2,603
Views
264
CrossRef citations to date
0
Altmetric
Reviews

Advances and challenges in biosensor-based diagnosis of infectious diseases

, , &

References

  • Franca RF, Da Silva CC, De Paula SO. Recent advances in molecular medicine techniques for the diagnosis, prevention, and control of infectious diseases. Eur J Clin Microbiol Infect Dis 2013;32(6):723-8
  • Fauci AS, Morens DM. 200 NEJM ANNIVERSARY ARTICLE the perpetual challenge of infectious diseases. N Engl J Med 2012;366(5):454-61
  • Yager P, Domingo GJ, Gerdes J. Point-of-care diagnostics for global health. Annu Rev Biomed Eng 2008;10:107-44
  • Mabey D, Peeling RW, Ustianowski A, Perkins MD. Diagnostics for the developing world. Nat Rev Microbiol 2004;2(3):231-40
  • Luong JH, Male KB, Glennon JD. Biosensor technology: technology push versus market pull. Biotechnol Adv 2008;26(5):492-500
  • Ngom B, Guo Y, Wang X, Bi D. Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Anal Bioanal Chem 2010;397(3):1113-35
  • Foudeh AM, Fatanat Didar T, Veres T, Tabrizian M. Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. Lab Chip 2012;12(18):3249-66
  • Pejcic B, De Marco R, Parkinson G. The role of biosensors in the detection of emerging infectious diseases. Analyst 2006;131(10):1079-90
  • D'orazio P. Biosensors in clinical chemistry - 2011 update. Clin Chim Acta 2011;412(19–20):1749-61
  • Whitesides GM. The origins and the future of microfluidics. Nature 2006;442(7101):368-73
  • Fournier PE, Raoult D. Prospects for the Future Using Genomics and Proteomics in Clinical Microbiology. Annu Rev Microbiol 2011;65:169-88
  • Hodges EN, Connor JH. Translational control by negative-strand RNA viruses: methods for the study of a crucial virus/host interaction. Methods 2013;59(2):180-7
  • Mairiang D, Zhang HM, Sodja A, et al. Identification of new protein interactions between dengue fever virus and its hosts, human and mosquito. PLoS One 2013;8(1):e53535
  • Mohan R, Mach KE, Bercovici M, et al. Clinical validation of integrated nucleic acid and protein detection on an electrochemical biosensor array for urinary tract infection diagnosis. PLoS One 2011;6(10):e26846
  • Hunt HK, Armani AM. Label-free biological and chemical sensors. Nanoscale 2010;2(9):1544-59
  • Rapp BE, Gruhl FJ, Lange K. Biosensors with label-free detection designed for diagnostic applications. Anal Bioanal Chem 2010;398(6):2403-12
  • Ju H, Zhang X, Wang J. Signal amplification for nanobiosensing. In: NanoBiosensing. Springer, NY, USA; 2011; p. 39-84
  • Scanvic A, Courdavault L, Sollet JP, Le Turdu F. Interest of real-time PCR Xpert MRSA/SA on GeneXpert (R) DX System in the investigation of staphylococcal bacteremia. Pathol Biol 2011;59(2):67-72
  • Ioannidis P, Papaventsis D, Karabela S, et al. Cepheid GeneXpert MTB/RIF Assay for Mycobacterium tuberculosis Detection and Rifampin Resistance Identification in Patients with Substantial Clinical Indications of Tuberculosis and Smear-Negative Microscopy Results. J Clin Microbiol 2011;49(8):3068-70
  • Park S, Zhang Y, Lin S, et al. Advances in microfluidic PCR for point-of-care infectious disease diagnostics. Biotechnol Adv 2011;29(6):830-9
  • Ahmad F, Hashsham SA. Miniaturized nucleic acid amplification systems for rapid and point-of-care diagnostics: a review. Anal Chim Acta 2012;733:1-15
  • Citartan M, Gopinath SC, Tominaga J, Tang TH. Label-free methods of reporting biomolecular interactions by optical biosensors. Analyst 2013;138(13):3576-92
  • Guo X. Surface plasmon resonance based biosensor technique: a review. J Biophoton 2012;5(7):483-501
  • Tawil N, Sacher E, Mandeville R, Meunier M. Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages. Biosens Bioelectron 2012;37(1):24-9
  • Kussrow A, Baksh MM, Bornhop DJ, Finn MG. Universal sensing by transduction of antibody binding with backscattering interferometry. Chembiochem 2011;12(3):367-70
  • Kussrow A, Enders CS, Castro AR, et al. The potential of backscattering interferometry as an in vitro clinical diagnostic tool for the serological diagnosis of infectious disease. Analyst 2010;135(7):1535-7
  • Yanik AA, Huang M, Kamohara O, et al. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett 2010;10:4962-9
  • Luo X, Davis JJ. Electrical biosensors and the label free detection of protein disease biomarkers. Chem Soc Rev 2013;42(13):5944-62
  • Qiu J-D, Huang H, Liang R-P. Biocompatible and label-free amperometric immunosensor for hepatitis B surface antigen using a sensing film composed of poly(allylamine)-branched ferrocene and gold nanoparticles. Microchim Acta 2011;174(1-2):97-105
  • Daniels JS, Pourmand N. Label-free impedance biosensors: opportunities and challenges. Electroanalysis 2007;19(12):1239-57
  • Guo X, Kulkarni A, Doepke A, et al. Carbohydrate-based label-free detection of Escherichia coli ORN 178 using electrochemical impedance spectroscopy. Anal Chem 2012;84(1):241-6
  • Patel P, Klausner JD, Bacon OM, et al. Detection of acute HIV infections in high-risk patients in California. J Acquir Immune Defic Syndr 2006;42(1):75-9
  • Shafiee H, Jahangir M, Inci F, et al. Acute on-chip HIV detection through label-free electrical sensing of viral nano-lysate. Small 2013;9(15):2553-63
  • Zelada-Guillen GA, Tweed-Kent A, Niemann M, et al. Ultrasensitive and real-time detection of proteins in blood using a potentiometric carbon-nanotube aptasensor. Biosens Bioelectron 2013;41:366-71
  • Song S, Wang L, Li J, et al. Aptamer-based biosensors. TrAC Trends Anal Chem 2008;27(2):108-17
  • Villamizar RA, Maroto A, Rius FX. Improved detection of Candida albicans with carbon nanotube field-effect transistors. Sens Actuators B Chem 2009;136(2):451-7
  • Ishikawa FN, Chang HK, Curreli M, et al. Label-Free, Electrical Detection of the SARS Virus N-Protein with Nanowire Biosensors Utilizing Antibody Mimics as Capture Probes. ACS Nano 2009;3(5):1219-24
  • Tamayo J, Kosaka PM, Ruz JJ, et al. Biosensors based on nanomechanical systems. Chem Soc Rev 2013;42(3):1287-311
  • Arlett JL, Myers EB, Roukes ML. Comparative advantages of mechanical biosensors. Nat Nanotechnol 2011;6(4):203-15
  • Mader A, Gruber K, Castelli R, et al. Discrimination of Escherichia coli strains using glycan cantilever array sensors. Nano Lett 2012;12(1):420-3
  • Liu Y, Schweizer LM, Wang W, et al. Label-free and real-time monitoring of yeast cell growth by the bending of polymer microcantilever biosensors. Sens Actuators B Chem 2013;178:621-6
  • Peduru Hewa TM, Tannock GA, Mainwaring DE, et al. The detection of influenza A and B viruses in clinical specimens using a quartz crystal microbalance. J Virol Methods 2009;162(1-2):14-21
  • Lu CH, Zhang Y, Tang SF, et al. Sensing HIV related protein using epitope imprinted hydrophilic polymer coated quartz crystal microbalance. Biosens Bioelectron 2012;31(1):439-44
  • Tokonami S, Nakadoi Y, Takahashi M, et al. Label-free and selective bacteria detection using a film with transferred bacterial configuration. Anal Chem 2013;85(10):4925-9
  • Zhang GJ, Ning Y. Silicon nanowire biosensor and its applications in disease diagnostics: a review. Anal Chim Acta 2012;749:1-15
  • Statz AR, Meagher RJ, Barron AE, Messersmith PB. New peptidomimetic polymers for antifouling surfaces. J Am Chem Soc 2005;127(22):7972-3
  • Bryan T, Luo X, Bueno PR, Davis JJ. An optimised electrochemical biosensor for the label-free detection of C-reactive protein in blood. Biosens Bioelectron 2013;39(1):94-8
  • Brault ND, Gao C, Xue H, et al. Ultra-low fouling and functionalizable zwitterionic coatings grafted onto SiO2 via a biomimetic adhesive group for sensing and detection in complex media. Biosens Bioelectron 2010;25(10):2276-82
  • Kirk JT, Brault ND, Baehr-Jones T, et al. Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted human plasma. Biosens Bioelectron 2013;42:100-5
  • Peruski AH, Peruski LF. Immunological Methods for Detection and Identification of Infectious Disease and Biological Warfare Agents. Clin Vaccine Immunol 2003;10(4):506-13
  • Li B, Yu Q, Duan Y. Fluorescent labels in biosensors for pathogen detection. Crit Rev Biotechnol 2013. [Epub ahead of print]
  • Nam JM, Jang KJ, Groves JT. Detection of proteins using a colorimetric bio-barcode assay. Nat protocols 2007;2(6):1438-44
  • Sapsford KE, Pons T, Medintz IL, Mattoussi H. Biosensing with luminescent semiconductor quantum dots. Sensors 2006;6(8):925-53
  • Mach KE, Du CB, Phull H, et al. Rapid molecular diagnosis of urinary tract infections. J Urol 2009;181(4):138-9
  • Haun JB, Yoon TJ, Lee H, Weissleder R. Magnetic nanoparticle biosensors. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010;2(3):291-304
  • Chin CD, Linder V, Sia SK. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 2012;12(12):2118-34
  • Martinez AW, Phillips ST, Whitesides GM, Carrilho E. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 2010;82(1):3-10
  • Wang EC, Wang AZ. Targeted Nanoparticles and their Applications in Biology. Integr Biol 2014;6:9-26
  • Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 2003;301(5641):1884-6
  • Tang SX, Zhao JQ, Storhoff JJ, et al. Nanoparticle-based biobarcode amplification assay (BCA) for sensitive and early detection of human immunodeficiency type 1 capsid (p24) antigen. J Acquir Immune Defic Syndr 2007;46(2):231-7
  • Cao X, Ye Y, Liu S. Gold nanoparticle-based signal amplification for biosensing. Anal Biochem 2011;417(1):1-16
  • Lin M, Pei H, Yang F, et al. Applications of Gold Nanoparticles in the Detection and Identification of Infectious Diseases and Biothreats. Adv Materials 2013;25(25):3490-6
  • Chin CD, Laksanasopin T, Cheung YK, et al. Microfluidics-based diagnostics of infectious diseases in the developing world. Nat Med 2011;17(8):1015-19
  • Soelberg SD, Stevens RC, Limaye AP, Furlong CE. Surface Plasmon Resonance Detection Using Antibody-Linked Magnetic Nanoparticles for Analyte Capture, Purification, Concentration, and Signal Amplification. Anal Chem 2009;81(6):2357-63
  • Chung HJ, Castro CM, Im H, et al. A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria. Nat Nanotechnol 2013;8(5):369-75
  • Lee H, Sun E, Ham D, Weissleder R. Chip-NMR biosensor for detection and molecular analysis of cells. Nat Med 2008;14(8):869-74
  • Moore DA, Shah NS. Alternative methods of diagnosing drug resistance--what can they do for me? J Infect Dis 2011;204(Suppl 4):S1110-19
  • Pulido MR, Garcia-Quintanilla M, Martin-Pena R, et al. Progress on the development of rapid methods for antimicrobial susceptibility testing. J Antimicrob Chemother 2013;68(12):2710-17
  • Bergeron MG, Ouellette M. Preventing antibiotic resistance through rapid genotypic identification of bacteria and of their antibiotic resistance genes in the clinical microbiology laboratory. J Clin Microbiol 1998;36(8):2169-72
  • Mach KE, Mohan R, Baron EJ, et al. A biosensor platform for rapid antimicrobial susceptibility testing directly from clinical samples. J Urol 2011;185(1):148-53
  • Halford C, Gonzalez R, Campuzano S, et al. Rapid antimicrobial susceptibility testing by sensitive detection of precursor rRNA using a novel electrochemical biosensing platform. Antimicrob Agents Chemother 2013;57(2):936-43
  • Lu Y, Gao J, Zhang DD, et al. Single cell antimicrobial susceptibility testing by confined microchannels and electrokinetic loading. Anal Chem 2013;85(8):3971-6
  • Kalashnikov M, Lee JC, Campbell J, et al. A microfluidic platform for rapid, stress-induced antibiotic susceptibility testing of Staphylococcus aureus. Lab Chip 2012;12(21):4523-32
  • Chen CH, Lu Y, Sin ML, et al. Antimicrobial susceptibility testing using high surface-to-volume ratio microchannels. Anal Chem 2010;82(3):1012-19
  • Kim KP, Kim YG, Choi CH, et al. In situ monitoring of antibiotic susceptibility of bacterial biofilms in a microfluidic device. Lab Chip 2010;10(23):3296-9
  • Tang Y, Zhen L, Liu J, Wu J. Rapid antibiotic susceptibility testing in a microfluidic pH sensor. Anal Chem 2013;85(5):2787-94
  • Tawil N, Mouawad F, Levesque S, et al. The differential detection of methicillin-resistant, methicillin-susceptible and borderline oxacillin-resistant Staphylococcus aureus by surface plasmon resonance. Biosens Bioelectron 2013;49:334-40
  • Ritzi-Lehnert M. Development of chip-compatible sample preparation for diagnosis of infectious diseases. Expert Rev Mol Diagn 2012;12(2):189-206
  • Fu E, Chinowsky T, Nelson K, et al. SPR imaging-based salivary diagnostics system for the detection of small molecule analytes. Ann NY Acad Sci 2007;1098:335-44
  • Cattamanchi A, Davis JL, Pai M, et al. Does bleach processing increase the accuracy of sputum smear microscopy for diagnosing pulmonary tuberculosis? J Clin Microbiol 2010;48(7):2433-9
  • Yang S, Undar A, Zahn JD. A microfluidic device for continuous, real time blood plasma separation. Lab Chip 2006;6(7):871-80
  • Fan R, Vermesh O, Srivastava A, et al. Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat Biotechnol 2008;26(12):1373-8
  • Yang X, Forouzan O, Brown TP, Shevkoplyas SS. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab Chip 2012;12(2):274-80
  • Lee BS, Lee JN, Park JM, et al. A fully automated immunoassay from whole blood on a disc. Lab Chip 2009;9(11):1548-55
  • Amasia M, Madou M. Large-volume centrifugal microfluidic device for blood plasma separation. Bioanalysis 2010;2(10):1701-10
  • Rodriguez-Villarreal AI, Arundell M, Carmona M, Samitier J. High flow rate microfluidic device for blood plasma separation using a range of temperatures. Lab Chip 2010;10(2):211-19
  • Chiu ML, Lawi W, Snyder ST, et al. Matrix effects – a challenge toward automation of molecular analysis. JALA 2010;15(3):233-42
  • Mulvaney SP, Cole CL, Kniller MD, et al. Rapid, femtomolar bioassays in complex matrices combining microfluidics and magnetoelectronics. Biosens Bioelectron 2007;23(2):191-200
  • Dimov IK, Garcia-Cordero JL, O'grady J, et al. Integrated microfluidic tmRNA purification and real-time NASBA device for molecular diagnostics. Lab Chip 2008;8(12):2071-8
  • Lien KY, Hung LY, Huang TB, et al. Rapid detection of influenza A virus infection utilizing an immunomagnetic bead-based microfluidic system. Biosens Bioelectron 2011; Epub ahead of print
  • Gao J, Sin ML, Liu T, et al. Hybrid electrokinetic manipulation in high-conductivity media. Lab Chip 2011;11(10):1770-5
  • Krishnan R, Sullivan BD, Mifflin RL, et al. Alternating current electrokinetic separation and detection of DNA nanoparticles in high-conductance solutions. Electrophoresis 2008;29(9):1765-74
  • Park S, Zhang Y, Wang TH, Yang S. Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Lab Chip 2011;11(17):2893-900
  • Gao J, Riahi R, Sin ML, et al. Electrokinetic focusing and separation of mammalian cells in conductive biological fluids. Analyst 2012;137(22):5215-21
  • Zhang JY, Do J, Premasiri WR, et al. Rapid point-of-care concentration of bacteria in a disposable microfluidic device using meniscus dragging effect. Lab Chip 2010;10(23):3265-70
  • Mach AJ, Kim JH, Arshi A, et al. Automated cellular sample preparation using a Centrifuge-on-a-Chip. Lab Chip 2011;11(17):2827-34
  • Kim J, Johnson M, Hill P, Gale BK. Microfluidic sample preparation: cell lysis and nucleic acid purification. Integr Biol 2009;1(10):574-86
  • Reboud J, Bourquin Y, Wilson R, et al. Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies. Proc Natl Acad Sci USA 2012;109(38):15162-7
  • Siegrist J, Gorkin R, Bastien M, et al. Validation of a centrifugal microfluidic sample lysis and homogenization platform for nucleic acid extraction with clinical samples. Lab Chip 2010;10(3):363-71
  • Oblath EA, Henley WH, Alarie JP, Ramsey JM. A microfluidic chip integrating DNA extraction and real-time PCR for the detection of bacteria in saliva. Lab Chip 2013;13(7):1325-32
  • Marshall LA, Wu LL, Babikian S, et al. Integrated printed circuit board device for cell lysis and nucleic acid extraction. Anal Chem 2012;84(21):9640-5
  • Wang C-H, Lien K-Y, Hung L-Y, et al. Integrated microfluidic system for the identification and multiple subtyping of influenza viruses by using a molecular diagnostic approach. Microfluid Nanofluid 2012;13(1):113-23
  • Omiatek DM, Santillo MF, Heien ML, Ewing AG. Hybrid capillary-microfluidic device for the separation, lysis, and electrochemical detection of vesicles. Anal Chem 2009;81(6):2294-302
  • Lam B, Fang Z, Sargent EH, Kelley SO. Polymerase chain reaction-free, sample-to-answer bacterial detection in 30 minutes with integrated cell lysis. Anal Chem 2012;84(1):21-5
  • Mahalanabis M, Al-Muayad H, Kulinski MD, et al. Cell lysis and DNA extraction of gram-positive and gram-negative bacteria from whole blood in a disposable microfluidic chip. Lab Chip 2009;9(19):2811-17
  • Sorger PK. Microfluidics closes in on point-of-care assays. Nat Biotechnol 2008;26(12):1345-6
  • Sin ML, Gao J, Liao JC, Wong PK. System integration – a major step toward lab on a chip. J Biol Eng 2011;5:6
  • Gurkan UA, Moon S, Geckil H, et al. Miniaturized lensless imaging systems for cell and microorganism visualization in point-of-care testing. Biotechnol J 2011;6(2):138-49
  • Kimmel DW, Leblanc G, Meschievitz ME, Cliffel DE. Electrochemical sensors and biosensors. Anal Chem 2012;84(2):685-707
  • Karuwan C, Sukthang K, Wisitsoraat A, et al. Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip. Talanta 2011;84(5):1384-9
  • Sin ML, Liu T, Pyne JD, et al. In situ electrokinetic enhancement for self-assembled-monolayer-based electrochemical biosensing. Anal Chem 2012;84(6):2702-7
  • Sin ML, Gau V, Liao JC, Wong PK. A universal electrode approach for automated electrochemical molecular analyses. J Microelectromech Syst 2013;22(5):1126-32
  • Laxminarayan R, Mills AJ, Breman JG, et al. Advancement of global health: key messages from the Disease Control Priorities Project. Lancet 2006;367(9517):1193-208
  • Clarke JR. Molecular diagnosis of HIV. Expert Rev Mol Diagn 2002;2(3):233-9
  • Bourlet T, Memmi M, Saoudin H, Pozzetto B. Molecular HIV screening. Expert Rev Mol Diagn 2013;13(7):693-705
  • Branson BM. State of the art for diagnosis of HIV infection. Clin Infect Dis 2007;45:S221-5
  • Al-Zamel FA. Detection and diagnosis of Mycobacterium tuberculosis. Expert Rev Anti Infect Ther 2009;7(9):1099-108
  • Helb D, Jones M, Story E, et al. Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology. J Clin Microbiol 2010;48(1):229-37
  • Van Rie A, Page-Shipp L, Scott L, et al. Xpert (R) MTB/RIF for point-of-care diagnosis of TB in high-HIV burden, resource-limited countries: hype or hope? Expert Rev Mol Diagn 2010;10(7):937-46
  • Hawkes M, Kain KC. Advances in malaria diagnosis. Expert Rev Anti Infect Ther 2007;5(3):485-95
  • Moody A. Rapid Diagnostic Tests for Malaria Parasites. Clin Microbiol Rev 2002;15(1):66-78
  • Wongsrichanalai C, Barcus MJ, Muth S, et al. A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT). Am J Trop Med Hyg 2007;77(6):119-27
  • Strick L, Wald A. Type-specific testing for herpes simplex virus. Expert Rev Mol Diagn 2004;4(4):443-53
  • Corey L. Laboratory diagnosis of herpes-simplex virus-infections - principles guiding the development of rapid diagnostic-tests. Diagn Micrbiol Infect Dis 1986;4(3):S111-19
  • Ryan C, Kinghorn G. Clinical assessment of assays for diagnosis of herpes simplex infection. Expert Rev Mol Diagn 2006;6(5):767-75
  • Bayliss J, Nguyen T, Lesmana CR, et al. Advances in the molecular diagnosis of hepatitis B infection: providing insight into the next generation of disease. Semin Liver Dis 2013;33(2):113-21
  • Nainan OV, Xia G, Vaughan G, Margolis HS. Diagnosis of hepatitis a virus infection: a molecular approach. Clin Microbiol Rev 2006;19(1):63-79
  • Wiwanitkit V. Dengue fever: diagnosis and treatment. Expert Rev Anti Infect Ther 2010;8(7):841-5
  • Tang KF, Ooi EE. Diagnosis of dengue: an update. Expert Rev Anti Infect Ther 2012;10(8):895-907
  • Hooton TM, Bradley SF, Cardenas DD, et al. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin Infect Dis 2010;50(5):625-63
  • Schmiemann G, Kniehl E, Gebhardt K, et al. The diagnosis of urinary tract infection: a systematic review. Deutsch Arztebl Int 2010;107(21):361-7
  • Katz JM, Hancock K, Xu XY. Serologic assays for influenza surveillance, diagnosis and vaccine evaluation. Expert Rev Anti Infect Ther 2011;9(6):669-83
  • Dimaio MA, Sahoo MK, Waggoner J, Pinsky BA. Comparison of Xpert Flu rapid nucleic acid testing with rapid antigen testing for the diagnosis of influenza A and B. J Virol Methods 2012;186(1-2):137-40
  • Chauhan N, Narang J, Pundir S, et al. Laboratory diagnosis of swine flu: a review. Artif Cell Nanomed B 2013;41(3):189-95
  • Guerrant RL, Van Gilder T, Steiner TS, et al. Practice guidelines for the management of infectious diarrhea. Clin Infect Dis 2001;32(3):331-51
  • O'Ryan M, Lucero Y, O'Ryan-Soriano MA, Ashkenazi S. An update on management of severe acute infectious gastroenteritis in children. Expert Rev Anti Infect Ther 2010;8(6):671-82
  • Feeney SA, Armstrong VJ, Mitchell SJ, et al. Development and clinical validation of multiplex TaqMan(R) assays for rapid diagnosis of viral gastroenteritis. J Med Virol 2011;83(9):1650-6
  • Bauer M, Reinhart K. Molecular diagnostics of sepsis – where are we today? Int J Med Microbiol 2010;300(6):411-13
  • Mancini N, Carletti S, Ghidoli N, et al. The era of molecular and other non-culture-based methods in diagnosis of sepsis. Clin Microbiol Rev 2010;23(1):235-51
  • Kotsaki A, Giamarellos-Bourboulis EJ. Molecular diagnosis of sepsis. Expert Opin Med Diagn 2012;6(3):209-19
  • Graseck AS, Shih SL, Peipert JF. Home versus clinic-based specimen collection for Chlamydia trachomatis and Neisseria gonorrhoeae. Expert Rev Anti Infect Ther 2011;9(2):183-94
  • Munson E, Napierala M, Schell RF. Insights into trichomoniasis as a result of highly sensitive molecular diagnostics screening in a high-prevalence sexually transmitted infection community. Expert Rev Anti Infect Ther 2013;11(8):845-63
  • Stevens DL, Bisno AL, Chambers HF, et al. Practice guidelines for the diagnosis and management of skin and soft-tissue infections. Clin Infect Dis 2005;41(10):1373-406
  • Bonham PA. Swab cultures for diagnosing wound infections: a literature review and clinical guideline. J Wound Ostomy Continence Nurs 2009;36(4):389-95
  • Oz Y, Kiraz N. Diagnostic methods for fungal infections in pediatric patients: microbiological, serological and molecular methods. Expert Rev Anti Infect Ther 2011;9(3):289-98
  • Peman J, Zaragoza R. Combined use of nonculture-based lab techniques in the diagnosis and management of critically ill patients with invasive fungal infections. Expert Rev Anti Infect Ther 2012;10(11):1321-30
  • Liang RP, Fan LX, Huang DM, Qiu JD. A label-free amperometric immunosensor based on redox-active ferrocene-branched chitosan/multiwalled carbon nanotubes conductive composite and gold nanoparticles. Electroanalysis 2011;23(3):719-27
  • Shi WT, Ma ZF. A novel label-free amperometric immunosensor for carcinoembryonic antigen based on redox membrane. Biosens Bioelectron 2011;26(6):3068-71
  • Koncki R. Recent developments in potentiometric biosensors for biomedical analysis. Anal Chim Acta 2007;599(1):7-15
  • Hiatt LA, Cliffel DE. Real-time Recognition of Mycobacterium tuberculosis and Lipoarabinomannan using the Quartz Crystal Microbalance. Sens Actuators B Chem 2012;174:245-52
  • Cheng CI, Chang YP, Chu YH. Biomolecular interactions and tools for their recognition: focus on the quartz crystal microbalance and its diverse surface chemistries and applications. Chem Soc Rev 2012;41(5):1947-71
  • Pan Y, Sonn GA, Sin MLY, et al. Electrochemical immunosensor detection of urinary lactoferrin in clinical samples for urinary tract infection diagnosis. Biosens Bioelectron 2010;26(2):649-54
  • Kaufman E, Lamster IB. The diagnostic applications of saliva – a review. Crit Rev Oral Biol Med 2002;13(2):197-212
  • Thanyani ST, Roberts V, Siko DGR, et al. A novel application of affinity biosensor technology to detect antibodies to mycolic acid in tuberculosis patients. J Immunol Methods 2008;332(1-2):61-72
  • Zuo BL, Li SM, Guo Z, et al. Piezoelectric immunosensor for SARS-associated coronavirus in sputum. Anal Chem 2004;76(13):3536-40
  • Chua AL, Yean CY, Ravichandran M, et al. A rapid DNA biosensor for the molecular diagnosis of infectious disease. Biosens Bioelectron 2011;26(9):3825-31
  • Huang JL, Yang GJ, Meng WJ, et al. An electrochemical impedimetric immunosensor for label-free detection of Campylobacter jejuni in diarrhea patients' stool based on O-carboxymethylchitosan surface modified Fe3O4 nanoparticles. Biosens Bioelectron 2010;25(5):1204-11
  • Mahilum-Tapay L, Laitila V, Wawrzyniak JJ, et al. New point of care Chlamydia Rapid Test – bridging the gap between diagnosis and treatment: performance evaluation study. BMJ 2007;335(7631):1190-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.