221
Views
85
CrossRef citations to date
0
Altmetric
Miscellaneous

Mutation detection using fluorescent hybridization probes and melting curve analysis

Pages 92-101 | Published online: 09 Jan 2014

References

  • Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP. Continuous fluorescent monitoring of rapid cycle DNA amplification. Biotechniques 22, 130–138 (1997).
  • •• First description of fluorescent monitoring.
  • von Ahsen N, Oellerich M, Schtz E. A method for homogeneous colorcompensated genotyping of Factor V (G1691A) and methylenetetrahydrofolate reductase (C677T) mutations using realtime multiplex fluorescence PCR. Clin. Biochem. 33, 535–539 (2000).
  • von Ahsen N, Oellerich M, Schtz E. DNA base bulge vs. unmatched end formation in probe-based diagnostic insertion/deletion genotyping. genotyping the UGT1A1 (TA)(n) polymorphism by real-time fluorescence PCR. Clin. Chem. 46, 1939–1945 (2000).
  • Schtz E, von Ahsen N, Oellerich M. Genotyping of eight thiopurine methyltransferase mutations. Three-color multiplexing, Two-Color/Shared anchor and fluorescence-quenching hybridization probe assays based on thermodynamic nearest-neighbor probe design. Clin. Chem. 46, 1728–1737 (2000).
  • • Describes the use of all three channels for multiplexing PCR.
  • Crockett AO, Wittwer CT. Fluoresceinlabeled oligonucleotides for real-time PCR using the inherent quenching of deoxyguanosine nucleotides. Anal. Biochem. (In Press).
  • • Describes the use of a single probe with inherent quenching ability of guanosine.
  • Tyagi S, Kramer FR. Molecular beaconsprobes that fluoresce upon hybridization. Nature Biotechnol. 14, 303–308 (1996).
  • Giesendorf BA, Vet JA, Tyagi S, Mensink EJ, Trijbels FJ, Blom HJ. Molecular beacons: a new approach for semiautomated mutation analysis. Clin. Chem. 44, 482–486 (1998).
  • Lee LG, Connel CR, Bloch W. Allelic discrimination by nick translation PCR with fluorogenic probes. Nucleic Acids Res. 21, 3761–3766 (1993).
  • Whitcombe D, Theaker J, Breg SP, Brown T, Little S. Detection of PCR products using self-probing amplicons and fluorescence. Nature Biotechnol. 17, 804–807 (1999).
  • Thelwell N, Millington S, Solinas A, Booth J, Brown T. Mode of action and application of scorpion primers to mutation detection. Nucleic Acids Res. 28, 3752–3761 (2000).
  • Germer S, Higuchi R. Single-tube genotyping without oligonucleotide probes. Genome Res. 9, 72–78 (1999).
  • Donohoe GG, Laaksonen M, Pulkki K, Ronnemaa T, Kairisto V. Rapid Singletube screening of the C282Y hemochromatosis mutation by real-time multiplex allele specific PCR without fluorescent probes. Clin. Chem. 46, 1540– 1547 (2000).
  • Kyger EM, Krevolin MD, Powell MJ. Detection of the hereditary hemochromatosis gene mutation by realtime fluorescence polymerase chain reaction and petide nucleic acid clamping. Anal. Biochem. 260, 42–48 (1998).
  • Allawi HT, SantaLucia J, Jr. Thermodynamics of internal C > T mismatches in DNA. Nucleic Acids Res. 11, 2694–2701 (1998).
  • Allawi HT, SantaLucia J, Jr. Nearest neighbor thermodynamic parameters for internal G.A mismatches in DNA. Biochemistry 8, 2170–2179 (1998).
  • SantaLucia J, Jr., Allawi HT, Seneviratne PA. Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry 19, 3555.3562 (1996).
  • Peyret N, Seneviratne PA, Allawi HT, SantaLucia J. Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A.A, C.C, G.G and T.T mismatches. Biochemistry 12, 3468). 3477 (1999).
  • Schutz E, von Ahsen N. Spreadsheet software for thermodynamic melting point prediction of oligonucleotide hybridization with and without mismatches. Biotechniques 27, 1218.1222, 1224 (1999).
  • von Ahsen N, Oellerich M, Armstrong VW, Schutz E. Application of a thermodynamic nearest-neighbor model to estimate nucleic acid stability and optimize probe design: prediction of melting points of multiple mutations of apolipoprotein B- 3500 and Factor V with a hybridization probe genotyping assay on the LightCycler. Clin. Chem. 45, 2094.2101 (1999).
  • Describes software to predict Tm of oligonucleotide probes for both perfect matches and mismatches. this is important in probe design.
  • Bernard PS, Lay MJ, Wittwer CT. Integrated amplification and detection of the C677T point mutation in the methylenetetrahydrofolate reductase gene by fluorescence resonance energy transfer and probe melting curves. Anal. Biochem. 255, 101.107 (1998).
  • Kleinle S, Gallati S. Detection of mitochondrial DNA mutations MELAS3243 using hybridization probes. In: Rapid Cycle Real Time PCR-Methods and Application. Meuer, Wittwer, Nakagawara (Eds.), Springer-Verlag, Heidelberg, Germany, 153.156 (2001).
  • Blomeke B, Sieben S, Spotter D, Landt O, Merk HF. Identification of Nacetyltransferase 2 genotypes by continuous monitoring of fluorogenic hybridization probes. Anal. Biochem. 275, 93.97 (1999).
  • Wittwer CT, Reed GB, Ririe KM. Rapid cycle DNA amplification. In: The Polymerase Chain Reaction. Mullis KB, Ferre F, Gibbs RA (Eds.), Birkhauser, Boston, USA, 174.181 (1994).
  • Innis MA, Myambo KB, Gelfand DH, Brow MAD. DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc. Natl Acad. Sci. USA 85, 9436.9440 (1988).
  • Lyon E, Millson A, Phan T, Wittwer CT. Detection and identification of base alterations within the region of Factor V Leiden by fluorescent melting curves. Mol. Diag. 3, 203.210 (1998).
  • Phillips M, Meadows CA, Huang MY, Millson A, Lyon E. Simultaneous detection of C282Y and H63D hemochromatosis mutations by dual-color probes. Mol. Diag. 5,107.116 (2000).
  • Bernard PS, Ajioka RS, Kushner JP, Wittwer CT. Homogenous multiplex genotyping of hemochromatosis mutations with fluorescent hybridization probes. Am. J. Pathol. 153, 1055.1061 (1998).
  • Bagwell CB, Adams EG. Fluorescence spectral overlap compensation for any number of flow cytometry parameters. Ann. NY Acad. Sci. 677, 167.184 (1993).
  • Bernard PS, Pritham GH, Wittwer CT. Color multiplexing hybridization probes using the apolipoprotein E locus as a model system for genotyping. Anal. Biochem. 273, 221.228 (1999).
  • Lay MJ, Wittwer CT. Real-time fluorescence genotyping of Factor V Leiden during rapid-cycle PCR. Clin. Chem. 43, 2262.2267 (1997).
  • Bertina RM, Koeleman BPC, Koster T et al. Mutation in blood coagulation Factor V associated with resistance to activated protein C. Nature 369, 64.67 (1994).
  • Voorberg J, Roelse J, Koopman R et al. Association of idiopathic venous thromboembolism with single point mutation at ARG506 of Factor V. Lancet 343, 1535.1536 (1994).
  • Malin R, Wirta V, Hiltunen TP, Lehtimaki T. Rapid detection of angiotensinogen M/ T235 polymorphism by fluorescence probe melting curves. Clin. Chem. 46, 880.881 (2000).
  • Sakai E, Tajima M, Inage R, Fukumoto M, Nakagawara K-I. Genotyping of angiotensin-converting enzyme and angiotensinogen polymorphisms with the LightCycler system. In: Rapid Cycle Real Time PCR-Methods and Application. Meuer, Wittwer, Nakagawara (Eds.), Springer- Verlag, Heidelberg, Germany, 135.142 (2001).
  • Bjerke J, Chang C-C, Schur C, Wong S, Nuwayhid N. Genotyping of cytochrome p450 2D6*4 mutation with fluorescent hybridization probes using LightCycler. In: Rapid Cycle Real Time PCR-Methods and Application. Meuer, Wittwer, Nakagawara (Eds.), Springer-Verlag, Heidelberg, Germany, 105.110 (2001).
  • Bruning T, Abel J, Koch B et al. Real-time PCR-anaylsis of the cytochrome P450 1B1 codon 432-polymorphism. Arch. Toxicol. 73, 427.430 (1999).
  • Poort SR, Rosendaal FR, Reitsma PH, Bertina RM. A common genetic variation in the 3–-untranslated region of the prothrombin gene is asssociated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 88, 3698.3703 (1996).
  • Von Ansen N, Schutz E, Armstrong VW, Oellerich M. Rapid detection of prothrombotic mutations of prothrombin (G20210A), Factor V (G1691A) and methylenetetrahydrofolate reductase (C6779) by real-time fluorescence PCR with the LightCycler. Clin. Chem. 45, 694 (1999).
  • Aslanidis C, Nauck M, Schmitz G. Highspeed prothrombin G > A 20210 and methylenetetrahydrofolate reductase C > T 677 mutation detection using real-time fluorescence PCR and melting curves. Biotechniques 27, 234.236, 238 (1999).
  • Meadows CA, Lyon E. Prothrombin 20210A mutation detection by PCR/FRET analysis with 2 mismatches in probe. J. Mol. Diag. 1, 41 (1999).
  • Feder JN, Gnirke A, Thomas W et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nature Genet. 13, 399.408 (1996).
  • von Ahsen N, Oellerich M, Schutz E. Use of two reporter dyes without interference in a single-tube rapid-cycle PCR. alpha(1)- antitrypsin genotyping by multiplex realtime fluorescence PCR with the LightCycler. Clin. Chem. 46, 156.161 (2000).
  • Gundry CN, Bernard PS, Herrmann MG, Reed GH, Wittwer CT. Rapid F508del and F508C assay using fluorescent hybridization probes. Genet. Test. 3, 365.370 (1999).
  • Aoshima T, Sekida Y, Miyazaki T et al. Rapid detection of deletion mutations in inherited metabolic diseases by melting curve analysis with LightCycler. Clin. Chem. 46, 119.122 (2000).
  • Nauck M, Wieland H, Marz W. Rapid, homogenous genotyping of the 4G/5G polymorphism in the promoter region of the PAII gene by fluorescence resonance energy transfer and probe melting curves. Clin. Chem. 45, 1141.1147 (1999).
  • Nauck M, Weiland H, Marz W. Evaluation of the Roche Diagnostics LightCycler Apo B 3500 mutation detection kit. Clin. Chem. Lab. Med. 38, 667.671 (2000).
  • Von Ahsen N, Oellerich M, Armstrong VW, Schtz E. Application of a thermodynamic nearest-neighbor model to estimate nucleic acid stability and optimize probe design. Prediction of melting points of multiple mutations of apolipoprotein B- 3500 and Factor V with a hybridization probe genotyping assay on the LightCycler. Clin. Chem. 45, 2094–2101 (1999).
  • Aslanidis C, Schmitz G. High-Speed apolipoprotein E genotyping and apolipoprotein B3500 mutation detection using real-time fluorescence PCR and melting curves. Clin. Chem. 45, 1094– 1097 (1999).
  • Bolhalder M, Mura C, Landt O, May FE. LightCycler PCR assay for simulataneous detection of the H63D and S65C mutations in the HFE hemochromatosis gene based on opposite melting temperature shifts. Clin. Chem. 45, 2275– 2278 (1999).
  • Huisman THJ, Carver MFH, Efremov GD. A syllabus of human hemoglobin variants. The Sickle Cell Anemia Foundation Augusta, GA, USA (1996).
  • Herrmann MG, Dobrowolski SF, Wittwer CT. Rapid beta-globin genotyping by multiplexing probe melting temperature and color. Clin. Chem. 46, 425–428 (2000).
  • Elenitoba-Johnson KSJ, Bohling SD, Wittwer CT, King TC. Multiplex PCR by multicolor fluorimetry and fluorescence melting curve analysis. Nature Med. 7, 249–253 (2001).
  • •• Describes the most mutations distinguished by an assay using both wild type-specific and mutation-specific probes.
  • Ruiz-Ponte C, Loidi L, Vega A, Carracedo A, Barros F. Rapid real-time fluorescent PCR gene dosage test for the diagnosis of DNA duplications and deletions. Clin. Chem. 46, 1574–1582 (2000).
  • •• Describes quantifying gene dose by peak areas.
  • Lyon E, Millson A Suli A. HER2/neu gene amplification quantified by PCR and melting peak analysis using a single base alteration competitor as an internal standard. In: Rapid Cycle Real Time PCRMethods and Application. Meuer, Wittwer, Nakagawara (Eds.), Springer-Verlag, Heidelberg, Germany, 207–217 (2001).
  • Toyota T, Watanabe A, Shibuya H et al. Association study on the DUSP6 gene, an affective disorder candidate gene on 12q23, performed by using fluorescence resonance energy transfer-based melting curve analysis on the LightCycler. Mol. Psychiatry 5, 489–494 (2000).
  • Torres MJ, Criado A, Palomares JC, Aznar J. Use of real-time PCR and fluorimetry for rapid detection of rifampin and isoniazid resistance-associated mutations in mycobacterium tuberculosis. J. Clin. Microbiol. 38, 3194–3199 (2000).
  • Nakoa M, Janssen JW, Seriu T, Bartram CR. Rapid and reliable detection of N-ras mutations in acute lymphoblastic leukemia by melting curve analysis using LightCycler technology. Leukemia 14, 312–315 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.