29
Views
37
CrossRef citations to date
0
Altmetric
Review

Endocrine tumors of the digestive tract and pancreas: histogenesis, diagnosis and molecular basis

, , &
Pages 323-333 | Published online: 09 Jan 2014

References

  • Levi F, Te V-C, Radimbison L, Rindi G, La Vecchia C. Epidemiology of carcinoid neoplasm in Vaud, Switzerland, 1974–1997. Br. Cancer83, 952–955 (2000).
  • Solcia E, Klöppel G, Sobin LH. Histological typing of endocrine tumours. In: World Health Organization International Hstological Classification of Endocrine TUMOIN(Edition 2). Springer-Verlag, New York, USA, (2000).
  • •• The essential resource for thehistopathological diagnosis of GEP endocrine tumors with the new classification criteria and the specific classifications of tumor types according to anatomical site.
  • Solcia E, Capella C, Fiocca R, Sessa F, LaRosa S, Rindi G. Disorders of the endocrine system. In: Pathology of the Gastrointestinal Pact. Ming SC, Goldman H (Eds.), Williams and Wilkins, Philadelphia, USA, 295–322 (1998).
  • • A comprehensive chapter on the biology and histopathology of endocrine tumors of the gastrointestinal tract with informative tables on normal and transformed endocrine cells and an extensive reference section on the subject.
  • Rindi G, Capella C, Solcia E. Pathobiology and classification of digestive endocrine tumors. In: Recent Advances in the Pathophysiology of Inflammatory Bowel Disease and Digestive Endocrine TUMOIN. Mignon M, Colombel JF (Eds.), John Libbey Eurotext, Montrouge-London-Rome, 177–191 (1999).
  • Walsh JH. Gastrin. In: Cut Peptides. Walsh JH, Dockray GJ (Eds), Raven Press, New York, USA, 75–121 (1994).
  • Hanahan D. Heritable formation of pancreatic B-cell tumors in transgenic mice expressing recombinant insulin simian virus 40 oncogenes. Nature 315, 115–122 (1985).
  • •• This fundamental work describes theidentification of the regulatory region of rat insulin gene in trangenic mice; also one of the first description of endocrine tumor development following genetic manipulation in mice.
  • Efrat S, Teitelman G, Anwar M, Ruggiero D, Hanahan D. Glucagon gene regulatory region directs oncoprotein expression to neurons and pancreatic a-cells. Neurone 1, 605–613 (1988).
  • Rindi G, Grant SGN, Yiangou Y etal Development of neuroendocrine tumors in the gastrointestinal tract of transgenic mice: heterogeneity of hormone expression. Am. Pathol 136, 1364–1373 (1990).
  • Lopez MJ, Upchurch BH, Rindi G, Leiter AB. Studies in transgenic mice reveal potential relationships between secretin-producing cells and other endocrine cell types. Bid Chem. 270, 885–891 (1995).
  • Rindi G, Ratineau C, Ronco A, Candusso ME, Tsai M, Leiter AB. Targeted ablation of secretin cells reveals a close developmental relationship with CCK and L cells. Development 126, 4149–4156 (1999).
  • • This paper describes the conditional ablation of small intestine secretin cells in transgenic mice resulting also in the dramatic depletion of CCK, PYY/glicentin cells and, at lesser extent, GIP 5HT and D cells. An experimental demonstration of the existence of regulatory mechanisms common to different endocrine cell types of the small intestine.
  • Upchurch BH, Fung B, Rindi G, Ronco A, Leiter AB. Peptide YY expression is an early event in intestinal endocrine cell differentiation: evidence from normal and transgenic mice. Development 122, 1157–1163 (1996).
  • Davidson PM, Campbell IL, Oxbrow L, Hutson JM, Harrison LC. Pancreatic I3-cell proliferation in rabbits demonstrated by bromodeoxyuridine labeling. Pancreas 4, 594–600 (1989).
  • Upchurch BH, Aponte GW, Leiter AB. Expression of peptide YY in all four islet cell types in the deveoping mouse pancreas suggests a common peptide YY-producing progenitor. Development 120, 245–252 (1994).
  • Rindi G, Candusso ME, Marchetti AL. Origin and genetic background of insulinomas. Endocr Path& 10, 283–290 (1999).
  • Bishop AE, Power RF, Polak JM. Markers of neuroendocrine differentiation. Path. Res. Pract. 183, 119–128 (1988).
  • Bishop AE, Polak JM, Facer P, Ferri GL, Marangos PJ, Pearse AGE. Neuron specific enolase: a common marker for the endocrine cells and innervation of the gut and pancreas. Castmentemlogy83, 902–915 (1982).
  • • This paper demonstrates the utility of NSE for the identification of both nerve and endocrine elements in the gastrointestinal tract; a classic paper on imrnunohistochemistry and neuroendocrine markers.
  • Rode J, Dhillon AP, Doran JE PGP 9.5 —a new marker for human neuroendocrine tumours. Histopathology9, 147–158 (1985).
  • Lloyd RV, Wilson BS. Specific endocrine tissue marker defined by a monoclonalantibody. Science 222, 628–630 (1983).
  • • The inspiring reference for the use of chromogranin A as a specific marker of normal and transformed endocrine cells.
  • Rindi G, Buffa R, Sessa F, Tortora 0, Solcia E. Chromogranin A, B and C immunoreactivities of mammalian endocrine cells. Distribution, distinction with the argyrophil component of secretory granule. Hstochemistry85, 19–28 (1986).
  • Jahn R, Schiebler W, Quimet C, Greengard P A 38000-Dalton membrane protein (p38) present in synaptic vesicles. Proc. Nail Acad. Sci. USA 82, 4137–4141 (1985).
  • Widenmann B, Franke WW, Kuhn, Moll R, Gould VE. Synaptophysin: a novel marker protein for neuroendocrine cells and neoplasms. Proc. Natl Acad. Sci. USA 83, 3500–3504 (1986).
  • • A key paper, pointing to the use of synaptophysin (p38 protein) as a novel marker of neuroendocrine differentiation in normal and neoplastic tissues.
  • Buffa R, Rindi G, Sessa F etal. Synaptophysin immunoreactivity and small clear vescides in neuroendocrine cells and related tumours. A/LI Cell Pmbesl, 367–381 (1988).
  • Rindi G, Luinetti 0, Comaggia M, Capella C, Solcia E. Three subtypes of gastric argyrophil carcinoid and the gastric neuroendocrine carcinoma: a clinico-pathologic study. Gastmenterology104, 994–1006 (1993).
  • • Description of the subtypes of gastric endocrine tumors and the clinical impact of such diagnosis.
  • Rigaud G, Missiaglia E, Moore PS et al A high resolution allelotype of nonfunctional pancreatic endocrine tumors: identification of two molecular subgroups with clinical implications. Cancer Res. 61,285–292 (2001).
  • • The first available demonstration of positive correlation of multiple allelic deletions, ploidy status and clinical outcome in well-differentiated pancreatic endocrine tumors; also the identification of the two more frequent genetic abnormalities in nonfunctioning pancreatic endocrine tumors on llq and 6q chromosomal arms.
  • LaRosa S, Sessa F, Capella C eta]. Prognostic criteria in nonfunctioning pancreatic endocrine tumors. Virchows Arch. 429,323–333 (1996).
  • Rindi G Azzoni C, La Rosa S eta]. ECL cell tumor and poorly differentiated endocrine carcinoma of the stomach: prognostic evaluation by pathological analysis. Gastmenterology116,532–42 (1999).
  • Chandrasekharrappa SC, Guru SC, Manickam P etal Positional cloning of the gene of Multiple Endocrine Neoplasia-Type 1. Science 276,404–407 (1997).
  • •• The paper' of the MEN1 gene; a classic of positional cloning investigation; this paper opened the race to the mutational analysis of familiar and sporadic endocrine tumors.
  • Radford DM, Ashley SW, Wells SA, Jr., Gerhard DS. Loss of heterozygosity of markers on chromosome 11 in tumors from patients with multiple endocrine neoplasia Type 1. Cancer Res. 50,6529-6533 (1990).
  • Teh BT, Hayward NK, Wilkinson S, Woods GM, Cameron D, Sheperd JJ. Clonal loss of INT-2 alleles in sporadic and familial pancreatic endocrine tumors. BE J. Cancer62, 253–254 (1990).
  • Bale AE, Norton JA, Wong EL et al Allelic loss on chromosome 11 in hereditary and sporadic tumors related to familial multiple endocrine neoplasia Type 1. Cancer Res. 51, 1154–1157 (1991).
  • Beckers A, Abs R, Reyners E et al. Variable regions of chromosome 11 loss in different pathological tissues of a patient with the multiple endocrine neoplasia Type I syndrome. J. Clin. Endocrinol. Metab. 79,1498-1502 (1994).
  • Lubensky IA, Debelenko LV, Zhuang Z et al Allelic deletions on chromosome 11q13 in multiple tumors from individual MEN1 patients. Cancer Res. 56,5272–5278 (1996).
  • Eubanks PJ, Sawicki MP, Samara GJ etal Pancreatic endocrine tumors with loss of heterozygosity at the multiple endocrine neoplasia Type I locus. Surgely173,518–520 (1997).
  • Debelenko LV, Zhuang Z, Emmert-Buck MR etal Allelic deletions on chromosome 11q13 in multiple endocrine neoplasm Type 1-associated and sporadic gastrinomas and pancreatic endocrine tumors. Cancer Res. 57,2238–2243 (1997).
  • Chakrabarti R, Srivatsan ES, Wood TF et al Deletion mapping of endocrine tumors localizes a second tumor suppressor gene on chromosome band 11q13. Genes Chromosomes Cancer22, 130–137 (1998).
  • Sawicki MP, Wan Y-JY, Johnson CL, Berenson J, Gatti RA, Passaro E, Jr. Loss of heterozygosity on chromosome 11 in sporadic gastrinomas. Hum. Genet. 89, 445–449 (1992).
  • Eubanks PJ, Sawicki MP, Samara GJ etal Putative tumor suppressor gene on chromosome 11 is important in sporadic endocrine tumor formation. Am. J. Surg. 167,180-185 (1994).
  • Zhuang Z, Vortmeyer AO, Pack S etal Somatic mutations of the MEN1 tumor suppressor gene in sporadic gastrinomas and insulinomas. Cancer Res. 57,4682–4686 (1997).
  • • One of the first reports on MEN1 gene mutation in gastrointestinal sporadic endocrine tumors.
  • Beghelli S, Pelosi G, Zamboni G etal Pancreatic endocrine tumors: evidence for a tumor suppressor pathogenesis and for a tumor suppressor gene on chromosome 17p. Pathol 186,41–50 (1998).
  • Fuji T, Kawai T, Saito K et a/. MEN1 gene mutations in sporadic neuroendocrine tumors of foregut derivation. Path. Int. 49, 968–973 (1999).
  • Hessman 0, Lindberg D, Skogseid B eta]. Mutation of the Multiple Endocrine Neoplasia Type 1 gene in nonfamilial, malignant tumors of the endocrine pancreas. Cancer Res. 58,377-379 (1998).
  • Hessman 0, Lindberg D, Einrsson A etal Genetic alterations on 3p, 11q13 and 18q in nonfamilial and MEN1-associated pancreatic endocrine tumors. Genes Chromosome Cancer 26,258–264 (1999).
  • Görtz B, Roth J, Krähenmann etal Mutations and allelic deletions of the MEN1 gene are associated with a subset of sporadic endocrine pancreatic and neuroendocrine tumors and not restricted to foregut neoplasms. Am. J. Barba, 154, 429–436 (1999).
  • Speel EJM, Richter J, Moch H et al Genetic differences in endocrine pancreatic tumor subtypes detected by comparative genomic hybridization. Am. J. Pathol, 155, 1787–1794 (1999).
  • Wang EH, Ebrahimi SA, Wu AY, Kashefi C, Passaro E, Jr, Sawicki M. Mutation of the MENIN gene in sporadic pancreatic endocrine tumors. Cancer Res. 58,4417–20 (1998).
  • Goebel SU, Heppner C, Burns AL et al Genotype/phenotype correlation of multiple emdocrine neoplasia Type 1 gene mutations in sporadic gastrinomas. j Clin. Endocrinol Metab. 85,116-123 (2000).
  • Mailman DM, Muscarella P, Schirmer WJ, Ellison EC, O'Dorisio TM, Prior TW. Identification of MEN1 mutations in sporadic enteropancreatic neuroendocrine tumors by analysis on paraffin-embedded tissue. Clin. Chem. 45,29-34 (1999).
  • Shan L, Nakamura Y, Nakamura M eta]. Somatic mutations of multiple endocrine neoplasia Type 1 gene in the sporadic endocrine tumors. Lab. Invest. 78,471-4775 (1998).
  • Bergman L, Boothroyd C, Palmer J eta]. Identification of somatic mutations of the MEN1 gene in sporadic endocrine tumours. Br. Cancer83, 1003–1008 (2000).
  • Toliat M-R, Berger W, Ropers HH, Neuhaus P, Wiedenmann B. Mutations of the MEN1 gene in sporadic neuroendocrine tumours of the gastroenteropancreatic system. Lancet 350, 1223 (1997).
  • Cupisti K, Hoppner W Ditzenrath C etal Lack of MEN1 gene mutations in 27 sporadic insulinomas. Eur. j Clin. Invest. 30,325-329 (2000).
  • Moore P, Missiaglia E, Antonello D etal The role of disease causing genes in sporadic pancreatic endocrine tumors: MEN1 and VHL. Genes Chromosome Cancer (2001) (In Press).
  • Ebrahimi SA, Wang EH, Wu A, Schreck RR, Passaro E, Jr, Sawicki MP. Deletion of chromosome 1 predicts prognosis in pancreatic endocrine tumors. Cancer Res. 59, 311–315 (1999).
  • Chung DC, Smith AP, Louis DN, Graeme-Cook F, Warshaw AL, Arnold A. A novel pancreatic endocrine tumor suppressor gene locus on chromosome 3p with clinical prognostic implications. J. Gun. Invest. 100, 404–410 (1997).
  • Nikiforova MN, Nikiforov YE, Biddinger P et al Frequent loss of heterozygosity at chromosome 3p14.2-3P21 in human pancreatic islet cell tumors. Clin. Enclocrinol 51, 27–33 (1999).
  • Barghorn A, Speel EJM, Farspour B etal Putative tumor suppressor loci at 6q22 and 6q23-q24 are involved in the malignant progression of sporadic endocrine pancreatic tumors. Arn. j Pathol 158, 1903-1911 (2001).
  • Muscarella P, Melvin WS, Fisher WE et al Genetic alterations in gastrinomas and nonfunctioning pancreatic neuroendocrine tumors: an analysis of p16/MTS1 tumor suppressor gene inactivation. Cancer Res. 58, 237–240 (1998).
  • Serrano J, Goebel SU, Peghini PL, Lubensky IA, Gibril F, Jensen RE Alterations in the pl6INK4a/CDKN2A tumor suppressor gene in gastrinomas. j Clin. Enclocrinol .114.tab. 85, 4146–4156 (2000).
  • Bartsch DK, Kerstirris M, Wild A eta]. Low frequency of plOW^4a alterations in insulinomas. fh•gestion62, 171–177 (2000).
  • Moore PS, Orlandini S, Zamboni G eta]. Pancreatic tumours: molecular pathways implicated in ductal cancer are involved in ampullary but not in exocrine nonductal or endocrine tumorigenesis. BE J. Cancer 84, 253–262 (2001).
  • Terris B, Meddeb M, Marchio A etal. Comparative genomic hybridization analysis of sporadic neuroendocrine tumors of the digestive tract. Genes Chromosomes Cancer22, 50–56 (1998).
  • • This paper describes the complexity of the possible chromosomal defects found in digestive endocrine tumors; possibly the first comparative genomic hybridization investigation on GEP endocrine tumors.
  • Pearce SHS, Trump D, Wooding C, Sheppard MN, Clayton RN, Thakker RV. Loss of heterozygosity studies at the retinoblastoma and breast cancer susceptibility (BRCA2) loci in pituitary, parthyroid, pancreatic and carcinoid tumours. Clin. Enclocrinol 45, 195–200 (1996).
  • Chung DC, Smith AP, Louis DN, Graeme-Cook F, Warshaw AW, Arnold A. Analysis of the retinoblastoma tumour suppressor gene in pancreatic endocrine tumours. Clin. Endocrinol. 47, 523–528 (1997).
  • Lohman DR, Funk A, Niedermeyer HP, Haupel S, Höfler H. Identification of p53 gene mutations in gastrointestinal and pancreatic carcinoids by nonradioisotopic SSCA. Vicrhows Acrh. B 64, 293–296 (1993).
  • • This pioneering investigation revealed the absence of p5.3 mutation in well-differentiated tumors of the GEP tract.
  • Pellegata NS, Sessa F, Renault B et alK-ms and p53gene mutations in pancreatic cancer: ductal and nonductal tumors progress through different genetic lesions. Cancer Res. 54, 1556–1560 (1994).
  • Hahn SA, Hogue AT, Moskaluk CA etal Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Res. 56, 490–494 (1996).
  • Bartsch D, Hahn SA, Danichevski KD et al Mutations of the DPC4/Smad4 gene in neuroendocrine pancreatic tumors. Oncogene 18, 2367–71 (1999).
  • Roncalli M, Coggi G. Oncogenes and neuroendocrine tumours. In: Diagnostic Histopathology of Neuroendocrine Tumours. JM Polak (Ed.), Churchill Livingstone, London, UK, 41–66 (1993).
  • Chesa PG, Rettig WG, Melamed MR, Old LJ, Niman NL. Expression of p21 ras in normal and malignant human tissues: lack of association with proliferation and malignancy. Proc. Natl Acad. Sci. USA 84, 3234–3238 (1987).
  • Höfler H, Ruhri C, Putz B, Wirsnberger G, Hauser H. Oncogene expression in endocrine pancreatic tumours. Vicrhows Acrh. B-cell Path 55, 355–361 (1988).
  • Roncalli M, Springall DS, Varndell I etal Oncoprotein immunoreactivity in human endocrine tumours. J. Pathol 163, 117–127 (1991).
  • Yashiro T, Fulton N, Hara H etal Comparison of mutations of ras oncogene in human pancreatic exocrine and endocrine tumors. Surgery114, 758–763 (1993).
  • Pavelic K, Hrascan R, Kapitanovic S etal Multiple genetic alterations in malignant metastatic insulinomas. j Pathol 177, 395–400 (1995).
  • Pavelic K, Hrascan R, Kapitanovic S etal Molecular genetics of malignant insulinoma. Anticancer Res. 16, 1707–1717 (1996).
  • Perren A, Roth J, Muletta-Feurer S etal Clonal analysis of sporadic pancreatic endocrine tumours. J. Pathol 186, 363–371 (1999).
  • Bordi C, Fakhetti A, Azzoni C et al Aggressive forms of gastric neuroendocrine tumors in multiple endocrine neoplasia Type I. Ainj Surg Pathol 21, 1075–1082 (1997).
  • Debelenko LV, Emmert-Buck MR, Zhuang Z etal The multiple endocrine neoplasia Type 1 gene locus is involved in the pathogenesis of Type II gastric carcinoids. Gastroenterology113, 773–781 (1997).
  • Jakobovitz 0, Nass D, DeMarco L etal Carcinoid tumor frequently display genetic abnormalities involving chromosome 11.1. Clin. Endocrinol Metab. 81, 3164–3167 (1996).
  • D'Adda T, Keller G, Bordi C, Hofler H. Loss of heterozygosity in 11q13-14 regions in gastric neuroendocrine tumors not associated with multiple endocrine neoplasia Type 1 syndrome. Lab. Invest. 79, 671–677 (1999).
  • Higham AD, Bishop LA, Dimaline R et al Mutations of Regla are associated with enterochromaffin-like cell tumor development in patients with hypergastrinemia. Gastroenterology116, 1310–1318 (1999).
  • D'Adda T, Candidus S, Denk H, Bordi C, Höfler H. Gastric neuroendocrine neoplasms: tumour clonality and malignancy-associated large X-chromosome deletions. J. Pathol 189, 394–401 (1999).
  • Rindi G, Alberizzi P, Candusso ME, LaRosa S, Capella C, Solcia E. Loss of heterozygosity for chromosome 17p, p53 gene and chromosome 18q, DCC gene, in aggressive endocrine tumors of the stomach. Gastmenterology116, G2156 (1999) (Abstract).
  • Zhao J, de Krjiger RR, Meier D et al Genomic alterations in well-differentiated gastrointestinal and bronchial neuroendocrine tumors (carcinoids). Am. J. Pathol 157, 1431–1438 (2000).
  • Kytola S, Hoog A, Nord B eta]. Comparative genomic hybridization identifies loss of 18q22-qter as an early and specific event in tumorigenesis of midgut carcinoids. A/17. Pathol 158, 1803–1808 (2001).
  • Tonnies H, Toliat MR, Ramel C etal Analysis of sporadic neuroendocrine tumours of the enteropancreatic system by comparative genomic hybridisation. Gut 48, 536–541 (2001).
  • Lollgen RM, Hessman 0, Szabo E, Westin G, Akerstrom G. Chromosome 18 deletions are common events in classical midgut carcinoid tumors. int. J Cancer 92, 812–815 (2001).
  • Vortmeyer AO, Lubensky IA, Merino MJ et al Concordance of genetic alteration in poorly differentiated neuroendocrine carcinomas and associated adenocarcinomas. j Natl Cancer Inst. 89, 1448–1453 (1997).
  • Ubiali A, Benetti A, Papotti M, Villanacci V, Rindi G. Genetic alterations in poorly differentiated endocrine colon carcinomas developing in tubulo-villous adenomas: a report of two cases. Vitrhows Atrh.iv DOT 10.1007/s004280100475 (2001).
  • Krenning EP, de Jong M, Kooij PPM et al Radiolabeled somatostatin analogues for peptide receptor scintigraphy and radionuclide therapy. Ann. Om: 10(S2), S23—S29 (1999).
  • • A paper describing the possibility offered by the pharmacological access to somatostatin receptor in endocrine tumor cells.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.