114
Views
2
CrossRef citations to date
0
Altmetric
Review

Intestinal homeostasis and neoplasia studied using conditional transgenesis

&
Pages 519-531 | Published online: 10 Jan 2014

References

  • Moser AR, Pitot HC, Dove WF. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science247(4940), 322–324 (1990).
  • Su LK, Kinzler KW, Vogelstein B et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science256(5057), 668–670 (1992).
  • Shoemaker AR, Gould KA, Luongo C, Moser AR, Dove WF. Studies of neoplasia in the Min mouse. Biochim. Biophys. Acta1332(2), F25–F48 (1997).
  • Sansom OJ, Stark LA, Dunlop MG, Clarke AR. Suppression of intestinal and mammary neoplasia by lifetime administration of aspirin in Apc(Min/+) and Apc(Min/+), Msh2(-/-) mice. Cancer Res.61(19), 7060–7064 (2001).
  • Boolbol SK, Dannenberg AJ, Chadburn A et al. Cyclooxygenase-2 overexpression and tumor formation are blocked by sulindac in a murine model of familial adenomatous polyposis. Cancer Res.56(11), 2556–2560 (1996).
  • Giardiello FM, Yang VW, Hylind LM et al. Primary chemoprevention of familial adenomatous polyposis with sulindac. N. Engl. J. Med.346(14), 1054–1059 (2002).
  • Clarke AR, Gledhill S, Hooper ML, Bird CC, Wyllie AH. p53 dependence of early apoptotic and proliferative responses within the mouse intestinal epithelium following γ-irradiation. Oncogene9(6), 1767–1773 (1994).
  • Christophorou MA, Ringshausen I, Finch AJ, Swigart LB, Evan GI. The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature443(7108), 214–217 (2006).
  • Lewandoski M. Conditional control of gene expression in the mouse. Nat. Rev. Genet.2(10), 743–755 (2001).
  • Bullard DC, Weaver CT. Cutting-edge technology: IV. Genomic engineering for studies of the gastrointestinal tract in mice. Am. J. Physiol. Gastrointest. Liver Physiol.283(6), G1232–G1237 (2002).
  • Garcia EL, Mills AA. Getting around lethality with inducible Cre-mediated excision. Semin. Cell Dev. Biol.13(2), 151–158 (2002).
  • Ryding AD, Sharp MG, Mullins JJ. Conditional transgenic technologies. J Endocrinol.171(1), 1–14 (2001).
  • Pinto D, Robine S, Jaisser F, El Marjou FE, Louvard D. Regulatory sequences of the mouse Villin gene that efficiently drive transgenic expression in immature and differentiated epithelial cells of small and large intestines. J. Biol. Chem.274(10), 6476–6482 (1999).
  • Schweinfest CW, Jorcyk CL, Fujiwara S, Papas TS. A heat-shock-inducible eukaryotic expression vector. Gene71(1), 207–210 (1988).
  • Hu MC, Davidson N. A combination of derepression of the lac operator-repressor system with positive induction by glucocorticoid and metal ions provides a high-evel-inducible gene expression system based on the human metallothionein-IIA promoter. Mol. Cell Biol.10(12), 6141–6151 (1990).
  • Abremski K, Hoess R. Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J. Biol. Chem.259(3), 1509–1514 (1984).
  • Hoess RH, Ziese M, Sternberg N. P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc. Natl Acad. Sci. USA79(11), 3398–3402 (1982).
  • Sternberg N, Hamilton D. Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J. Mol. Biol.150(4), 467–486 (1981).
  • Lakso M, Sauer B, Mosinger B Jr et al. Targeted oncogene activation by site-specific recombination in transgenic mice. Proc. Natl Acad. Sci. USA89(14), 6232–6236 (1992).
  • Madison BB, Dunbar L, Qiao XT, Braunstein K, Braunstein E, Gumucio DL. Cis elements of the Villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine. J. Biol. Chem.277(36), 33275–33283 (2002).
  • el Marjou F, Janssen KP, Chang BH et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis39(3), 186–193 (2004).
  • Saam JR, Gordon JI. Inducible gene knockouts in the small intestinal and colonic epithelium. J. Biol. Chem.274(53), 38071–38082 (1999).
  • Kuhn R, Schwenk F, Aguet M, Rajewsky K. Inducible gene targeting in mice. Science269(5229), 1427–1429 (1995).
  • Ireland H, Kemp R, Houghton C et al. Inducible Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of β-catenin. Gastroenterology126(5), 1236–1246 (2004).
  • Campbell SJ, Carlotti F, Hall PA, Clark AJ, Wolf CR. Regulation of the CYP1A1 promoter in transgenic mice: an exquisitely sensitive on-off system for cell specific gene regulation. J. Cell Sci.109(Pt 11), 2619–2625 (1996).
  • Schneider A, Zhang Y, Guan Y, Davis LS, Breyer MD. Differential, inducible gene targeting in renal epithelia, vascular endothelium, and viscera of Mx1Cre mice. Am. J. Physiol. Renal Physiol.284(2), F411–F417 (2003).
  • Metzger D, Clifford J, Chiba H, Chambon P. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc. Natl Acad. Sci. USA92(15), 6991–6995 (1995).
  • Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P. Ligand-activated site-specific recombination in mice. Proc. Natl Acad. Sci. USA93(20), 10887–10890 (1996).
  • Feil R, Wagner J, Metzger D, Chambon P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem. Biophys. Res. Commun.237(3), 752–757 (1997).
  • Kemp R, Ireland H, Clayton E, Houghton C, Howard L, Winton DJ. Elimination of background recombination: somatic induction of Cre by combined transcriptional regulation and hormone binding affinity. Nucleic Acids Res.32(11), E92 (2004).
  • Thyagarajan B, Guimaraes MJ, Groth AC, Calos MP. Mammalian genomes contain active recombinase recognition sites. Gene244(1–2), 47–54 (2000).
  • Senecoff JF, Bruckner RC, Cox MM. The FLP recombinase of the yeast 2-micron plasmid: characterization of its recombination site. Proc. Natl Acad. Sci. USA82(21), 7270–7274 (1985).
  • Gossen M, Bonin AL, Bujard H. Control of gene activity in higher eukaryotic cells by prokaryotic regulatory elements. Trends Biochem. Sci.18(12), 471–475 (1993).
  • Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl Acad. Sci. USA89(12), 5547–5551 (1992).
  • Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H. Transcriptional activation by tetracyclines in mammalian cells. Science268(5218), 1766–1769 (1995).
  • Clarke AR. Wnt signalling in the mouse intestine. Oncogene25(57), 7512–7521 (2006).
  • Clevers H. Wnt/β-catenin signaling in development and disease. Cell127(3), 469–480 (2006).
  • Moser AR, Shoemaker AR, Connelly CS et al. Homozygosity for the Min allele of Apc results in disruption of mouse development prior to gastrulation. Dev. Dyn.203(4), 422–433 (1995).
  • Sansom OJ, Reed KR, Hayes AJ et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev.18(12), 1385–1390 (2004).
  • Andreu P, Colnot S, Godard C et al. Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine. Development132(6), 1443–1451 (2005).
  • Preston SL, Wong WM, Chan AO et al. Bottom-up histogenesis of colorectal adenomas: origin in the monocryptal adenoma and initial expansion by crypt fission. Cancer Res.63(13), 3819–3825 (2003).
  • Shibata H, Toyama K, Shioya H et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science278(5335), 120–123 (1997).
  • Colnot S, Niwa-Kawakita M, Hamard G et al. Colorectal cancers in a new mouse model of familial adenomatous polyposis: influence of genetic and environmental modifiers. Lab. Invest.84(12), 1619–1630 (2004).
  • Lilien J, Balsamo J. The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of β-catenin. Curr. Opin. Cell Biol.17(5), 459–465 (2005).
  • Wong NA, Pignatelli M. β-catenin-a linchpin in colorectal carcinogenesis? Am. J. Pathol.160(2), 389–401 (2002).
  • Wong MH, Rubinfeld B, Gordon JI. Effects of forced expression of an NH2-terminal truncated β-catenin on mouse intestinal epithelial homeostasis. J. Cell Biol.141(3), 765–777 (1998).
  • Romagnolo B, Berrebi D, Saadi-Keddoucci S et al. Intestinal dysplasia and adenoma in transgenic mice after overexpression of an activated β-catenin. Cancer Res.59(16), 3875–3879 (1999).
  • Harada N, Tamai Y, Ishikawa T et al. Intestinal polyposis in mice with a dominant stable mutation of the β-catenin gene. EMBO J.18(21), 5931–5942 (1999).
  • van de Wetering M, Sancho E, Verweij C et al. The β–catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell111(2), 241–250 (2002).
  • Bettess MD, Dubois N, Murphy MJ et al. c-Myc is required for the formation of intestinal crypts but dispensable for homeostasis of the adult intestinal epithelium. Mol. Cell Biol.25(17), 7868–7878 (2005).
  • Muncan V, Sansom OJ, Tertoolen L et al. Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf–4 target gene c-Myc. Mol. Cell Biol.26(22), 8418–8426 (2006).
  • Ignatenko NA, Holubec H, Besselsen DG et al. Role of c–Myc in intestinal tumorigenesis of the ApcMin/+ mouse(1). Cancer Biol. Ther.5(12) 1658–1664 (2006).
  • Sansom OJ, Meniel VS, Muncan V et al. Myc deletion rescues Apc deficiency in the small intestine. Nature DOI:10.1038/nature05674 (2007) (Epub ahead of print).
  • Saito S, Liu B, Yokoyama K. Animal embryonic stem (ES) cells: self-renewal, pluripotency, transgenesis and nuclear transfer. Hum. Cell17(3), 107–115 (2004).
  • Burgess S, Reim G, Chen W, Hopkins N, Brand M. The zebrafish spiel-ohne-grenzen (spg) gene encodes the POU domain protein Pou2 related to mammalian Oct4 and is essential for formation of the midbrain and hindbrain, and for pre-gastrula morphogenesis. Development129(4), 905–916 (2002).
  • Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med.10(1), 55–63 (2004).
  • Hochedlinger K, Yamada Y, Beard C, Jaenisch R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell121(3), 465–477 (2005).
  • Wilson A, Radtke F. Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Lett.580(12), 2860–2868 (2006).
  • van Es JH, van Gijn ME, Riccio O et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature435(7044), 959–963 (2005).
  • Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S. Notch signals control the fate of immature progenitor cells in the intestine. Nature435(7044), 964–968 (2005).
  • Zecchini V, Domaschenz R, Winton D, Jones P. Notch signaling regulates the differentiation of post-mitotic intestinal epithelial cells. Genes Dev.19(14), 1686–1691 (2005).
  • Sancho E, Batlle E, Clevers H. Signaling pathways in intestinal development and cancer. Annu. Rev. Cell Dev. Biol.20, 695–723 (2004).
  • Hahm KB, Lee KM, Kim YB et al. Conditional loss of TGF-β signalling leads to increased susceptibility to gastrointestinal carcinogenesis in mice. Aliment. Pharmacol. Ther.16(Suppl 2), 115–127 (2002).
  • Ishizuya-Oka A. Epithelial-connective tissue cross-talk is essential for regeneration of intestinal epithelium. J. Nippon Med. Sch.72(1), 13–18 (2005).
  • Chow E, Macrae F. A review of juvenile polyposis syndrome. J. Gastroenterol. Hepatol.20(11), 1634–1640 (2005).
  • He XC, Zhang J, Tong WG et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt–β–catenin signaling. Nat. Gen.36(10), 1117–1121 (2004).
  • Bjerknes M, Cheng H. Re-examination of P-PTEN staining patterns in the intestinal crypt. Nat. Genet.37(10), 1016–1017; author reply 1017–1018 (2005).
  • He XC, Li L. Reply to Re-examination of P-PTEN staining patterns in the intestinal crypt. Nat. Genet.37, 1017–1018 (2005).
  • Haramis AP, Begthel H, van den Born M et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science303(5664), 1684–1686 (2004).
  • Batts LE, Polk DB, Dubois RN, Kulessa H. BMP signaling is required for intestinal growth and morphogenesis. Dev. Dyn.235(6), 1563–1570 (2006).
  • Kim BG, Li C, Qiao W et al. Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature441(7096), 1015–1019 (2006).
  • He XC, Yin T, Grindley JC et al. PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat. Genet.39(2), 189–198 (2007).
  • Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat. Rev. Cancer3(6), 459–465 (2003).
  • Janssen KP, El-Marjou F, Pinto D et al. Targeted expression of oncogenic K-Ras in intestinal epithelium causes spontaneous tumorigenesis in mice. Gastroenterology123(2), 492–504 (2002).
  • Tuveson DA, Shaw AT, Willis NA et al. Endogenous oncogenic K-Ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell5(4), 375–387 (2004).
  • Sansom OJ, Meniel V, Wilkins JA et al. Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-Ras oncogene in vivo. Proc. Natl Acad. Sci. USA103(38), 14122–14127 (2006).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.