61
Views
2
CrossRef citations to date
0
Altmetric
Review

Evaluating the link between stem cells and breast cancer

Pages 1313-1322 | Published online: 10 Jan 2014

References

  • Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development110, 1001–1020 (1990).
  • Osawa M, Hanada K, Hamada H, Nakauchi H. Long-term lymphohematopoietic reconstitution by a single CD34 low/negative stem cell. Science273, 242–245 (1996).
  • Janes SM, Lowell S, Hutter C. Epidermal stem cells. J. Pathol.197, 479–491 (2002).
  • Marshman E, Booth C, Potten CS. The intestinal epithelial stem cell. Bioessays24, 91–98 (2002).
  • Shackleton M, Vaillant F, Simpson KJ et al. Generation of a functional mammary gland from a single stem cell. Nature439(7072), 84–88 (2006).
  • Stingl J, Eirew P, Ricketson I et al. Purification and unique properties of mammary epithelial stem cells. Nature439(7079), 993–997 (2006).
  • Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med.3(7), 730–737 (1997).
  • Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer and cancer stem cells. Nature414(6859), 105–111 (2001).
  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100(7), 3983–3988 (2003).
  • Ponti D, Costa A, Zaffaroni N et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/cell progenitors. Cancer Res.65(13), 5506–5511 (2005).
  • Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumours. Cancer Res.63(18), 5821–5828 (2003).
  • Woodward WA, Chen MS, Behbod F, Rosen JM. On mammary stem cells. J. Cell Sci.118, 3585–3594 (2005).
  • DeOme KB, Faulkin LJJ, Bern HA, Blair PB. Development of mammary tumours from hyperplastiv alveolar nodules transplanted into gland-free mammary fat pads of female CH3 mice. Cancer Res.19(5), 515–520 (1959).
  • Kordon EC, Smith GH. An entire functional mammary gland may comprise the progeny from a single cell. Development125(10), 1921–1930 (1998).
  • Chepko G, Smith GH. Three division-competent, structurally distinct cell populations contribute to mammary epithelial renewal. Tissue Cell29(2), 239–253 (1997).
  • Smith GH. Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res.39, 21–31 (1996).
  • Diallo R, Schaefer KL, Poremba C et al. Monoclonality in normal epithelium and in hyperplastic and neoplastic lesions of the breast. J. Pathol.193(1), 27–32 (2001).
  • Deng G, Lu Y, Zlotnikov G, Thor AD, Smith HS. Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science274(5295), 2057–2059 (1996).
  • Smith GH, Strickland P, Daniel CW. Putative epithelial stem cell loss corresponds with mammary growth senescence. Cell Tissue Res.10(3), 313–320 (2002).
  • Welm BE, Tepera SB, Venezia T et al. Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev. Biol.245(1), 42–56 (2002).
  • Smith GH. Label-retaining epithelial cells in the mammary gland divide asymmetrically and retain their template DNA strands. Development132(4), 681–687 (2005).
  • Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine haematopoietic stem cells that are replicating in vivo. J. Exp. Med.183(4), 1797–1806 (1996).
  • Alvi AJ, Clayton H, Joshi C et al. Functional and molecular characterization of mammary side population cells. Breast Cancer Res.5(1), R1–8 (2003).
  • Clarke RB, Spence K, Anderson E et al. A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev. Biol.277(2), 443–456 (2005).
  • Clayton H, Titley I, Vivanco M. Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Exp. Cell Res.297(2), 444–460 (2004).
  • Dontu G, Abdallah WM, Foley JM et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev.17(10), 1253–1270 (2003).
  • Muschler J, Lochter A, Roskelley CD, Yurchenco P, Bissel MJ. Division of labor among the α6β4 integrin, β1 integrins, and E3 laminin receptor to signal morphogenesis and β-casein expression in mammary epithelial cells. Mol. Biol. Cell10(9), 2817–2828 (1999).
  • Reynolds BA, Weiss S. Clonal and population analyses demonstrate that EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol.175(1), 1–13 (1996).
  • Romanov SR, Kozakiewicz BK, Holst CR et al. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature409(6820), 633–637 (2001).
  • Weiss S, Dunne C, Hewson J et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J. Neurosci.16(23), 7599–7609 (1996).
  • Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse haematopoietic stem cells. Science241(4861), 58–62 (1988).
  • Boulanger CA, Wagner KU, Smith GH. Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-β1 expression. Oncogene24(4), 552–560 (2005).
  • Wagner KU, Boulanger CA, Henry MD et al. An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development129(6), 1377–1386 (2002).
  • Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L et al. Evidence for a stem cell hierarchy in the adult human breast. J. Cell Biol.177(1), 87–101 (2007).
  • Fidler IJ, Kripke ML. Metastasis results from pre-existing variant cells within a malignant tumour. Science197(4306), 893–895 (1977).
  • Fidler IJ, Hart IR. Biological diversity in metastatic neoplasms: origins and implications. Science217(4564), 998–1003 (1982).
  • Nowell PC. Mechanisms of tumour progression. Cancer Res.46(5), 2203–2207 (1986).
  • Heppner GH. Tumor heterogeneity. Cancer Res.44(6), 2259–2265 (1984).
  • Weisenthal LM, Lippman ME. Clonogenic and nonclonogenic in vitro chemosensitivity assays. Cancer Treat. Rep.69(6), 615–632 (1985).
  • Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science197(4302), 461–463 (1977).
  • Masters JR. Human cancer cell lines: fact and fantasy. Nat. Rev. Mol. Cell Biol.1(3), 233–236 (2000).
  • O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature445(7123), 106–110 (2007).
  • Miyamoto T, Weissman IL, Akashi K. AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc. Natl Acad. Sci. USA97(13), 7521–7526 (2000).
  • Ginestier C, Hur MH, Charafe-Jauffret E et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell1(5), 555–567 (2007).
  • Perou CM, Sorlie T, Eisen MB et al. Molecular portraits of human breast tumours. Nature406(6797), 747–752 (2000).
  • Sorlie T, Perou CM, Tibshirani R et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA98(19), 10869–10874 (2001).
  • Sorlie T, Tibshirani R, Parker J et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA100(14), 8418–8423 (2003).
  • Charafe-Jauffret E, Ginestier C, Monville F et al. Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene25(15), 2273–2284 (2006).
  • Ross DT, Perou CM. A comparison of gene expression signatures from breast tumors and breast tissue derived cell lines. Dis. Markers17(2), 99–109 (2001).
  • Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS. Stem cells in normal breast development and breast cancer. Cell Prolif.36(Suppl. 1), 59–72 (2003).
  • Dontu G, El-Ashry D, Wicha MS. Breast cancer stem/progenitor cells and the estrogen receptor. Trends Endocrinol. Metab.15(5), 193–197 (2004).
  • Cariati M, Naderi A, Brown JP et al. A-6 integrin is necessary for the tumourigenicity of a stem cell-like subpopulation within the MCF7 breast cancer cell line. Int. J. Cancer122(2), 298–304 (2008).
  • Engelmann K, Shen H, Finn OJ. MCF7 side population cells with characteristics of cancer stem/progenitor cells express the tumor antigen MUC1. Cancer Res.68(7), 2419–2426 (2008).
  • Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res.10(2), R25 (2008).
  • Phillips TM, McBride WH, Pajonk F. The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J. Natl Cancer Inst.98(24), 1777–1785 (2006).
  • Balic M, Lin H, Young L et al. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin. Cancer Res.12(19), 5615–5621 (2006).
  • Abraham BK, Fritz P, McClellan M et al. Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin. Cancer Res.11(3), 1154–1159 (2005).
  • Glinsky GV, Berezovska O, Glinskii AB. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J. Clin. Invest.115(6), 1503–1521 (2005).
  • Shipitsin M, Campbell LL, Argani P et al. Molecular definition of breast tumor heterogeneity. Cancer Cell11(3), 259–273 (2007).
  • Li X, Lewis MT, Huang J et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl Cancer Inst.100(9), 672–679 (2008).
  • Aisenberg AC, Finkelstein DM, Doppke KP et al. High risk of breast carcinoma after irradiation of young women with Hodgkin’s disease. Cancer79(6), 1203–1210 (1997).
  • Tokunaga M, Norman JE Jr, Asano M et al. Malignant breast tumors among atomic bomb survivors, Hiroshima and Nagasaki, 1950–74. J. Natl Cancer Inst.62(6), 1347–1359 (1979).
  • Cariati M, Purushotham AD. Stem cells and breast cancer. Histopathology52(1), 99–107 (2008).
  • Wright MH, Calcagno AM, Salcido CD et al. Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res.10(1), R10 (2008).
  • Liu S, Ginestier C, Charafe-Jauffret E et al.BRCA1 regulates human mammary stem/progenitor cell fate. Proc. Natl Acad. Sci. USA105(5), 1680–1685 (2008).
  • van’t Veer LJ, Dai H, van de Vijver MJ et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature415(6871), 530–536 (2002).
  • Costello RT, Mallet F, Gaugler B et al. Human acute myeloid leukemia CD34+/CD38- progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res.60(16), 4403–4411 (2000).
  • Korkaya H, Wicha MS. Selective targeting of cancer stem cells: a new concept in cancer therapeutics. BioDrugs21, 299–310 (2007).
  • Norgaard JM, Olesen LH, Hokland P. Changing picture of cellular drug resistance in human leukemia. Crit. Rev. Oncol. Hematol.50(1), 39–49 (2004).
  • Doyle LA, Yang W, Abruzzo LV et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl Acad. Sci. USA95(26), 15665–15670 (1998).
  • Polakis P. Wnt signaling and cancer. Genes Dev.14(15), 1837–1851 (2000).
  • Moon RT, Bowerman B, Boutros M, Perrimon N. The promise and perils of Wnt signaling through β-catenin. Science296(5573), 1644–1646 (2002).
  • Klopocki E, Kristiansen G, Wild PJ et al. Loss of SFRP1 is associated with breast cancer progression and poor prognosis in early stage tumors. Int. J. Oncol.25(3), 641–649 (2004).
  • Ugolini F, Charafe-Jauffret E, Bardou VJ et al. WNT pathway and mammary carcinogenesis: loss of expression of candidate tumor suppressor gene SFRP1 in most invasive carcinomas except of the medullary type. Oncogene20(41), 5810–5817 (2001).
  • Tepera SB, McCrea PD, Rosen JM. A β-catenin survival signal is required for normal lobular development in the mammary gland. J. Cell Sci.116(Pt 6), 1137–1149 (2003).
  • Gunther EJ, Moody SE, Belka GK et al. Impact of p53 loss on reversal and recurrence of conditional Wnt-induced tumorigenesis. Genes Dev.17(4), 488–501 (2003).
  • Brennan K, Brown AM. Is there a role for Notch signalling in human breast cancer? Breast Cancer Res.5(2), 69–75 (2003).
  • Soriano JV, Uyttendaele H, Kitajewski J, Montesano R. Expression of an activated Notch4(int-3) oncoprotein disrupts morphogenesis and induces an invasive phenotype in mammary epithelial cells in vitro. Int. J. Cancer86(5), 652–659 (2000).
  • Behbod F, Rosen JM. Will cancer stem cells provide new therapeutic targets? Carcinogenesis26(4), 703–711 (2005).
  • Dontu G, Jackson KW, McNicholas E et al. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res.6(6), R605–R615 (2004).
  • Berman DM, Karhadkar SS, Maitra A et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature425(6960), 846–851 (2003).
  • Pasca di Magliano M, Hebrok M. Hedgehog signalling in cancer formation and maintenance. Nat. Rev. Cancer3(12), 903–911 (2003).
  • Kubo M, Nakamura M, Tasaki A et al. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res.64(17), 6071–6074 (2004).
  • Lewis MT, Ross S, Strickland PA et al. Defects in mouse mammary gland development caused by conditional haploinsufficiency of Patched-1. Development126(22), 5181–5193 (1999).
  • Lewis MT, Ross S, Strickland PA et al. The Gli2 transcription factor is required for normal mouse mammary gland development. Dev. Biol.238(1), 133–144 (2001).
  • Liu S, Dontu G, Mantle ID et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res.66(12), 6063–6071 (2006).
  • Karhadkar SS, Bova GS, Abdallah N et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature431(7009), 707–712 (2004).
  • Romer JT, Kimura H, Magdaleno S et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/-)p53(-/-) mice. Cancer Cell6(3), 229–240 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.