37
Views
1
CrossRef citations to date
0
Altmetric
Review

Targeting important pathways in head and neck cancer: from the bench to the clinic

, , &
Pages 1819-1835 | Published online: 10 Jan 2014

References

  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J. Clin.57(1), 43–66 (2007).
  • Bonner JA, Harari PM, Giralt J et al. Radiotherapy plus cetuximab for squamous cell carcinoma of the head and neck. N. Engl. J. Med.354(6), 567–578 (2006).
  • Burtness B, Goldwasser MA, Flood W, Mattar B, Forastiere AA. Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an Eastern Cooperative Oncology Group study. J. Clin. Oncol.23(34), 8646–8654 (2005).
  • Vermorken JB, Trigo J, Hitt R et al. Open-label, uncontrolled, multicenter Phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J. Clin. Oncol.25(16), 2171–2177 (2007).
  • Vermorken JB, Mesia R, Vega E et al. Cetuximab extends survival of patients for recurrent or metastatic SCCHN when added to first line platinum-based therapy results of a randomized Phase III (EXTREME) study. Presented at: 43rd Annual Meeting of the American Society of Clinical Oncology. Chicago, IL, USA, 1–5 June 2007 (Abstract 6091).
  • Mendelsohn J, Baselga J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J. Clin. Oncol.21(14), 2787–2799 (2003).
  • Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol. Hematol.19(3), 183–232 (1995).
  • Citri A, Yarden Y. EGF–ERBB signaling: towards the systems level. Nat. Rev. Mol. Biol.7(7), 505–516 (2006).
  • Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer.5(5), 341–354 (2005).
  • Normanno N, Bianco C, De Luca A, Maiello MR, Salomon DS. Target-based agents against ErbB receptors and their ligands: a novel approach to cancer treatment. Endocr. Relat. Cancer10(1), 1–21 (2003).
  • Li S, Schmitz KR, Jeffrey PD, Wiltzius JJ, Kussie P, Ferguson KM. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell7(4), 301–311 (2005).
  • Fan Z, Lu Y, Wu X, Mendelsohn J. Antibody-induced epidermal growth factor receptor dimerization mediates inhibition of autocrine proliferation of A431 squamous carcinoma cells. J. Biol. Chem.269(44), 27595–27602 (1994).
  • Goldstein NI, Prewett M, Zuklys K, Rockwell P, Mendelsohn J. Biological efficacy of a chimeric antibody to the epidermal growth factor in a human tumor xenograft model. Clin. Cancer Res.1, 1311–1318 (1995).
  • Prewett M, Rockwell P, Rockwell RF et al. The biologic effects of C225, a chimeric monoclonal antibody to the EGFR, on human prostate carcinoma. J. Immunother. Emphasis Tumor Immunol.19(6), 419–427 (1996).
  • Mendelsohn J, Fan Z. Epidermal growth factor receptor family and chemosensitization. J. Natl Cancer Inst.89(5), 341–343 (1997).
  • Saleh MN, Raisch KP, Stackhouse MA et al. Combined modality therapy of A431 human epidermal cancer using anti-EGFr antibody C225 and radiation. Cancer Biother. Radiopharm.14(6), 451–463 (1999).
  • Baselga J, Pfister D, Cooper MR et al. Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J. Clin. Oncol.18(4), 904–914 (2000).
  • Robert F, Ezekiel MP, Spencer SA et al. Phase I study of anti-epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer. J. Clin. Oncol.19(13), 3234–3243 (2001).
  • Herbst RS, Arquette M, Shin DM et al. Phase II multicenter study of the epidermal growth factor receptor antibody cetuximab and cisplatin for recurrent and refractory squamous cell carcinoma of the head and neck. J. Clin. Oncol.23(24), 5578–5587 (2005).
  • Baselga J, Trigo JM, Bourhis J et al. Phase II multicenter study of the antiepidermal growth factor receptor monoclonal antibody cetuximab in combination with platinum-based chemotherapy in patients with platinum-refractory metastatic and/or recurrent squamous cell carcinoma of the head and neck. J. Clin. Oncol.23(24), 5568–5577 (2005).
  • Knoedler M, Gauler TC, Matzdorff A et al. Phase II trial to evaluate efficacy and toxicity of cetuximab plus docetaxel in platinum pretreated patients with recurrent and/or metastatic head and neck cancer. J. Clin. Oncol.26(15 Suppl.), 332S (2008) (Abstract 6066).
  • Vermorken JB, Hitt R, Geoffrois L et al. Cetuximab plus platinum-based therapy first-line in recurrent and/or metastatic (R/M) squamous cell carcinoma of the head and neck (SCCHN): efficacy and safety results of a randomized Phase III trial (EXTREME). Eur. J. Cancer Suppl.5(4), 324 (2007) (Abstract 5501).
  • Kuperman DI, Nussenbaum B, Thorstad W, Haughey B, Lewis J, Adkins D. Retrospective analysis of the addition of cetuximab to induction chemotherapy (IC) with docetaxel, cisplatin, and 5-fluorouracil (TPF-C) for locally advanced squamous cell carcinoma of the head and neck (LA-HNSCC). J. Clin. Oncol.25(18S), 316s (2007) (Abstract 6072).
  • Posner MR, Hershock DM, Blajman CR et al. Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. N. Engl. J. Med.357(17), 1705–1715 (2007).
  • Vermorken JB, Remenar E, van Herpen C et al. Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. N. Engl. J. Med.357(17), 1695–1704 (2007).
  • Calais G, Pointreau Y, Alfonsi M et al. Randomized Phase III trial comparing induction chemotherapy using cisplatin (P) fluorouracil (F) with or without docetaxel (T) for organ preservation in hypopharynx and larynx cancer. Preliminary results of GORTEC 2000-01. J. Clin. Oncol.24(18 Suppl.), 281S (2006) (Abstract 5506).
  • Tishler RB, Posner MR, Wirth LJ et al. Cetuximab added to docetaxel, cisplatin, 5-fluorouracil Induction chemotherapy (C-TPF) in patients with newly diagnosed locally advanced head and neck cancer: a Phase I study. J. Clin. Oncol.26(15 Suppl.), 316S (2008) (Abstract 6001).
  • Tsoutsou PG, Danielidis V, Koukourakis MI. Cetuximab, cisplatin and amifostine during accelerated radiotherapy for locally advanced head and neck cancer. J. Clin. Oncol.26(15 Suppl.), 633S (2008) (Abstract 14582).
  • Bonnin N, Ceruse P, Bachelot T et al. Efficacy of neoadjuvant TPF (nTPF; docetaxel, T; cisplatin, P; 5FU) in nonselected patients (pts) with head and neck cancer and subsequent radiotherapy (RT) combined with chemotherapy (CT) or cetuximab (Cx). J. Clin. Oncol.26(15 Suppl.), 334S (2008) (Abstract 6074).
  • Cohen EE, Rosen F, Stadler WM et al. Phase II trial of ZD1839 in recurrent or metastatic squamous cell carcinoma of the head and neck. J. Clin. Oncol.21(10), 1980–1987 (2003).
  • Kirby AM, A’Hern RP, D’Ambrosio C et al. Gefitinib (ZD1839, Iressa) as palliative treatment in recurrent or metastatic head and neck cancer. Br. J. Cancer94(5), 631–636 (2006).
  • Cohen EE, Kane MA, List MA et al. Phase II trial of gefitinib 250 mg daily in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck. Clin. Cancer Res.11(23), 8418–8424 (2005).
  • Stewart JS, Cohen E, Licitra L et al. A Phase III randomized parallel-group study of gefitinib (IRESSA) versus methotrexate (IMEX) in patients with recurrent squamous cell carcinoma of the head and neck. Presented at: 98th Annual Meeting of the American Association for Cancer Research. Los Angeles, CA, USA, April 14–18, 2007 (Abstract 3522).
  • Wheeler RH, Jones D, Sharma P et al. Clinical and molecular Phase II study of gefitinib in patients (pts) with recurrent squamous cell cancer of the head and neck (H&N Ca). J. Clin. Oncol.23(16 Suppl.), 507S (2005) (Abstract 5531).
  • Soulieres D, Senzer NN, Vokes EE, Hidalgo M, Agarwala SS, Siu LL. Multicenter Phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J. Clin. Oncol.22(1), 77–85 (2004).
  • Belón J, Irigoyen A, Rodríguez I et al. Preliminary results of a Phase II study to evaluate gefitinib combined with docetaxel and cisplatin in patients with recurrent and/or metastatic squamous-cell carcinoma of the head and neck. J. Clin. Oncol.23(16 Suppl.), 515S (2005) (Abstract 5563).
  • Kim ES, Kies MS, Glisson BS et al. Final results of a Phase II study of erlotinib, docetaxel and cisplatin in patients with recurrent/metastatic head and neck cancer. J. Clin. Oncol.25(18 Suppl.), 302S (2007) (Abstract 6013).
  • Siu LL, Soulieres D, Chen EX et al. Phase I/II trial of erlotinib and cisplatin in patients with recurrent or metastatic squamous cell carcinoma of the head and neck: a Princess Margaret Hospital Phase II consortium and National Cancer Institute of Canada Clinical Trials Group Study. J. Clin. Oncol.25(16), 2178–2183 (2007).
  • Abidoye OO, Cohen EE, Wong SJ et al. A Phase II study of lapatinib (GW572016) in recurrent/metastatic (R/M) squamous cell carcinoma of the head and neck (SCCHN). J. Clin. Oncol.24(18S), 297S (2006) (Abstract 5568).
  • Bourhis J, Harrington K, Rosine D et al. A Phase I, open-label study (EGF100262) of lapatinib plus chemoradiation inpatients with locally advanced squamous cell carcinoma of the head and neck (SCCHN). Ann Oncol.17(Suppl. 9), 180 (2006) (Abstract 576PD).
  • Loncaster JA, Cooper RA, Logue JP, Davidson SE, Hunter RD, West CM. Vascular endothelial growth factor (VEGF) expression is a prognostic factor for radiotherapy outcome in advanced carcinoma of the cervix. Br. J. Cancer.83(5), 620–625 (2000).
  • Hockel M, Vaupel P. Biological consequences of tumor hypoxia. Semin. Oncol.28(2 Suppl. 8), 36–41 (2001).
  • Gorski DH, Beckett MA, Jaskowiak NT et al. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res.59(14), 3374–3378 (1999).
  • Shemirani B, Crowe DL. Head and neck squamous cell carcinoma lines produce biologically active angiogenic factors. Oral Oncol.36(1), 61–66 (2000).
  • Riedel F, Gotte K, Schwalb J, Wirtz H, Bergler W, Hormann K. Serum levels of vascular endothelial growth factor in patients with head and neck cancer. Eur. Arch. Otorhinolaryngol.257(6), 332–336 (2000).
  • Smith BD, Smith GL, Carter D, Sasaki CT, Haffty BG. Prognostic significance of vascular endothelial growth factor protein levels in oral and oropharyngeal squamous cell carcinoma. J. Clin. Oncol.18(10), 2046–2052 (2000).
  • Folkman J. What is the evidence that tumors are angiogenesis dependent? J. Natl Cancer Inst.82(1), 4–6 (1990).
  • Wachsberger P, Burd R, Dicker AP. Tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents: exploring mechanisms of interaction. Clin. Cancer Res.9(6), 1957–1971 (2003).
  • Lothaire P, de Azambuja E, Dequanter D et al. Molecular markers of head and neck squamous cell carcinoma: promising signs in need of prospective evaluation. Head Neck28(3), 256–269 (2006).
  • Fujita K, Sano D, Kimura M et al. Anti-tumor effects of bevacizumab in combination with paclitaxel on head and neck squamous cell carcinoma. Oncol. Rep.18(1), 47–51 (2007).
  • Karamouzis MV, Friedland D, Johnson R, Rajasenan K, Branstetter B, Argiris A. Phase II trial of pemetrexed (P) and bevacizumab (B) in patients (pts) with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC): an interim analysis. J. Clin. Oncol.25(18 Suppl.), 302S (2007) (Abstract 6049).
  • Feinstein TM, Raez LE, Rajasenan KK et al. Pemetrexed (P) and bevacizumab (B) in patients (pts) with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC): updated results of a Phase II trial. J. Clin. Oncol.26(15 Suppl.), 333S (2008) (Abstract 6069).
  • Savvides P, Greskovich J, Bokar J et al. Phase II study of bevacizumab in combination with docetaxel and radiation in locally advanced squamous cell cancer of the head and neck(SCCHN). J. Clin. Oncol.25(18S), 302S (2007) (Abstract 6068).
  • Savvides P, Greskovich J, Bokar JA et al. Phase II study of bevacizumab with docetaxel and radiation in locally advanced head and neck squamous cell cancer. J. Clin. Oncol.26(15 Suppl.), 333S (2008) (Abstract 6071).
  • Choong NW, Haraf DJ, Cohen EE et al. Randomized Phase II study of concomitant chemoradiotherapy with 5-fluorouracil–hydroxyurea (FHX) compared to FHX and bevacizumab (FHXB) in intermediate stage head and neck cancer (HNC). J. Clin. Oncol.25(18 Suppl.), 302S (2007) (Abstract 6034).
  • Seiwert TY, Haraf DJ, Cohen E et al. Phase I study of bevacizumab added to fluorouracil and hydroxyurea-based concomitant chemoradiotherapy for poor-prognosis head and neck cancer. J. Clin. Oncol.26(10), 1732–1741 (2008).
  • O-charoenrat P, Rhys-Evans P, Modjtahedi H, Eccles SA. Vascular endothelial growth factor family members are differentially regulated by c-erbB signaling in head and neck squamous carcinoma cells. Clin. Exp. Metastasis.18(2), 155–161 (2000).
  • Vokes EE, Cohen EE, Mauer AM et al. A Phase I study of erlotinib and bevacizumab for recurrent or metastatic squamous cell carcinoma of the head and neck (HNC). J. Clin. Oncol.23(16 Suppl.), 501S (2005) (Abstract 5504).
  • Kies MS, Gibson MK, Kim SW et al. Cetuximab (C) and bevacizumab (B) in patients with recurrent or metastatic head and neck squamous cell carcinoma (SCCHN): an interim analysis. J. Clin. Oncol.26(15 Suppl.), 334S (2008) (Abstract 6072).
  • Chang YS, Adnane J, Trail PA et al. Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother Pharmacol.59(5), 561–574 (2007).
  • Liu L, Cao Y, Chen C et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res.66(24), 11851–11858 (2006).
  • Williamson SK, Moon J, Huang CH, Guaglianone P, Wolf GT, Urba SG. A Phase II trial of BAY 43-9006 in patients with recurrent and/or metastatic head and neck squamous cell carcinoma (HNSCC): a Southwest Oncology Group (SWOG) trial. J. Clin. Oncol.25(18S), 302S, Abstract 6044 (2007).
  • Elser C, Siu LL, Winquist E et al. Phase II trial of Sorafenib in patients with recurrent or metastatic squamous cell carcinoma of the head and neck or nasopharyngeal carcinoma. J. Clin. Oncol.25(24), 3766–3773 (2007).
  • Choong NW, Cohen EE, Kozloff MF et al. Phase II trial of sunitinib in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck (SCCHN). J. Clin. Oncol.26(15 Suppl.), 332S (2008) (Abstract 6064).
  • Milano A, Iaffaioli RV, Caponigro F. The proteasome: a worthwhile target for the treatment of solid tumours? Eur. J. Cancer43(7), 1125–1133 (2007).
  • Scagliotti G. Proteasome inhibitors in lung cancer. Crit. Rev. Oncol. Hematol58(3), 177–189 (2006).
  • Dunder S, Chaudhary U, Green M et al. Phase I trial of bortezomib and celecoxib in patients with advanced solid tumors. J. Clin. Oncol.24(18 Suppl.), 606S (2006) (Abstract 13051).
  • Kubicek GJ, Machtay M, Axelrod RA et al. Phase I trial of bortezomib (VELCADE), cisplatin and radiotherapy for advanced head and neck cancer. J. Clin. Oncol.26(15 Suppl.), 323S (2008) (Abstract 6028).
  • Dudek A, Gada P, Mulamalla K, Shehadeh N. Phase I study of bortezomib plus cetuximab in patients with tumors expressing epidermal growth factor receptor (EGFR). J. Clin. Oncol.25(18 Suppl.), 695S (2007) (Abstract 18143).
  • Pandey ON, Greeno E, Dudek AZ. Phase I study of bortezomib plus cetuximab in patients with tumors expressing epidermal growth factor receptor (EGFR) – Final report. J. Clin. Oncol.26(15 Suppl.), 708S (2008) (Abstract 19030).
  • Workman JL, Kingston RE. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem67, 545–579 (1998).
  • Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev. Cancer6, 38–51 (2006).
  • Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors: overview and perspectives. Mol. Cancer Res.5(10), 981–989 (2007).
  • Fantin VR, Richon VM. Mechanisms of resistance to histone deacetylase inhibitors and their therapeutic implications. Clin. Cancer Res.13(24), 7237–7242 (2007).
  • Duvic M, Talpur R, Ni X et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood109(1), 31–39 (2007).
  • Gillenwater AM, Zhong M, Lotan R. Histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis through both mitochondrial and Fas (Cd95) signaling in head and neck squamous carcinoma cells. Mol. Cancer Ther.6(11), 2967–2975 (2007).
  • Shen J, Huang C, Jiang L et al. Enhancement of cisplatin induced apoptosis by suberoylanilide hydroxamic acid in human oral squamous cell carcinoma cell lines. Biochem. Pharmacol.73(12), 1901–1909 (2007).
  • Munshi A, Tanaka T, Hobbs ML, Tucker SL, Richon VM, Meyn RE. Vorinostat, a histone deacetylase inhibitor, enhances the response of human tumor cells to ionizing radiation through prolongation of gamma-H2AX foci. Mol. Cancer Ther5(8), 1967–1974 (2006).
  • Kelly WK, O’Connor OA, Krug LM et al. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J. Clin. Oncol.23(17), 3923–3931 (2006).
  • Ramalingam SS, Parise RA, Ramananthan RK et al. Phase I and pharmacokinetic study of vorinostat, a histone deacetylase inhibitor, in combination with carboplatin and paclitaxel for advanced solid malignancies. Clin. Cancer Res.13(12), 3605–3610 (2007).
  • Blumenschein GR Jr, Kies MS, Papadimitrakopoulou VA et al. Phase II trial of the histone deacetylase inhibitor vorinostat (Zolinza, suberoylanilide hydroxamic acid, SAHA) in patients with recurrent and/or metastatic head and neck cancer. Invest. New Drugs26(1), 81–87 (2008).
  • Haigentz M Jr, Kim M, Sarta C et al. Clinical and translational studies of depsipeptide (romidepsin), a histone deacetylase (HDAC) inhibitor, in patients with squamous cell carcinoma of the head and neck (SCCHN): New York Cancer Consortium Trial P6335. J. Clin. Oncol.25(18 Suppl.), 315S (2007) (Abstract 6065).
  • Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell103(2), 253–262 (2000).
  • Amornphimoltham P, Patel V, Sodhi A et al. Mammalian target of rapamycin, a molecular target in squamous cell carcinomas of the head and neck. Cancer Res.65(21), 9953–9961 (2005).
  • Buck E, Eyzaguirre A, Brown E et al. Rapamycin synergizes with the epidermal growth factor receptor inhibitor erlotinib in non-small cell lung, pancomplete responseeatic, colon, and breast tumors. Mol. Cancer Ther.5(11), 2676–2684 (2006).
  • Riggins RB, Thomas KS, Ta HQ et al. Physical and functional interactions between Cas and c-Src induce tamoxifen resistance of breast cancer cells through pathways involving epidermal growth factor receptor and signal transducer and activator of transcription 5b. Cancer Res.66, 7007–7015 (2006).
  • Xi S, Zhang Q, Dyer KF et al. Src kinases mediate STAT growth pathways in squamous cell carcinoma of the head and neck. J. Biol. Chem.278, 31574–31583 (2003).
  • Zhang Q, Thomas SM, Xi S et al. SRC family kinases mediate epidermal growth factor receptor ligand cleavage, proliferation, and invasion of head and neck cancer cells. Cancer Res.64, 6166–6173 (2004).
  • Johnson FM, Saigal B, Talpaz M, Donato NJ. Dasatinib (BMS-354825) tyrosine kinase inhibitor suppresses invasion and induces cell cycle arrest and apoptosis of head and neck squamous cell carcinoma and non-small cell lung cancer cells. Clin. Cancer Res.11, 6924–6932 (2005).
  • Raju U, Koto M, Johnson F, Glisson B, Milas L, Ang KK. Dasatinib (SPRYCEL®, formerly BMS-354825), an inhibitor of c-SRC, enhances the radiosensitivity of head and neck cancer cell lines. Presented at: 2007 Multidisciplinary Head and Neck Cancer Symposium. Rancho Mirage, CA, USA, 18–20 January 2007 (Abstract 197).
  • El-Naggar AK, Lippman SM, Johnson FM et al. Correlation of Src activation with epithelial–mesenchymal transformation and aggressive features of head and neck squamous carcinoma. J. Clin. Oncol.25(18 Suppl.), 305S (2007) (Abstract 6026).
  • Brady G, Crean SJ, Naik P, Kapas S. Upregulation of IGF-2 and IGF-1 receptor expression in oral cancer cell lines. Int. J. Oncol.31(4), 875–881 (2007).
  • Slomiany MG, Black LA, Kibbey MM, Tingler MA, Day TA, Rosenzweig SA. Insulin-like growth factor-1 receptor and ligand targeting in head and neck squamous cell carcinoma. Cancer Lett.248(2), 269–279 (2007).
  • Hidalgo M, Tirado Gomez M, Lewis N et al. A Phase I study of MK-0646, a humanized monoclonal antibody against the insulin-like growth factor receptor type 1 (IGF1R) in advanced solid tumor patients in a q2 wk schedule. J. Clin. Oncol.26(15S), 158S (2008) (Abstract 3520).
  • Karp DD, Paz-Ares LG, Novello S et al. High activity of the anti-IGF-IR antibody CP-751,871 in combination with paclitaxel and carboplatin in squamous NSCLC. J. Clin. Oncol.26(15S), 427S (2008) (Abstract 8015).
  • Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene24(50), 7455–7464 (2005).
  • Cheng JQ, Lindsley CW, Cheng GZ, Yang H, Nicosia SV. The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene24(50), 7482–7492 (2005).
  • Crowell JA, Steele VE, Fay JR. Targeting the AKT protein kinase for cancer chemoprevention. Mol. Cancer Ther.6(8), 2139–2148 (2007).
  • Yu Z, Weinberger PM, Sasaki C et al. Phosphorylation of Akt (Ser473) predicts poor clinical outcome in oropharyngeal squamous cell cancer. Cancer Epidemiol. Biomarkers Prev.16(3), 553–558 (2007).
  • Janmaat ML, Kruyt FA, Rodriguez JA, Giaccone G. Response to epidermal growth factor receptor inhibitors in non-small cell lung cancer cells: limited antiproliferative effects and absence of apoptosis associated with persistent activity of extracellular signal regulated kinase or Akt kinase pathways. Clin. Cancer Res.9(6), 2316–2326 (2003).
  • Granville CA, Memmott RM, Gills JJ, Dennis PA. Handicapping the race to develop inhibitors of the phosphoinositide 3-Kinase/Akt/mammalian target of rapamycin pathway. Clin. Cancer Res.12(3), 679–689 (2006).
  • Van Ummersen L, Binger K, Volkman J et al. A Phase I trial of perifosine (NSC 639966) on a loading dose/maintenance dose schedule in patients with advanced cancer. Clin. Cancer Res.10(22), 7450–7456 (2004).
  • Argiris A, Cohen E, Karrison T et al. A Phase II trial of perifosine, an oral alkylphospholipid, in recurrent or metastatic head and neck cancer. Cancer Biol. Ther.5(7), 766–770 (2006).
  • Kondapaka SB, Singh SS, Dasmahapatra GP, Sausville EA, Roy KK. Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol. Cancer Ther.2(11), 1093–1103 (2003).
  • Mandal M, Younes M, Swan EA et al. The Akt inhibitor KP372-1 inhibits proliferation and induces apoptosis and anoikis in squamous cell carcinoma of the head and neck. Oral Oncol.42(4), 430–439 (2006).
  • Amornphimoltham P, Sriuranpong V, Patel V et al. Persistent activation of the Akt pathway in head and neck squamous cell carcinoma: a potential target for UCN-01. Clin Cancer Res.10, 4029–4037 (2004).
  • Massarelli E, Liu DD, Lee JJ et al. Akt activation correlates with adverse outcome in tongue cancer. Cancer104(11), 2430–2436 (2005).
  • Lim J, Kim JH, Paeng JY et al. Prognostic value of activated Akt expression in oral squamous cell carcinoma. J. Clin. Pathol.58(11), 1199–1205 (2005).
  • Lin YD, Liu X, Chen Z et al. Therapeutic potential of the Akt inhibitor perifosine in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) for metastatic head and neck cancer. Presented at: 98th Annual Meeting of the American Association for Cancer Research. Los Angeles, CA, USA, 14–18 April 2007 (Abstract 2405).
  • Bussink J, van der Kogel AJ, Kaanders JH. Activation of the PI3-K/AKT pathway and implications for radioresistance mechanisms in head and neck cancer. Lancet Oncol.9(3), 288–296 (2008).
  • Vink SR, Lagerwerf S, Mesman E et al. Radiosensitization of squamous cell carcinoma by the alkylphospholipid perifosine in cell culture and xenografts. Clin. Cancer Res.12(5), 1615–1622 (2006).
  • Scurry WC, Stack B. Role of metalloproteins in the clinical management of head and neck squamous cell carcinoma. Head Neck29(12), 1144–1155 (2007).
  • Ruokolainen H, Paakko P, Turpeenniemi-Hujanen T. Expression of matrix metalloproteinase-9 in head and neck squamous cell carcinoma: a potential marker for prognosis. Clin. Cancer Res.10(9), 3110–3116 (2004).
  • Ruokolainen H, Paakko P, Turpeenniemi-Hujanen T. Serum matrix metalloproteinase-9 in head and neck squamous cell carcinoma is a prognostic marker. Int. J. Cancer116(3), 422–427 (2005).
  • Ruokolainen H, Paakko P, Turpeenniemi-Hujanen T. Tissue inhibitor of matrix metalloproteinase-1 is prognostic in head and neck squamous cell carcinoma: comparison of the circulating and tissue immunoreactive protein. Clin. Cancer. Res.11(9), 3257–3264 (2005).
  • Yoshizaki T, Maruyama Y, Sato H, Furukawa M. Expression of tissue inhibitor of matrix metalloproteinase-2 correlates with activation of matrix metalloproteinase-2 and predicts poor prognosis in tongue squamous cell carcinoma. Int. J. Cancer95(1), 44–50 (2001).
  • Blons H, Gad S, Zinzindohoue F et al. Matrix metalloproteinase 3 polymorphism: a predictive factor of response to neoadjuvant chemotherapy in head and neck squamous cell carcinoma. Clin. Cancer Res.10(8), 2594–2599 (2004).
  • Charous SJ, Stricklin GP, Nanney LB, Netterville JL, Burkey BB. Expression of matrix metalloproteinases and tissue inhibitor of metalloproteinases in head and neck squamous cell carcinoma. Ann. Otol. Rhinol. Laryngol.106(4), 271–278 (1997).
  • Miyajima Y, Nakano R, Morimatsu M. Analysis of expression of matrix metalloproteinases-2 and -9 in hypopharyngeal squamous cell carcinoma by in situ hybridization. Ann. Otol. Rhinol. Laryngol.104, 678–684 (1995).
  • Shapiro GI. Cyclin-dependent kinase pathways as targets for cancer treatment. J. Clin. Oncol.24(11), 1770–1783 (2006).
  • Patel V, Senderowicz AM, Pinto D et al. Flavopiridol, a novel cyclin-dependent kinase inhibitor, suppresses the growth of head and neck squamous cell carcinomas by inducing apoptosis. J. Clin. Invest.102(9), 1674–1681 (1998).
  • Mihara M, Shintani S, Kiyota A, Matsumura T, Wong DT. Cyclin-dependent kinase inhibitor (roscovitine) suppresses growth and induces apoptosis by regulating Bcl-x in head and neck squamous cell carcinoma cells. Int. J. Oncol.21(1), 95–101 (2002).
  • Jones SF, Burris HA, Kies M et al. A Phase I study to determine the safety and pharmacokinetics (PK) of BMS-387032 given intravenously every three weeks in patients with metastatic refractory solid tumors. J. Clin. Oncol.22, 199 (2003) (Abstract 798).
  • Shapiro GI, Lewis N, Bai S et al. A Phase I study to determine the safety and pharmacokinetics (PK) of BMS-380732 with a 24-hr infusion given every three weeks in patients with metastatic refractory solid tumors. J. Clin. Oncol.22, 199, Abstract 799 (2003).
  • McCormick J, Gadgeel SM, Helmke W et al. Phase I study of BMS-387032, a cyclin dependent kinase (CDK)2 inhibitor. J. Clin. Oncol.22, 208 (2003) (Abstract 835).
  • Patel V, Lahusen T, Leethanakul C et al. Antitumor activity of UCN-01 in carcinomas of the head and neck is associated with altered expression of cyclin D3 and p27(KIP1). Clin. Cancer Res.8(11), 3549–3560 (2002).
  • Bos JL. ras oncogenes in human cancer: a review. Cancer Res.49, 4682–4689 (1989).
  • Appels N, Beijnen J, Schellens J. Development of farnesyl transferase inhibitors: a review. Oncologist10, 565–78 (2005).
  • Adjei AA. Blocking oncogenic Ras signaling for cancer therapy. J. Natl Cancer Inst.93, 1062–74 (2001).
  • Ren H, Tai SK, Khuri F et al. Farnesyltransferase inhibitor SCH66336 induces rapid phosphorylation of eukaryotic translation elongation factor 2 in head and neck squamous cell carcinoma cells. Cancer Res.65, 5841–5847 (2005).
  • Oh SH, Kim WY, Kim JH et al. Identification of insulin-like growth factor binding protein-3 as a farnesyl transferase inhibitor SCH66336-induced negative regulator of angiogenesis in head and neck squamous cell carcinoma. Clin. Cancer Res.12, 653–661 (2006).
  • Klass CM, Chen ZG, Zhang X, Lonial S, Khuri FR, Shin DM. Antitumor effects of combined bortezomib and tipifarnib in head and neck squamous cell carcinoma (HNSCC) cells. J. Clin. Oncol.24(18 Suppl.), 300S (2006) (Abstract 5581).
  • Yang CH, Kies MS, Glisson B et al. A Phase II study of lonafarnib (SCH66336) in patients with chemo-refractory advanced head and neck squamous cell carcinoma (HNSCC). J. Clin. Oncol.23(16 Suppl.), 516S (2005) (Abstract 5565).
  • Fletcher GH, Evers W. Radiotherapeutic management of surgical recurrences and postoperative residuals in tumors of the head and neck. Radiology95(1), 185–188 (1970).
  • Bernier J, Domenge C, Ozsahin M et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N. Engl. J. Med.350(19), 1945–1952 (2004).
  • Cooper JS, Pajak TF, Forastiere AA et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N. Engl. J. Med.350(19), 1937–1944 (2004).
  • Bokemeyer C, Bondarenko I, Hartmann JT et al. KRAS status and efficacy of first-line treatment of patients with metastatic colorectal cancer (mCRC) with FOLFOX with or without cetuximab: the OPUS experience. J. Clin. Oncol.26(15 Suppl.), 178S (2008) (Abstract 4000).
  • Tejpar S, Peeters M, Humblet Y et al. Relationship of efficacy with KRAS status (wild type versus mutant) in patients with irinotecan-refractory metastatic colorectal cancer (mCRC), treated with irinotecan (q2w) and escalating doses of cetuximab (q1w): the EVEREST experience (preliminary data). J. Clin. Oncol.26(15 Suppl.), 178S (2008) (Abstract 4001).
  • Van Cutsem E, Lang I, D’haens G et al. KRAS status and efficacy in the first-line treatment of patients with metastatic colorectal cancer (mCRC) treated with FOLFIRI with or without cetuximab: the CRYSTAL experience. J. Clin. Oncol.26(15 Suppl.), 5S (2008) (Abstract 2).
  • Pirker R, Szczesna A, von Pawel J et al. FLEX: a randomized, multicenter, Phase III study of cetuximab in combination with cisplatin/vinorelbine (CV) versus CV alone in the first-line treatment of patients with advanced non-small cell lung cancer (NSCLC). J. Clin. Oncol.26(15 Suppl.), 6S (2008) (Abstract 3).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.