795
Views
26
CrossRef citations to date
0
Altmetric
Technology Report

Novel droplet platforms for the detection of disease biomarkers

, &

References

  • Naylor S. Biomarkers: current perspectives and future prospects. Expert Rev Mol Diagn 2003;3(5):525-9
  • Bainbridge MN, Hu H, Muzny DM, et al. De novo truncating mutations in ASXL3 are associated with a novel clinical phenotype with similarities to Bohring-Opitz syndrome. Genome Med 2013;5(2):11
  • Wallstrom G, Anderson KS, LaBaer J. Biomarker discovery for heterogeneous diseases. Cancer Epidemiol Biomarkers Prev 2013;22(5):747-55
  • Chin L, Hahn WC, Getz G, Meyerson M. Making sense of cancer genomic data. Genes Dev 2011;25(6):534-55
  • Thomas RK, Nickerson E, Simons JF, et al. Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing. Nat Med 2006;12(7):852-5
  • Banoo S, Bell D, Bossuyt P, et al. Evaluation of diagnostic tests for infectious diseases: general principles. Nature reviews. Microbiology 2006;4(Suppl 12):S20-32
  • Yang S, Rothman RE. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect Dis 2004;4(6):337-48
  • Rost S, Fregin A, Ivaskevicius V, et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 2004;427(6974):537-41
  • Nahavandi S, Baratchi S, Soffe R, et al. Microfluidic platforms for biomarker analysis. Lab Chip 2014;14(9):1496-514
  • Hung L-Y, Wu H-W, Hsieh K, Lee G-B. Microfluidic platforms for discovery and detection of molecular biomarkers. Microfluid Nanofluid 2014;16(5):941-63
  • Teh SY, Lin R, Hung LH, Lee AP. Droplet microfluidics. Lab Chip 2008;8(2):198-220
  • Taly V, Pekin D, El Abed A, Laurent-Puig P. Detecting biomarkers with microdroplet technology. Trends Mol Med 2012;18(7):405-16
  • Devonshire AS, Sanders R, Wilkes TM, et al. Application of next generation qPCR and sequencing platforms to mRNA biomarker analysis. Methods 2013;59(1):89-100
  • Theberge AB, Courtois F, Schaerli Y, et al. Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew Chem 2010;49(34):5846-68
  • Song H, Chen DL, Ismagilov RF. Reactions in droplets in microfluidic channels. Angew Chem 2006;45(44):7336-56
  • Schneider T, Kreutz J, Chiu DT. The potential impact of droplet microfluidics in biology. Anal Chem 2013;85(7):3476-82
  • Pompano RR, Liu W, Du W, Ismagilov RF. Microfluidics using spatially defined arrays of droplets in one, two, and three dimensions. Ann Rev Anal Chem (Palo Alto Calif) 2011;4:59-81
  • Dressler OJ, Maceiczyk RM, Chang SI, deMello AJ. Droplet-based microfluidics: enabling impact on drug discovery. J Biomol Screen 2014;19(4):483-96
  • Casadevall i Solvas X, deMello A. Droplet microfluidics: recent developments and future applications. Chem Commun 2011;47(7):1936-42
  • Velev OD, Prevo BG, Bhatt KH. On-chip manipulation of free droplets. Nature 2003;426(6966):515-16
  • Hunt TP, Issadore D, Westervelt RM. Integrated circuit/microfluidic chip to programmably trap and move cells and droplets with dielectrophoresis. Lab Chip 2008;8(1):81-7
  • Chugh D, Kaler KV. Leveraging liquid dielectrophoresis for microfluidic applications. Biomed Mater 2008;3(3):034009
  • Pollack MG, Pamula VK, Srinivasan V, Eckhardt AE. Applications of electrowetting-based digital microfluidics in clinical diagnostics. Expert Rev Mol Diagn 2011;11(4):393-407
  • Lu HW, Bottausci F, Fowler JD, et al. A study of EWOD-driven droplets by PIV investigation. Lab Chip 2008;8(3):456-61
  • Sista R, Hua Z, Thwar P, et al. Development of a digital microfluidic platform for point of care testing. Lab Chip 2008;8(12):2091-104
  • Boles DJ, Benton JL, Siew GJ, et al. Droplet-based pyrosequencing using digital microfluidics. Anal Chem 2011;83(22):8439-47
  • Long Z, Shetty AM, Solomon MJ, Larson RG. Fundamentals of magnet-actuated droplet manipulation on an open hydrophobic surface. Lab Chip 2009;9(11):1567-75
  • Im do J, Noh J, Moon D, Kang IS. Electrophoresis of a charged droplet in a dielectric liquid for droplet actuation. Anal Chem 2011;83(13):5168-74
  • Hua Z, Rouse JL, Eckhardt AE, et al. Multiplexed real-time polymerase chain reaction on a digital microfluidic platform. Anal Chem 2010;82(6):2310-16
  • Shikida M, Takayanagi K, Inouchi K, et al. Using wettability and interfacial tension to handle droplets of magnetic beads in a micro-chemical-analysis system. Sensor Actuat B: Chem 2006;113(1):563-9
  • Zhang Y, Park S, Liu K, et al. A surface topography assisted droplet manipulation platform for biomarker detection and pathogen identification. Lab Chip 2011;11(3):398-406
  • Shin D, Zhang Y, Wang T-H. A droplet microfluidic approach to single-stream nucleic acid isolation and mutation detection. Microfluid Nanofluid 2014;1-6
  • Zhang Y, Wang TH. Full-range magnetic manipulation of droplets via surface energy traps enables complex bioassays. Adv Mater 2013. [Epub ahead of print]
  • Pipper J, Inoue M, Ng LF, et al. Catching bird flu in a droplet. Nat Med 2007;13(10):1259-63
  • Tsuchiya H, Okochi M, Nagao N, et al. On-chip polymerase chain reaction microdevice employing a magnetic droplet-manipulation system. Sensor Actuat B: Chem 2008;130(2):583-8
  • Ohashi T, Kuyama H, Hanafusa N, Togawa Y. A simple device using magnetic transportation for droplet-based PCR. Biomed Microdevices 2007;9(5):695-702
  • Shikida M, Nagao N, Imai R, et al. A palmtop-sized rotary-drive-type biochemical analysis system by magnetic bead handling. J Micromech Microeng 2008;18(3):035034
  • Neuzil P, Pipper J, Hsieh TM. Disposable real-time microPCR device: lab-on-a-chip at a low cost. Mol Biosyst 2006;2(6-7):292-8
  • Rida A, Fernandez V, Gijs M. Long-range transport of magnetic microbeads using simple planar coils placed in a uniform magnetostatic field. Appl Phys Lett 2003;83(12):2396-8
  • Chiou C-H, Jin Shin D, Zhang Y, Wang T-H. Topography-assisted electromagnetic platform for blood-to-PCR in a droplet. Biosens Bioelectron 2013;50:91-9
  • Pipper J, Zhang Y, Neuzil P, Hsieh TM. Clockwork PCR including sample preparation. Angew Chem 2008;47(21):3900-4
  • Wixforth A. Acoustically driven planar microfluidics. Superlattices Microstruct 2003;33(5):389-96
  • Yeo LY, Friend JR. Ultrafast microfluidics using surface acoustic waves. Biomicrofluidics 2009;3(1):012002
  • Baudoin M, Brunet P, Matar OB, Herth E. Low power sessile droplets actuation via modulated surface acoustic waves. Appl Phys Lett 2012;100(15):154102
  • Fu Y, Luo J, Du X, et al. Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review. Sensor Actuat B: Chem 2010;143(2):606-19
  • Park S-Y, Kalim S, Callahan C, et al. A light-induced dielectrophoretic droplet manipulation platform. Lab Chip 2009;9(22):3228-35
  • Huang CJ, Fang WF, Ke MS, et al. A biocompatible open-surface droplet manipulation platform for detection of multi-nucleotide polymorphism. Lab Chip 2014;14(12):2057-62
  • Lehmann U, Vandevyver C, Parashar VK, Gijs MA. Droplet based DNA. purification in a magnetic lab on a chip. Angew Chem Int Ed 2006;45(19):3062-7
  • Van Der Pol B, Taylor SN, Lebar W, et al. Clinical evaluation of the BD ProbeTec Neisseria gonorrhoeae Qx amplified DNA assay on the BD Viper system with XTR technology. Sex Transm Dis 2012;39(2):147-53
  • Men Y, Fu Y, Chen Z, et al. Digital polymerase chain reaction in an array of femtoliter polydimethylsiloxane microreactors. Anal Chem 2012;84(10):4262-6
  • Heyries KA, Tropini C, VanInsberghe M, et al. Megapixel digital PCR. Nat Methods 2011;8(8):649-51
  • Sykes PJ, Neoh SH, Brisco MJ, et al. Quantitation of targets for PCR by use of limiting dilution. Biotechniques 1992;13(3):444-9
  • Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci USA 1999;96(16):9236-41
  • Day E, Dear PH, McCaughan F. Digital PCR strategies in the development and analysis of molecular biomarkers for personalized medicine. Methods 2013;59(1):101-7
  • Dressman D, Yan H, Traverso G, et al. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci USA 2003;100(15):8817-22
  • Diehl F, Li M, He Y, et al. BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions. Nat Methods 2006;3(7):551-9
  • Diehl F, Schmidt K, Choti MA, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med 2008;14(9):985-90
  • Pekin D, Skhiri Y, Baret J-C, et al. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 2011;11(13):2156-66
  • Zhong Q, Bhattacharya S, Kotsopoulos S, et al. Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR. Lab Chip 2011;11(13):2167-74
  • Taly V, Pekin D, Benhaim L, et al. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin Chem 2013;59(12):1722-31
  • Pinheiro LB, Coleman VA, Hindson CM, et al. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 2011;84(2):1003-11
  • Zec H, Rane TD, Wang TH. Microfluidic platform for on-demand generation of spatially indexed combinatorial droplets. Lab Chip 2012;12(17):3055-62
  • Tewhey R, Warner JB, Nakano M, et al. Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat Biotechnol 2009;27(11):1025-31
  • Harismendy O, Schwab RB, Bao L, et al. Detection of low prevalence somatic mutations in solid tumors with ultra-deep targeted sequencing. Genome Biol 2011;12(12):R124
  • Bonnefond A, Philippe J, Durand E, et al. Highly Sensitive Diagnosis of 43 Monogenic Forms of Diabetes or Obesity Through One-Step PCR-Based Enrichment in Combination With Next-Generation Sequencing. Diabetes Care 2014;37(2):460-7
  • Huebner A, Srisa-Art M, Holt D, et al. Quantitative detection of protein expression in single cells using droplet microfluidics. Chem Commun 2007(12):1218-20
  • Joensson HN, Samuels ML, Brouzes ER, et al. Detection and analysis of low abundance cell surface biomarkers using enzymatic amplification in microfluidic droplets. Angew Chem Int Ed 2009;48(14):2518-21
  • Boedicker JQ, Vincent ME, Ismagilov RF. Microfluidic confinement of single cells of bacteria in small volumes initiates high density behavior of quorum sensing and growth and reveals its variability. Angew Chem Int Ed 2009;48(32):5908-11
  • Brouzes E, Medkova M, Savenelli N, et al. Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci USA 2009;106(34):14195-200
  • Zeng Y, Novak R, Shuga J, et al. High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Anal Chem 2010;82(8):3183-90
  • Rane TD, Zec HC, Puleo C, et al. Droplet microfluidics for amplification-free genetic detection of single cells. Lab Chip 2012;12(18):3341-7
  • Vogelstein B, Gillespie D. Preparative and analytical purification of DNA from agarose. Proc Natl Acad Sci USA 1979;76(2):615-19
  • Tang Y-W, Procop GW, Persing DH. Molecular diagnostics of infectious diseases. Clin Chem 1997;43(11):2021-38
  • Caliendo AM. Multiplex PCR and emerging technologies for the detection of respiratory pathogens. Clin Infect Dis 2011;52(Suppl 4):S326-30
  • Tsiatis AC, Norris-Kirby A, Rich RG, et al. Comparison of sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations: diagnostic and clinical implications. J Mol Diagn 2010;12(4):425-32
  • Wittwer CT, Reed GH, Gundry CN, et al. High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 2003;49(6):853-60
  • Wu DY, Ugozzoli L, Pal BK, Wallace RB. Allele-specific enzymatic amplification of beta-globin genomic DNA for diagnosis of sickle cell anemia. Proc Natl Acad Sci USA 1989;86(8):2757-60
  • Saiki RK, Chang C-A, Levenson CH, et al. Diagnosis of sickle cell anemia and beta-thalassemia with enzymatically amplified DNA and nonradioactive allele-specific oligonucleotide probes. N Engl J Med 1988;319(9):537-41
  • Baker M. Digital PCR hits its stride. Nat Methods 2012;9(6):541
  • Du W, Li L, Nichols KP, Ismagilov RF. SlipChip. Lab Chip 2009;9(16):2286-92
  • Shen F, Du W, Davydova EK, et al. Nanoliter multiplex PCR arrays on a SlipChip. Anal Chem 2010;82(11):4606-12
  • Shen F, Du W, Kreutz JE, et al. Digital PCR on a SlipChip. Lab Chip 2010;10(20):2666-72
  • Shen F, Davydova EK, Du W, et al. Digital isothermal quantification of nucleic acids via simultaneous chemical initiation of recombinase polymerase amplification reactions on SlipChip. Anal Chem 2011;83(9):3533-40
  • Shen F, Sun B, Kreutz JE, et al. Multiplexed quantification of nucleic acids with large dynamic range using multivolume digital RT-PCR on a rotational SlipChip tested with HIV and hepatitis C viral load. J Am Chem Soc 2011;133(44):17705-12
  • Zhu Q, Qiu L, Yu B, et al. Digital PCR on an integrated self-priming compartmentalization chip. Lab Chip 2014;14(6):1176-85
  • Sundberg SO, Wittwer CT, Gao C, Gale BK. Spinning disk platform for microfluidic digital polymerase chain reaction. Anal Chem 2010;82(4):1546-50
  • Hu M, Yan J, He Y, et al. Ultrasensitive, multiplexed detection of cancer biomarkers directly in serum by using a quantum dot-based microfluidic protein chip. ACS Nano 2010;4(1):488-94

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.