42
Views
3
CrossRef citations to date
0
Altmetric
Review

Determining glioma response to radiation therapy using recombinant peptides

, &
Pages 1787-1796 | Published online: 10 Jan 2014

References

  • Jemal A, Siegel R, Ward E et al. Cancer statistics, 2008. CA Cancer J. Clin.58(2), 71–96 (2008).
  • Carpentier AF. Neuro-oncology: the growing role of chemotherapy in glioma. Lancet Neurol.4(1), 4–5 (2005).
  • Davis FG, Freels S, Grutsch J, Barlas S, Brem S. Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type: an analysis based on surveillance, epidemiology, and end results (SEER) data, 1973–1991. J. Neurosurg.88(1), 1–10 (1998).
  • Grossman SA, Batara JF. Current management of glioblastoma multiforme. Semin. Oncol.31(5), 635–644 (2004).
  • Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352(10), 987–996 (2005).
  • Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS. Molecular imaging in drug development. Nat. Rev. Drug Discov.7(7), 591–607 (2008).
  • Pichler BJ, Wehrl HF, Judenhofer MS. Latest advances in molecular imaging instrumentation. J. Nucl. Med.49(Suppl. 2), 5S–23S (2008).
  • Mankoff DA. A definition of molecular imaging. J. Nucl. Med.48(6), 18N–21N (2007).
  • Dinca EB, Sarkaria JN, Schroeder MA et al. Bioluminescence monitoring of intracranial glioblastoma xenograft: response to primary and salvage temozolomide therapy. J. Neurosurg.107(3), 610–616 (2007).
  • Lamfers ML, Fulci G, Gianni D et al. Cyclophosphamide increases transgene expression mediated by an oncolytic adenovirus in glioma-bearing mice monitored by bioluminescence imaging. Mol. Ther.14(6), 779–788 (2006).
  • Montet X, Ntziachristos V, Grimm J, Weissleder R. Tomographic fluorescence mapping of tumor targets. Cancer Res.65(14), 6330–6336 (2005).
  • Hsu AR, Cai W, Veeravagu A et al. Multimodality molecular imaging of glioblastoma growth inhibition with vasculature-targeting fusion toxin VEGF121/rGel. J. Nucl. Med.48(3), 445–454 (2007).
  • Rehemtulla A, Hall DE, Stegman LD et al. Molecular imaging of gene expression and efficacy following adenoviral-mediated brain tumor gene therapy. Mol. Imaging1(1), 43–55 (2002).
  • Chenevert TL, Stegman LD, Taylor JM et al. Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J. Natl Cancer Inst.92(24), 2029–2036 (2000).
  • Lee KC, Hamstra DA, Bhojani MS, Khan AP, Ross BD, Rehemtulla A. Noninvasive molecular imaging sheds light on the synergy between 5-fluorouracil and TRAIL/Apo2L for cancer therapy. Clin. Cancer Res.13(6), 1839–1846 (2007).
  • Moffat BA, Chenevert TL, Meyer CR et al. The functional diffusion map: an imaging biomarker for the early prediction of cancer treatment outcome. Neoplasia8(4), 259–267 (2006).
  • Tofts PS, Brix G, Buckley DL et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J. Magn. Reson. Imaging10(3), 223–232 (1999).
  • Yankeelov TE, DeBusk LM, Billheimer DD et al. Repeatability of a reference region model for analysis of murine DCE-MRI data at 7T. J. Magn. Reson. Imaging24(5), 1140–1147 (2006).
  • Yankeelov TE, Luci JJ, Lepage M et al. Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model. Magn. Reson. Imaging23(4), 519–529 (2005).
  • Morgan B, Thomas AL, Drevs J et al. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two Phase I studies. J. Clin. Oncol.21(21), 3955–3964 (2003).
  • Mardor Y, Pfeffer R, Spiegelmann R et al. Early detection of response to radiation therapy in patients with brain malignancies using conventional and high β-value diffusion-weighted magnetic resonance imaging. J. Clin. Oncol.21(6), 1094–1100 (2003).
  • Mardor Y, Roth Y, Ochershvilli A et al. Pretreatment prediction of brain tumors’ response to radiation therapy using high β-value diffusion-weighted MRI. Neoplasia6(2), 136–142 (2004).
  • Batchelor TT, Sorensen AG, di Tomaso E et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell11(1), 83–95 (2007).
  • Aina OH, Marik J, Liu R, Lau DH, Lam KS. Identification of novel targeting peptides for human ovarian cancer cells using ‘one-bead one-compound’ combinatorial libraries. Mol. Cancer Ther.4(5), 806–813 (2005).
  • Krumpe LRH, Mori T. The use of phage-displayed peptide libraries to develop tumor-targeting drugs. Int. J. Peptide Res. Therapeut.12(1), 79–91 (2006).
  • Jiang T, Olson ES, Nguyen QT, Roy M, Jennings PA, Tsien RY. Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc. Natl Acad. Sci. USA101(51), 17867–17872 (2004).
  • van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry31(1), 1–9 (1998).
  • Kolodgie FD, Petrov A, Virmani R et al. Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque. Circulation108(25), 3134–3139 (2003).
  • Narula J, Acio ER, Narula N et al. Annexin-V imaging for noninvasive detection of cardiac allograft rejection. Nat. Med.7(12), 1347–1352 (2001).
  • van de Wiele C, Lahorte C, Vermeersch H et al. Quantitative tumor apoptosis imaging using technetium-99m-HYNIC annexin V single photon emission computed tomography. J. Clin. Oncol.21(18), 3483–3487 (2003).
  • Belhocine T, Steinmetz N, Hustinx R et al. Increased uptake of the apoptosis-imaging agent (99m)Tc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin. Cancer Res.8(9), 2766–2774 (2002).
  • Lahorte CM, van de Wiele C, Bacher K et al. Biodistribution and dosimetry study of 123I-rh-annexin V in mice and humans. Nucl. Med. Comm.24(8), 871–880 (2003).
  • Aina OH, Sroka TC, Chen ML, Lam KS. Therapeutic cancer targeting peptides. Biopolymers66(3), 184–199 (2002).
  • Nilsson F, Tarli L, Viti F, Neri D. The use of phage display for the development of tumour targeting agents. Adv. Drug Deliv. Rev.43(2–3), 165–196 (2000).
  • Ladner RC. Polypeptides from phage display. A superior source of in vivo imaging agents. Q J. Nucl. Med.43(2), 119–124 (1999).
  • Liu B, Huang L, Sihlbom C, Burlingame A, Marks JD. Towards proteome-wide production of monoclonal antibody by phage display. J. Mol. Biol.315(5), 1063–1073 (2002).
  • Rusckowski M, Qu T, Pullman J et al. Inflammation and infection imaging with a 99mTc-neutrophil elastase inhibitor in monkeys. J. Nucl. Med.41(2), 363–374 (2000).
  • Cai W, Chen X. Multimodality molecular imaging of tumor angiogenesis. J. Nucl. Med.49(Suppl. 2), 113S–128S (2008).
  • Hallahan DE, Staba-Hogan MJ, Virudachalam S, Kolchinsky A. X-ray-induced P-selectin localization to the lumen of tumor blood vessels. Cancer Res.58(22), 5216–5220 (1998).
  • Hallahan D, Clark ET, Kuchibhotla J, Gewertz BL, Collins T. E-selectin gene induction by ionizing radiation is independent of cytokine induction. Biochem. Biophys. Res. Commun.217(3), 784–795 (1995).
  • Hallahan D, Kuchibhotla J, Wyble C. Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium. Cancer Res.56(22), 5150–5155 (1996).
  • Hallahan DE, Virudachalam S. Ionizing radiation mediates expression of cell adhesion molecules in distinct histological patterns within the lung. Cancer Res.57(11), 2096–2099 (1997).
  • Hallahan DE, Virudachalam S. Intercellular adhesion molecule 1 knockout abrogates radiation induced pulmonary inflammation. Proc. Natl Acad. Sci. USA94(12), 6432–6437 (1997).
  • Hallahan DE. Radiation-mediated gene expression in the pathogenesis of the clinical radiation response. Semin. Radiat. Oncol.6(4), 250–267 (1996).
  • Hallahan DE. Introduction. Semin. Radiat. Oncol.6(4), 243–244 (1996).
  • Hallahan DE, Virudachalam S. Accumulation of P-selectin in the lumen of irradiated blood vessels. Radiat. Res.152(1), 6–13 (1999).
  • Staba MJ, Wickham TJ, Kovesdi I, Hallahan DE. Modifications of the fiber in adenovirus vectors increase tropism for malignant glioma models. Cancer Gene Ther.7(1), 13–19 (2000).
  • Edwards E, Geng L, Tan J, Onishko H, Donnelly E, Hallahan DE. Phosphatidylinositol 3-kinase/Akt signaling in the response of vascular endothelium to ionizing radiation. Cancer Res.62(16), 4671–4677 (2002).
  • Hallahan D, Geng L, Qu S et al. Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels. Cancer Cell.3(1), 63–74 (2003).
  • Hallahan DE, Geng L, Cmelak AJ et al. Targeting drug delivery to radiation-induced neoantigens in tumor microvasculature. J. Control Release74(1–3), 183–191 (2001).
  • Geng L, Osusky K, Konjeti S, Fu A, Hallahan D. Radiation-guided drug delivery to tumor blood vessels results in improved tumor growth delay. J. Control Release99(3), 369–381 (2004).
  • Schueneman AJ, Himmelfarb E, Geng L et al. SU11248 maintenance therapy prevents tumor regrowth after fractionated irradiation of murine tumor models. Cancer Res.63(14), 4009–4016 (2003).
  • Lu B, Geng L, Musiek A et al. Broad spectrum receptor tyrosine kinase inhibitor, SU6668, sensitizes radiation via targeting survival pathway of vascular endothelium. Int. J. Radiat. Oncol. Biol. Phys.58(3), 844–850 (2004).
  • Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science279(5349), 377–380 (1998).
  • Baillie CT, Winslet MC, Bradley NJ. Tumour vasculature – a potential therapeutic target. Br. J. Cancer.72(2), 257–267 (1995).
  • Brooks PC, Montgomery AM, Rosenfeld M et al. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell79(7), 1157–1164 (1994).
  • Burg MA, Pasqualini R, Arap W, Ruoslahti E, Stallcup WB. NG2 proteoglycan-binding peptides target tumor neovasculature. Cancer Res.59(12), 2869–2874 (1999).
  • Ellerby HM, Arap W, Ellerby LM et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat. Med.5(9), 1032–1038 (1999).
  • Fox SB, Harris AL. Markers of tumor angiogenesis: clinical applications in prognosis and anti-angiogenic therapy. Invest. New Drugs15(1), 15–28 (1997).
  • Molema G, de Leij LF, Meijer DK. Tumor vascular endothelium: barrier or target in tumor directed drug delivery and immunotherapy. Pharm. Res.14(1), 2–10 (1997).
  • Rajotte D, Ruoslahti E. Membrane dipeptidase is the receptor for a lung-targeting peptide identified by in vivo phage display. J. Biol. Chem.274(17), 11593–11598 (1999).
  • Pasqualini R, Ruoslahti E. Organ targeting in vivo using phage display peptide libraries. Nature380(6572), 364–366 (1996).
  • Sergeeva A, Kolonin MG, Molldrem JJ, Pasqualini R, Arap W. Display technologies: application for the discovery of drug and gene delivery agents. Adv. Drug Deliv. Rev.58(15), 1622–1654 (2006).
  • Han Z, Fu A, Wang H et al. Noninvasive assessment of cancer response to therapy. Nat. Med.14(3), 343–349 (2008).
  • Landon LA, Deutscher SL. Combinatorial discovery of tumor targeting peptides using phage display. J. Cell Biochem.90(3), 509–517 (2003).
  • Lee SM, Lee EJ, Hong HY et al. Targeting bladder tumor cells in vivo and in the urine with a peptide identified by phage display. Mol. Cancer Res.5(1), 11–19 (2007).
  • Newton JR, Kelly KA, Mahmood U, Weissleder R, Deutscher SL. In vivo selection of phage for the optical imaging of PC-3 human prostate carcinoma in mice. Neoplasia8(9), 772–780 (2006).
  • Ho IA, Lam PY, Hui KM. Identification and characterization of novel human glioma-specific peptides to potentiate tumor-specific gene delivery. Hum. Gene Ther.15(8), 719–732 (2004).
  • Spear MA, Breakefield XO, Beltzer J et al. Isolation, characterization, and recovery of small peptide phage display epitopes selected against viable malignant glioma cells. Cancer Gene Ther.8(7), 506–511 (2001).
  • Zhang J, Spring H, Schwab M. Neuroblastoma tumor cell-binding peptides identified through random peptide phage display. Cancer Lett.171(2), 153–164 (2001).
  • Ruoslahti E. RGD and other recognition sequences for integrins. Annu. Rev. Cell. Dev. Biol.12, 697–715 (1996).
  • Smith JW, Cheresh DA. The Arg–Gl–Asp binding domain of the vitronectin receptor. Photoaffinity cross-linking implicates amino acid residues 61–203 of the β subunit. J. Biol. Chem.263(35), 18726–18731 (1988).
  • Wu Y, Zhang X, Xiong Z et al. microPET imaging of glioma integrin αvβ3 expression using (64)Cu-labeled tetrameric RGD peptide. J. Nucl. Med.46(10), 1707–1718 (2005).
  • Eliceiri BP, Cheresh DA. The role of αv integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J. Clin. Invest.103(9), 1227–1230 (1999).
  • Haubner R. αvβ3-integrin imaging: a new approach to characterise angiogenesis? Eur. J. Nucl. Med. Mol. Imaging33(Suppl. 1), 54–63 (2006).
  • Horton MA. The αvβ3 integrin ‘vitronectin receptor’. Int. J. Biochem. Cell Biol.29(5), 721–725 (1997).
  • Haubner R, Wester HJ, Reuning U et al. Radiolabeled αvβ3 integrin antagonists: a new class of tracers for tumor targeting. J. Nucl. Med.40(6), 1061–1071 (1999).
  • Haubner R, Wester HJ, Weber WA et al. Noninvasive imaging of αvβ3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res.61(5), 1781–1785 (2001).
  • Janssen ML, Oyen WJ, Dijkgraaf I et al. Tumor targeting with radiolabeled αvβ3 integrin binding peptides in a nude mouse model. Cancer Res.62(21), 6146–6151 (2002).
  • van Hagen PM, Breeman WA, Bernard HF et al. Evaluation of a radiolabelled cyclic DTPA-RGD analogue for tumour imaging and radionuclide therapy. Int. J. Cancer90(4), 186–198 (2000).
  • Beer AJ, Haubner R, Goebel M et al. Biodistribution and pharmacokinetics of the αvβ3-selective tracer 18F-galacto-RGD in cancer patients. J. Nucl. Med.46(8), 1333–1341 (2005).
  • Cheng S, Craig WS, Mullen D, Tschopp JF, Dixon D, Pierschbacher MD. Design and synthesis of novel cyclic RGD-containing peptides as highly potent and selective integrin αIIb β3 antagonists. J. Med. Chem.37(1), 1–8 (1994).
  • Pierschbacher MD, Ruoslahti E. Influence of stereochemistry of the sequence Arg–Gly–Asp–Xaa on binding specificity in cell adhesion. J. Biol. Chem.262(36), 17294–17298 (1987).
  • Healy JM, Murayama O, Maeda T, Yoshino K, Sekiguchi K, Kikuchi M. Peptide ligands for integrin αvβ3 selected from random phage display libraries. Biochemistry34(12), 3948–3955 (1995).
  • Koivunen E, Gay DA, Ruoslahti E. Selection of peptides binding to the α5 β1 integrin from phage display library. J. Biol. Chem.268(27), 20205–20210 (1993).
  • O’Neil KT, Hoess RH, Jackson SA, Ramachandran NS, Mousa SA, DeGrado WF. Identification of novel peptide antagonists for GPIIb/IIIa from a conformationally constrained phage peptide library. Proteins14(4), 509–515 (1992).
  • Chen X, Hou Y, Tohme M et al. Pegylated Arg–Gly–Asp peptide: 64Cu labeling and PET imaging of brain tumor αvβ3-integrin expression. J. Nucl. Med.45(10), 1776–1783 (2004).
  • Chen X, Park R, Hou Y et al. MicroPET imaging of brain tumor angiogenesis with 18F-labeled PEGylated RGD peptide. Eur. J. Nucl. Med. Mol. Imaging31(8), 1081–1089 (2004).
  • Chen X, Park R, Shahinian AH, Bading JR, Conti PS. Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nucl. Med. Biol.31(1), 11–19 (2004).
  • Huamani J, Passarella RJ, Onishko HM et al. Rapid assessment of malignant glioma susceptibility to molecular targeted therapy. Int. J. Radiat. Oncol. Biol. Phys.69(3), S149–S149 (2007).
  • Passarella RJ, Diaz R, Hallahan DE. Rapid recognition of glioma response to radiation therapy using recombinant peptides. Presented at: 99th Annual Meeting of the American Association for Cancer Research (AACR). San Diego, CA, USA, 12–16 April 2008 (Abstract 1458).
  • Diaz R, Hariri G, Passarella RJ, Wu H, Fu A, Hallahan DE. Radiation-guided platinum drug delivery using recombinant peptides. Int. J. Radiat. Oncol. Biol. Phys.72(1), S1 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.