-fluorouracil. Am. J. Clin. Oncol.21(3), 279–283 (1998).
  • Samimi G, Safaei R, Katano K et al. Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clin. Cancer Res.10(14), 4661–4669 (2004).
  • Holzer AK, Samimi G, Katano K et al. The copper influx transporter human copper transport protein 1 regulates the uptake of cisplatin in human ovarian carcinoma cells. Mol. Pharmacol.66(4), 817–823 (2004).
  • Zhang S, Lovejoy KS, Shima JE et al. Organic cation transporters are determinants of oxaliplatin cytotoxicity. Cancer Res.66(17), 8847–8857 (2006).
  • Samimi G, Varki NM, Wilczynski S et al. Increase in expression of the copper transporter ATP7A during platinum drug-based treatment is associated with poor survival in ovarian cancer patients. Clin. Cancer Res.9(16), 5853–5859 (2003).
  • Stoehlmacher J, Park DJ, Zhang W et al. Association between glutathione S-transferase P1, T1, and M1 genetic polymorphism and survival of patients with metastatic colorectal cancer. J. Natl Cancer Inst.94(12), 936–942 (2002).
  • Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene22(47), 7265–7279 (2003).
  • Shirota Y, Stoehlmacher J, Brabender J et al. ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy. J. Clin. Oncol.19(23), 4298–4304 (2001).
  • Stoehlmacher J, Park DJ, Zhang W et al. A multivariate analysis of genomic polymorphisms: prediction of clinical outcome to 5-FU/oxaliplatin combination chemotherapy in refractory colorectal cancer. Br. J. Cancer91(2), 344–354 (2004).
  • Viguier J, Boige V, Miquel C et al. ERCC1 codon 118 polymorphism is a predictive factor for the tumor response to oxaliplatin/5-fluorouracil combination chemotherapy in patients with advanced colorectal cancer. Clin. Cancer Res.11(17), 6212–6217 (2005).
  • Park DJ, Stoehlmacher J, Zhang W et al. A Xeroderma pigmentosum group D gene polymorphism predicts clinical outcome to platinum-based chemotherapy in patients with advanced colorectal cancer. Cancer Res.61(24), 8654–8658 (2001).
  • Fink D, Nebel S, Aebi S et al. The role of DNA mismatch repair in platinum drug resistance. Cancer Res.56(21), 4881–4886 (1996).
  • Stoehlmacher J, Ghaderi V, Iobal S et al. A polymorphism of the XRCC1 gene predicts for response to platinum based treatment in advanced colorectal cancer. Anticancer Res.21(4B), 3075–3079 (2001).
  • Adams R, Maughan T. Predicting response to epidermal growth factor receptor-targeted therapy in colorectal cancer. Expert Rev Anticancer Ther.7(4), 503–518 (2007).
  • Jubb AM, Oates AJ, Holden S, Koeppen H. Predicting benefit from antiangiogenic agents in malignancy. Nat. Rev. Cancer6(8), 626–635 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.