262
Views
15
CrossRef citations to date
0
Altmetric
Review

Extracting biomarkers of commitment to cancer development: potential role of vibrational spectroscopy in systems biology

, , , , &

References

  • Wilson JM, Jungner YG. Principles and practice of mass screening for disease. Bol Oficina Sanit Panam 1968;65(4):281-393
  • Srinivas PR, Kramer BS, Srivastava S. Trends in biomarker research for cancer detection. Lancet Oncol 2001;2(11):698-704
  • Pepe MS, Etzioni R, Feng Z, et al. Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 2001;93(14):1054-61
  • Kitano H. Systems biology: a brief overview. Science 2002;295(5560):1662-4
  • Holliday R. A new theory of carcinogenesis. Br J Cancer 1979;40(4):513-22
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100(1):57-70
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144(5):646-74
  • Hahn WC, Weinberg RA. Modelling the molecular circuitry of cancer. Nat Rev Cancer 2002;2(5):331-41
  • Loeb LA, Springgate CF, Battula N. Errors in DNA replication as a basis of malignant changes. Cancer Res 1974;34(9):2311-21
  • Salk JJ, Fox EJ, Loeb LA. Mutational heterogeneity in human cancers: origin and consequences. Annu Rev Pathol 2010;5:51-75
  • Vineis P, Schatzkin A, Potter JD. Models of carcinogenesis: an overview. Carcinogenesis 2010;31(10):1703-9
  • Sarasin A. An overview of the mechanisms of mutagenesis and carcinogenesis. Mutat Res 2003;544(2-3):99-106
  • Weinstein IB. The origins of human cancer: molecular mechanisms of carcinogenesis and their implications for cancer prevention and treatment – twenty-seventh G.H.A. Clowes memorial award lecture. Cancer Res 1988;48(15):4135-43
  • Norppa H, Bonassi S, Hansteen IL, et al. Chromosomal aberrations and SCEs as biomarkers of cancer risk. Mutat Res 2006;600(1-2):37-45
  • Grander D. How do mutated oncogenes and tumor suppressor genes cause cancer? Med Oncol 1998;15(1):20-6
  • Zhivotovsky B, Orrenius S. Carcinogenesis and apoptosis: paradigms and paradoxes. Carcinogenesis 2006;27(10):1939-45
  • Croce CM. Oncogenes and cancer. N Engl J Med 2008;358(5):502-11
  • Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012;21(3):309-22
  • Pawson T, Warner N. Oncogenic re-wiring of cellular signaling pathways. Oncogene 2007;26(9):1268-75
  • Pawson T, Linding R. Network medicine. FEBS Lett 2008;582(8):1266-70
  • Tan CS, Bodenmiller B, Pasculescu A, et al. Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases. Sci Signal 2009;2(81):ra39
  • Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to modular cell biology. Nature 1999;402(6761 Suppl):C47-52
  • Hood L, Heath JR, Phelps ME, Lin B. Systems biology and new technologies enable predictive and preventative medicine. Science 2004;306(5696):640-3
  • Van der Greef J, Marint S, Juhansz P, et al. The art and practice of systems biology in medicine: mapping patterns of relationships. J Proteome Res 2007;6(4):1540-59
  • Gibbs JB. Mechanism-based target identification and drug discovery in cancer research. Science 2000;287(5460):1969-73
  • Sander C. Genomic medicine and the future of health care. Science 2000;287(5460):1977-8
  • Ideker T, Galitski T, Hood L. A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2001;2:343-72
  • Baxevanis AD, Ouellette BF. Bioinformatics: a practical guide to the analysis of gene and proteins. 2nd edition John Wiley & Sons-Interscience, Quebec, Canada; 2001
  • Mount DW. Bioinformatics: sequence and genome analysis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor; 2001
  • Ng A, Bursteinas B, Gao Q, et al. Resources for integrative systems biology: from data through databases to networks and dynamic system models. Brief Bioinform 2006;7(4):318-30
  • Morris MK, Saez-Rodriquez J, Sorger PK, Lauffenburger DA. Logic-based models for the analysis of cell signaling networks. Biochemistry 2010;49(15):3216-24
  • Kitano H. Computational systems biology. Nature 2002;420(6912):206-10
  • Cuperlovic-Culf M, Belacel N, Culf AS, et al. NMR metabolic analysis of samples using fuzzy K-means clustering. Magn Reson Chem 2009;47(Suppl 1):S96-104
  • Xiao J, Liang D, Zhang Y, et al. MicroRNA expression signature in atrial fibrillation with mitral stenosis. Physiol Genomics 2011;43(11):655-64
  • Getz G, Levine E, Domany E. Coupled two-way clustering analysis of gene microarray data. Proc Natl Acad Sci USA 2000;97(22):12079-84
  • Murtagh F. Interpreting the Kohonen self-organizing feature map using contiguity-constrained clustering. Pattern Recogn Lett 1995;16:399-408
  • Dutkowski J, Gambin A. On consensus biomarker selection. BMC Bioinformatics 2007;8(Suppl 5):S5
  • Kelly JG, Trevisan J, Scott AD, et al. Biospectroscopy to metabolically profile biomolecular structure: a multistage approach linking computational analysis with biomarkers. J Proteome Res 2011;10(4):1437-48
  • Pang W, Li J, Ahmadzai AA, et al. Identification of benzo[a]pyrene-induced cell cycle-associated alterations in MCF-7 cells using infrared spectroscopy with computational analysis. Toxicology 2012;298(1-3):24-9
  • Kuligowski J, Quintas G, Herwig G, Lendl B. A rapid method for the differentiation of yeast cells grown under carbon and nitrogen-limited conditions by means of partial least squares discriminant analysis employing infrared micro-spectroscopic data of entire yeast cells. Talanta 2012;99:566-73
  • Oussama A, Elabadi F, Platikanov S, et al. Detection of olive oil adulteration using FT-IR spectroscopy and PLS with variable importance of projection (VIP) scores. J Am Oil Chem Soc 2012;89(10):1807-12
  • Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007;23(19):2507-17
  • Trevisan J, Rossato MF, Walker CI, et al. Identification of the plant steroid alpha-spinasterol as a novel transient receptor potential vanilloid 1 antagonist with antinociceptive properties. J Pharmacol Exp Ther 2012;343(2):258-69
  • Luna AS, Da-Silva AP, Pinho JS, et al. Rapid characterization of transgenic and non-transgenic soybean oils by chemometric methods using NIR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 2013;100:115-19
  • Breiman LEO. Random forests. Mach Learn 2001;45:5-32
  • Zahid N, Abouelala O, Limouri M, Essaid N. Fuzzy clustering based on K-nearest-neighbours rule. Fuzzy Sets Syst 2001;120:239-47
  • Udelhoven T, Naumann D, Schmitt J. Development of hierarchical classification system with artificial networks and FT-IR spectra for the identification of bacteria. Appl Spectrosc 2000;54(10):1471-9
  • Hwang D, Rust AG, Ramsey S, et al. A data integration methodology for systems biology. Proc Natl Acad Sci USA 2005;102(48):17296-301
  • Skipper M. Genomics: users’ guide to the human genome. Nat Rev Genet 2012;13(10):678
  • Bild AH, Chang JT, Johnson WE, Piccolo SR. A field guide to genomics research. PLoS Biol 2014;12(1):e1001744
  • Martin DB, Nelson PS. From genomics to proteomics: techniques and applications in cancer research. Trends Cell Biol 2001;11(11):S60-5
  • Taramelli R, Acquati F. The human genome project and the discovery of genetic determinants of cancer susceptibility. Eur J Cancer 2004;40(17):2537-43
  • Sugimura T, Terada M, Yokota J, et al. Multiple genetic alterations in human carcinogenesis. Environ Health Perspect 1992;98:5-12
  • Haab BB. Advances in protein microarray technology for protein expression and interaction profiling. Curr Opin Drug Discov Devel 2001;4(1):116-23
  • Frolov A, Prowse AH, Vanderveer L, et al. DNA array-based method for detection of large rearrangements in the BRCA1 gene. Genes Chromosomes Cancer 2002;35(3):232-41
  • Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ. High density synthetic oligonucleotide arrays. Nat Genet 1999;21(1 Suppl):20-4
  • Evans SJ, Datson NA, Kabbaj M, et al. Evaluation of Affymetrix Gene Chip sensitivity in rat hippocampal tissue using SAGE analysis. Serial Analysis of Gene Expression. Eur J Neurosci 2002;16(3):409-13
  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science 1995;270(5235):484-7
  • Azuaje FJ, Heymann M, Ternes AM, et al. Bioinformatics as a driver, not a passenger, of translational biomedical research: perspectives from the 6th Benelux bioinformatics conference. J Clin Bioinforma 2012;2:7
  • Torhorst J, Bucher C, Kononen J, et al. Tissue microarrays for rapid linking of molecular changes to clinical endpoints. Am J Pathol 2001;159(6):2249-56
  • Wang Y, Gersyein M, Snyder M. Prognostic significance of c-myc and AIB1 amplification in hepatocellular carcinoma. A broad survey using high-throughput tissue microarray. Cancer 2002;95(11):2346-52
  • Chaib H, Cockrell EK, Rubin MA, Macoska JA. Profiling and verification of gene expression patterns in normal and malignant human prostate tissues by cDNA microarray analysis. Neoplasia 2001;3(1):43-52
  • Koboldt C, Steinberg KM, Larson DE, et al. The next-generation sequencing revolution and its impact on genomics. Cell 2013;155(1):27-38
  • Goesmann A, Linke B, Rupp O, et al. Building a BRIDGE for the integration of heterogeneous data from functional genomics into a platform for systems biology. J Biotechnol 2003;106(2-3):157-67
  • Goesmann A, Linke B, Bartels D, et al. BRIGEP – the BRIDGE-based genome-transcriptome-proteome browser. Nucleic Acids Res 2005;33:W710-16
  • Laird PW. Cancer epigenetics. Hum Mol Genet 2005;14(Spec No 1):R65-76
  • Sansam CG, Roberts CW. Epigenetics and cancer: altered chromatin remodeling via Snf5 loss leads to aberrant cell cycle regulation. Cell Cycle 2006;5(6):621-4
  • Gao JX. Cancer stem cells: the lessons from pre-cancerous stem cells. J Cell Mol Med 2008;12(1):67-96
  • Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet 2006;7(1):21-33
  • Lafon-Hughes L, Di Tomaso MV, Mendez-Acuna L, Martinez-Lopez W. Chromatin-remodelling mechanisms in cancer. Mutat Res 2008;658(3):191-214
  • Vaissiere T, Sawan C, Herceg Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res 2008;659(1-2):40-8
  • Fog CK, Jensen KT, Lund AH. Chromatin-modifying proteins in cancer. APMIS 2007;115(10):1060-89
  • Preston RJ. Epigenetic processes and cancer risk assessment. Mutat Res 2007;616(1-2):7-10
  • Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002;3(6):415-28
  • Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of histone methylations in the human genome. Cell 2007;129(4):823-37
  • Bonetta L. Epigenomics: detailed analysis. Nature 2008;454(7205):795-8
  • Zardo G, Tilrikainen MI, Hing C, et al. Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nat Genet 2002;32(3):453-8
  • Costello JF, Fruhwald MC, Smiraglia DJ, et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 2000;24(2):132-8
  • Mohn F, Weber F, Schubeler D, Roloff TC. Methylated DNA immunoprecipitation (MeDIP). Methods Mol Biol 2009;507:55-64
  • Thu KL, Pikor LA, Kennett JY, et al. Methylation analysis by DNA immunoprecipitation. J Cell Physiol 2010;222(3):522-31
  • Down TA, Rakyan VK, Turner DJ, et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol 2008;26(7):779-85
  • Keshet I, Schlesinger Y, Farkash S, et al. Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat Genet 2006;38(2):149-53
  • Novak P, Jensen T, Oshiro MM, et al. Epigenetic inactivation of the HOXA gene cluster in breast cancer. Cancer Res 2006;66(22):10664-70
  • Clark SJ, Harrison J, Paul CL, Frommer M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res 1994;22(15):2990-7
  • Jenuwein T, Allis CD. Translating the histone code. Science 2001;293(5532):1074-80
  • Hebbes TR, Turner CH, Thorne AW, Crane-Robinson C. A “minimal epitope” anti-protein antibody that recognises a single modified amino acid. Mol Immunol 1989;26(9):865-73
  • Hebbes TR, Thorne AW, Crane-Robinson C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 1988;7(5):1395-402
  • Villar-Garea A, Israel L, Imhof A. Analysis of histone modifications by mass spectrometry. Curr Protoc Protein Sci 2008;Chapter 14:Unit 14.10
  • Macek B, Waander LF, Olsen JV, Mann M. Top-down protein sequencing and MS3 on a hybrid linear quadrupole ion trap-orbitrap mass spectrometer. Mol Cell Proteomics 2006;5(5):949-58
  • Martin FL. Epigenetic influences in the aetiology of cancers arising from breast and prostate: a hypothesised transgenerational evolution in chromatin accessibility. ISRN Oncol 2013;2013:624794
  • Esteller M. Aberrant DNA methylation as a cancer-inducing mechanism. Annu Rev Pharmacol Toxicol 2005;45:629-56
  • Nagy E, Gajjar KB, Patel II, et al. MGMT promoter hypermethylation and K-RAS, PTEN and TP53 mutations in tamoxifen-exposed and non-exposed endometrial cancer cases. Br J Cancer 2014;110(12):2874-80
  • Pietu G, Mariage-Samson R, Fayein NA, et al. The Genexpress IMAGE knowledge base of the human brain transcriptome: a prototype integrated resource for functional and computational genomics. Genome Res 1999;9(2):195-209
  • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009;10(1):57-63
  • Sassen S, Miska EA, Caldas C. MicroRNA: implications for cancer. Virchows Arch 2008;452(1):1-10
  • Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006;6(11):857-66
  • Gaur A, Jewell DA, Liang Y, et al. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 2007;67(6):2456-68
  • Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer Discov 2011;1(5):391-407
  • Royce TE, Rozowsky JS, Gerstein MB. Toward a universal microarray: prediction of gene expression through nearest-neighbor probe sequence identification. Nucleic Acids Res 2007;35(15):e99
  • Cloonan N, Forrest AR, Kolle G, et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 2008;5(7):613-19
  • Nagalakshmi U, Waern K, Snyder M. RNA-Seq: a method for comprehensive transcriptome analysis. Curr Protoc Mol Biol 2010;Chapter 4:Unit 4.11.1-13
  • Auffray C, Imbeaud S, Roux-Rouquie M, Hood L. From functional genomics to systems biology: concepts and practices. C R Biol 2003;326(10-11):879-92
  • Rodland KD. Proteomics and cancer diagnosis: the potential of mass spectrometry. Clin Biochem 2004;37(7):579-83
  • Seibert V, Ebert MP, Buschmann T. Advances in clinical cancer proteomics: SELDI-ToF-mass spectrometry and biomarker discovery. Brief Funct Genomic Proteomic 2005;4(1):16-26
  • Rho S, You S, Kim Y, Hwang D. From proteomics toward systems biology: integration of different types of proteomics data into network models. BMB Rep 2008;41(3):184-93
  • Lin D, Tabb DL, Yates JR. Large-scale protein identification using mass spectrometry. Biochim Biophys Acta 2003;1646(1-2):1-10
  • Wulfkuhle JD, McLean KC, Paweletz CP, et al. New approaches to proteomic analysis of breast cancer. Proteomics 2001;1(10):1205-15
  • Blackstock WP, Weir MP. Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol 1999;17(3):121-7
  • Adam BL, VLahou A, Semmes OJ, Wright GL. Proteomic approaches to biomarker discovery in prostate and bladder cancers. Proteomics 2001;1(10):1264-70
  • Charrier JP, Tournel C, Michel S, et al. Differential diagnosis of prostate cancer and benign prostate hyperplasia using two-dimensional electrophoresis. Electrophoresis 2001;22(9):1861-6
  • Kuerer HM, Goldknopf IL, Frtsche H, et al. Identification of distinct protein expression patterns in bilateral matched pair breast ductal fluid specimens from women with unilateral invasive breast carcinoma. High-throughput biomarker discovery. Cancer 2002;95(11):2276-82
  • Seow TK, et al. Two-dimensional electrophoresis map of the human hepatocellular carcinoma cell line, HCC-M, and identification of the separated proteins by mass spectrometry. Electrophoresis 2000;21(9):1787-813
  • Adkins JN, et al. Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol Cell Proteomics 2002;1(12):947-55
  • Sauter ER, ONg SE, Liang RC, et al. Proteomic analysis of nipple aspirate fluid to detect biologic markers of breast cancer. Br J Cancer 2002;86(9):1440-3
  • Varnum SM, Covington CC, Woodbury RL, et al. Proteomic characterization of nipple aspirate fluid: identification of potential biomarkers of breast cancer. Breast Cancer Res Treat 2003;80(1):87-97
  • Cazares LH, Diaz JI, Drake RR, Semmes OJ. MALDI/SELDI protein profiling of serum for the identification of cancer biomarkers. Methods Mol Biol 2008;428:125-40
  • Semmes OJ, Feng Z, Banez LL, et al. Evaluation of serum protein profiling by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry for the detection of prostate cancer: I. Assessment of platform reproducibility. Clin Chem 2005;51(1):102-12
  • Flatley B, Malone P, Cramer R. MALDI mass spectrometry in prostate cancer biomarker discovery. Biochim Biophys Acta 2014;1844(5):940-9
  • Wong SC, Chan CM, Ma BB, et al. Advanced proteomic technologies for cancer biomarker discovery. Expert Rev Proteomics 2009;6(2):123-34
  • Bischoff R, Luider TM. Methodological advances in the discovery of protein and peptide disease markers. J Chromatogr B Analyt Technol Biomed Life Sci 2004;803(1):27-40
  • Issaq HJ, Veenstra TD, Conrads TP, Felschow D. The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification. Biochem Biophys Res Commun 2002;292(3):587-92
  • Issaq HJ, Conrads TP, Prieto DA, et al. SELDI-TOF MS for diagnostic proteomics. Anal Chem 2003;75(7):148A-55A
  • Paweletz CP, Trosck B, Mennanen M, et al. Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF: potential for new biomarkers to aid in the diagnosis of breast cancer. Dis Markers 2001;17(4):301-7
  • Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002;1(11):845-67
  • Gretzer MB, Partin AW, Chan DW, Veltri RW. Modern tumor marker discovery in urology: surface enhanced laser desorption and ionization (SELDI). Rev Urol 2003;5(2):81-9
  • Keller A, Eng J, Zhang N, et al. A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol 2005;1:2005.0017
  • Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. Nat Rev Cancer 2004;4(7):551-61
  • Nicholson JK, Wilson ID. Opinion: understanding ‘global’ systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2003;2(8):668-76
  • Fiehn O. Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 2002;48(1-2):155-71
  • Nemutlu E, Zhang S, Juranic NO, et al. 18O-assisted dynamic metabolomics for individualized diagnostics and treatment of human diseases. Croat Med J 2012;53(6):529-34
  • Glunde K, Serkova NJ. Therapeutic targets and biomarkers identified in cancer choline phospholipid metabolism. Pharmacogenomics 2006;7(7):1109-23
  • Serkova NJ, Niemann CU. Pattern recognition and biomarker validation using quantitative 1H-NMR-based metabolomics. Expert Rev Mol Diagn 2006;6(5):717-31
  • Smolinska A, Blanchet L, Buydens LM, Wijmenga SS. NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: a review. Anal Chim Acta 2012;750:82-97
  • Spratlin JL, Serkova NJ, Eckhardt SG. Clinical applications of metabolomics in oncology: a review. Clin Cancer Res 2009;15(2):431-40
  • Pan Z, Raftery D. Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal Bioanal Chem 2007;387(2):525-7
  • Ryan D, Robards K, Prensler PD, Kendall M. Recent and potential developments in the analysis of urine: a review. Anal Chim Acta 2011;684(1-2):8-20
  • Zhang A, Sun H, Wang P, et al. Recent and potential developments of biofluid analyses in metabolomics. J Proteomics 2012;75(4):1079-88
  • Aranibar N, Ott KH, Roongta V, Mueller L. Metabolomic analysis using optimized NMR and statistical methods. Anal Biochem 2006;355(1):62-70
  • Blekherman G, Laubenbacher R, Cortes DF, et al. Bioinformatics tools for cancer metabolomics. Metabolomics 2011;7(3):329-43
  • Lindon JC, Nicholson JK. Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics. Annu Rev Anal Chem (Palo Alto Calif) 2008;1:45-69
  • Wishart DS, Jewison T, Guo AC, et al. HMDB 3.0 – the human metabolome database in 2013. Nucleic Acids Res 2013;41:D801-7
  • Bathen TF, Jensen LR, Sitter B, et al. MR-determined metabolic phenotype of breast cancer in prediction of lymphatic spread, grade, and hormone status. Breast Cancer Res Treat 2007;104(2):181-9
  • Gribbestad IS, Sitter B, Lundgren S, et al. Metabolite composition in breast tumors examined by proton nuclear magnetic resonance spectroscopy. Anticancer Res 1999;19(3A):1737-46
  • Sitter B, Lundgren S, Bathen TF, et al. Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters. NMR Biomed 2006;19(1):30-40
  • Jacobs MA, Barker PB, Bottomley PA, et al. Proton magnetic resonance spectroscopic imaging of human breast cancer: a preliminary study. J Magn Reson Imaging 2004;19(1):68-75
  • Kline EE, Treat EG, Averna TA, et al. Citrate concentrations in human seminal fluid and expressed prostatic fluid determined via 1H nuclear magnetic resonance spectroscopy outperform prostate specific antigen in prostate cancer detection. J Urol 2006;176(5):2274-9
  • Serkova NJ, Spratlin JL, Eckhardt SG. NMR-based metabolomics: translational application and treatment of cancer. Curr Opin Mol Ther 2007;9(6):572-85
  • Odunsi K, Wollman RM, Ambrosone CB, et al. Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics. Int J Cancer 2005;113(5):782-8
  • Denkert C, Budczies J, Kind T, et al. Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res 2006;66(22):10795-804
  • Chan EC, Koh PK, Mal M, et al. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J Proteome Res 2009;8(1):352-61
  • Wu H, Xue R, Dong L, et al. Metabolomic profiling of human urine in hepatocellular carcinoma patients using gas chromatography/mass spectrometry. Anal Chim Acta 2009;648(1):98-104
  • Dowling C, Bollen AW, Noworolsky SM, et al. Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 2001;22(4):604-12
  • Florian CL, Preece NE, Bhakkoo KK, et al. Cell type-specific fingerprinting of meningioma and meningeal cells by proton nuclear magnetic resonance spectroscopy. Cancer Res 1995;55(2):420-7
  • Shulaev V. Metabolomics technology and bioinformatics. Brief Bioinform 2006;7(2):128-39
  • Duran AL, Yang J, Wang L, Sumner LW. Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics 2003;19(17):2283-93
  • Johnson KJ, Wright BW, Jarman KH, Synovec RE. High-speed peak matching algorithm for retention time alignment of gas chromatographic data for chemometric analysis. J Chromatogr A 2003;996(1-2):141-55
  • Schubert W. Topological proteomics, toponomics, MELK-technology. Adv Biochem Eng Biotechnol 2003;83:189-209
  • Sorkin A, Goh LK. Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res 2009;315(4):683-96
  • Niederberger E, Geisslinger G. Proteomics in neuropathic pain research. Anesthesiology 2008;108(2):314-23
  • Bode M, Irmler M, Friedenberger M, et al. Interlocking transcriptomics, proteomics and toponomics technologies for brain tissue analysis in murine hippocampus. Proteomics 2008;8(6):1170-8
  • Schubert W, Gieseler A, Krusche A, et al. Next-generation biomarkers based on 100-parameter functional super-resolution microscopy TIS. Nat Biotechnol 2012;29(5):599-610
  • Schubert W, Bonnekoh B, Pommer AJ, et al. Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat Biotechnol 2006;24(10):1270-8
  • Chen X, Murphy RF. Objective clustering of proteins based on subcellular location patterns. J Biomed Biotechnol 2005;2005(2):87-95
  • Uhlen M, Bjorling E, Agaton C, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 2005;4(12):1920-32
  • Pierre S, Maeurer C, Coste O, et al. Toponomics analysis of functional interactions of the ubiquitin ligase PAM (Protein Associated with Myc) during spinal nociceptive processing. Mol Cell Proteomics 2008;7(12):2475-85
  • Friedenberger M, Bode M, Krusche A, Schubert W. Fluorescence detection of protein clusters in individual cells and tissue sections by using toponome imaging system: sample preparation and measuring procedures. Nat Protoc 2007;2(9):2285-94
  • Bhattacharya S, Mathew G, Ruban E, et al. Toponome imaging system: in situ protein network mapping in normal and cancerous colon from the same patient reveals more than five-thousand cancer specific protein clusters and their subcellular annotation by using a three symbol code. J Proteome Res 2010;9(12):6112-25
  • Schubert W, Gieseler A, Krusche A, Killert R. Toponome mapping in prostate cancer: detection of 2000 cell surface protein clusters in a single tissue section and cell type specific annotation by using a three symbol code. J Proteome Res 2009;8(6):2696-707
  • Pierre S, Scholich K. Toponomics: studying protein-protein interactions and protein networks in intact tissue. Mol Biosyst 2010;6(4):641-7
  • Heraud P, Tobin MJ. The emergence of biospectroscopy in stem cell research. Stem Cell Res 2009;3(1):12-14
  • Ge H, Walhout AJ, Vidal M. Integrating ‘omic’ information: a bridge between genomics and systems biology. Trends Genet 2003;19(10):551-60
  • Sandorfy C, Theophanides T. Spectroscopy of biological molecules. Theory and applications, chemistry, physics, biology and medicine. Springer, Netherlands; 2013
  • Mantsch HH. The road to medical vibrational spectroscopy – a history. Analyst 2013;138(14):3863-70
  • Jackson M, Sowa MG, Mantsch HH. Infrared spectroscopy: a new frontier in medicine. Biophys Chem 1997;68(1-3):109-25
  • Baker MJ, Trevissan J, Bassan P, et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc 2014;9(8):1771-91
  • Martin FL, Kelly JG, Llabjani V, et al. Distinguishing cell types or populations based on the computational analysis of their infrared spectra. Nat Protoc 2010;5(11):1748-60
  • Kazarian SG, Chan KL. Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochim Biophys Acta 2006;1758(7):858-67
  • Kazarian SG, Chan KL. ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems. Analyst 2013;138(7):1940-51
  • Whelan DR, Bambery KR, PUskar L, et al. Synchrotron Fourier transform infrared (FTIR) analysis of single living cells progressing through the cell cycle. Analyst 2013;138(14):3891-9
  • Tobin MJ, Chesters MA, Chalmers JM, et al. Infrared microscopy of epithelial cancer cells in whole tissues and in tissue culture, using synchrotron radiation. Faraday Discuss 2004;126:27-39
  • Miller LM, Dumas P. Chemical imaging of biological tissue with synchrotron infrared light. Biochim Biophys Acta 2006;1758(7):846-57
  • Dumas P, Sockalingum GD, Sule-Suso J. Adding synchrotron radiation to infrared microspectroscopy: what’s new in biomedical applications? Trends Biotechnol 2007;25(1):40-4
  • Gajjar K, Trevisan J, Owens G, et al. Fourier-transform infrared spectroscopy coupled with a classification machine for the analysis of blood plasma or serum: a novel diagnostic approach for ovarian cancer. Analyst 2013;138(14):3917-26
  • Gajjar K, Heppenstall LD, Pang W, et al. Diagnostic segregation of human brain tumours using Fourier-transform infrared and/or Raman spectroscopy coupled with discriminant analysis. Anal Methods 2012;5:89-102
  • Gajjar K, Ahmadzai AA, Valasoulis G, et al. Histology verification demonstrates that biospectroscopy analysis of cervical cytology identifies underlying disease more accurately than conventional screening: removing the confounder of discordance. PLoS One 2014;9(1):e82416
  • Holman HY, Martin MC, McKinney WR. Synchrotron-based FTIR spectromicroscopy: cytotoxicity and heating considerations. J Biol Phys 2003;29(2-3):275-86
  • Diem M, Romeo M, Boydston-White S, et al. A decade of vibrational micro-spectroscopy of human cells and tissue (1994-2004). Analyst 2004;129(10):880-5
  • Walsh MJ, Fellous TG, Hammiche A, et al. Fourier transform infrared microspectroscopy identifies symmetric PO2–. modifications as a marker of the putative stem cell region of human intestinal crypts. Stem Cells 2008;26(1):108-18
  • Mackanos MA, Hargrove J, Wolters R, et al. Use of an endoscope-compatible probe to detect colonic dysplasia with Fourier transform infrared spectroscopy. J Biomed Opt 2009;14(4):044006
  • Kendall C, Isabelle M, Bazant-Hegemark F, et al. Vibrational spectroscopy: a clinical tool for cancer diagnostics. Analyst 2009;134(6):1029-45
  • Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997;275(5303):1102-6
  • Ziegler LD, Hudson B, Strommen DP, Peticolas WL. Resonance Raman spectra of mononucleotides obtained with 266 and 213 nm ultraviolet radiation. Biopolymers 1984;23(10):2067-81
  • Stone N, Kendall C, Smith J, et al. Raman spectroscopy for identification of epithelial cancers. Faraday Discuss 2004;126:141-57
  • Crow P, Stone N, Kendall CA, et al. The use of Raman spectroscopy to identify and grade prostatic adenocarcinoma in vitro. Br J Cancer 2003;89(1):106-8
  • Buschman HP, Marple ET, Wach ML, et al. In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy. Anal Chem 2000;72(16):3771-5
  • Becker-Putsche M, Bocklitz T, Clement J, et al. Toward improving fine needle aspiration cytology by applying Raman microspectroscopy. J Biomed Opt 2013;18(4):047001
  • Hanlon EB, Manoharan R, Koo TW, et al. Prospects for in vivo Raman spectroscopy. Phys Med Biol 2000;45(2):1-59
  • Utzinger U, Richards-Kortum RR. Fiber optic probes for biomedical optical spectroscopy. J Biomed Opt 2003;8(1):121-47
  • Crow P, Molckovsky A, Stone N, et al. Assessment of fiberoptic near-infrared Raman spectroscopy for diagnosis of bladder and prostate cancer. Urology 2005;65(6):1126-30
  • Shafer-Peltier KE, Haka AS, Motz JT, et al. Model-based biological Raman spectral imaging. J Cell Biochem Suppl 2002;39:125-37
  • Walrafen GE, Chu YC, Yang W, Hokmabadi MS. Comment on “Low-frequency Raman-scattering study of the liquid-glass transition in aqueous lithium chloride solutions”. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 1994;49(3):2493-4
  • Perroud B, Lee J, Valkova N, et al. Pathway analysis of kidney cancer using proteomics and metabolic profiling. Mol Cancer 2006;5:64
  • Carrola J, Rocha CM, Barros AS, et al. Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. J Proteome Res 2011;10(1):221-30
  • Ahmed N, Oliva KT, BArker G, et al. Proteomic tracking of serum protein isoforms as screening biomarkers of ovarian cancer. Proteomics 2005;5(17):4625-36
  • Baron AT, Boardman CH, Lafky JM, et al. Soluble epidermal growth factor receptor (sEGFR) [corrected] and cancer antigen 125 (CA125) as screening and diagnostic tests for epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 2005;14(2):306-18
  • Taleb I, Thiefin G, Gobinet C, et al. Diagnosis of hepatocellular carcinoma in cirrhotic patients: a proof-of-concept study using serum micro-Raman spectroscopy. Analyst 2013;138(14):4006-14
  • Gonzalez-Solis JL, Martinez-Espinosa JC, Torres-Gonzalez LA, et al. Cervical cancer detection based on serum sample Raman spectroscopy. Lasers Med Sci 2014;29(3):979-85
  • Krafft S, Dochow S, Latka I, et al. Diagnosis and screening of cancer tissues by fiber-optic probe Raman spectroscopy. Biomed Spectrosc Imaging 2012;1(1):39-55
  • Hornberg JJ, Bruggeman FJ, Westerhoff HV, Lankelma J. Cancer: a systems biology disease. Biosystems 2006;83(2-3):81-90
  • Movasaghi Z, Rehman S, Rehman I. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 2008;43(2):134-79
  • Movasaghi Z, Rehman S, Rehman I. Raman spectroscopy of biological tissues. Appl Spectrosc Rev 2007;42:493-541
  • Kreeger PK, Lauffenburger DA. Cancer systems biology: a network modeling perspective. Carcinogenesis 2010;31(1):2-8
  • Mitchell AL, Gajjar KB, Theophilou G, et al. Vibrational spectroscopy of biofluids for disease screening or diagnosis: translation from the laboratory to a clinical setting. J Biophotonics 2014;7(3-4):153-65
  • Trevisan J, Angelov PP, Scott AD, et al. IRootLab: a free and open-source MATLAB toolbox for vibrational biospectroscopy data analysis. Bioinformatics 2013;29(8):1095-7
  • Trevisan J, Park J, Angelov PP, et al. Measuring similarity and improving stability in biomarker identification methods applied to Fourier-transform infrared (FTIR) spectroscopy. J Biophotonics 2014;7(3-4):254-65
  • Hodges MD, Kelly JG, Bentley AJ, et al. Combining immunolabeling and surface-enhanced Raman spectroscopy on cell membranes. ACS Nano 2012;5(12):9535-41
  • Fogarty SW, Patel II, Martin FL, Fullwood NJ. Surface-enhanced Raman spectroscopy of the endothelial cell membrane. PLoS One 2014;9(9):e106283
  • Thomas G, Jacobs KB, Yeager M, et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet 2008;40(3):310-15
  • Bryant RJ, Cross NA, Eaton CL, et al. EZH2 promotes proliferation and invasiveness of prostate cancer cells. Prostate 2007;67(5):547-56
  • Cuzick J, Thorat MA, Andriole G, et al. Prevention and early detection of prostate cancer. Lancet Oncol 2014;15(11):e484-92
  • Pathak S, Sharma RA, Steward WP, et al. Oxidative stress and cyclooxygenase activity in prostate carcinogenesis: targets for chemopreventive strategies. Eur J Cancer 2005;41(1):61-70
  • Evans R, Naidu B, Rajpoot NM, et al. Toponome imaging system: multiplex biomarkers in oncology. Trends Mol Med 2012;18(12):723-31
  • U.S Preventive Services Task Force, Agency for Healthcare Research. Genetic risk assessment and BRCA mutation testing for breast and ovarian cancer susceptibility: recommendation statement. Ann Intern Med 2005;143(5):355-61
  • Su HY, Lai HC, Lin YW, et al. An epigenetic marker panel for screening and prognostic prediction of ovarian cancer. Int J Cancer 2009;124(2):387-93
  • Mok S, Chao J, Skates S, et al. Prostasin, a potential serum marker for ovarian cancer: identification through microarray technology. J Natl Cancer Inst 2001;93(19):1458-64
  • Hellstrom I, Raycraft J, Hayden-Ledbetter M, et al. The HE4 (WFDC2) protein is a biomarker for ovarian carcinoma. Cancer Res 2003;63(13):3695-700
  • Petricoin E, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002;359(9306):572-7
  • Ye B, Skates S, Mok SC, et al. Proteomic-based discovery and characterization of glycosylated eosinophil-derived neurotoxin and COOH-terminal osteopontin fragments for ovarian cancer in urine. Clin Cancer Res 2006;12(2):432-41
  • Dworkin A, Huang TH, Toland AE. Epigenetic alterations in the breast: implications for breast cancer detection, prognosis and treatment. Semin Cancer Biol 2009;19(3):165-71
  • Baeuerle P, Gires O. EpCAM (CD326) finding its role in cancer. Br J Cancer 2007;96(3):417-23
  • Pogue-Geile KL, Chen R, Bronner MP, et al. Palladin mutation causes familial pancreatic cancer and suggests a new cancer mechanism. PLoS Med 2006;3(12):e516
  • Yi JM, Guzzetta AA, Bailley VJ, et al. Novel methylation biomarker panel for the early detection of pancreatic cancer. Clin Cancer Res 2013;19(23):6544-55
  • Wang Y, Kuramitsu Y, Yoshino S, et al. Screening for serological biomarkers of pancreatic cancer by two-dimensional electrophoresis and liquid chromatography-tandem mass spectrometry. Oncol Rep 2011;26(1):287-92
  • Fei G, Ebert MP, Mawrin C, et al. Reduced PTEN expression in gastric cancer and in the gastric mucosa of gastric cancer relatives. Eur J Gastroenterol Hepatol 2002;14(3):297-303
  • Jee CD, Kim MA, Jung EJ, et al. Identification of genes epigenetically silenced by CpG methylation in human gastric carcinoma. Eur J Cancer 2009;45(7):1282-93
  • Liu R, Zhang C, Hu Z, et al. A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer 2011;47(5):784-91
  • Michailidi C, Soudry E, Brait M, et al. Genome-wide and gene-specific epigenomic platforms for hepatocellular carcinoma biomarker development trials. Gastroenterol Res Pract 2014;2014:597164
  • Li D, Mallory T, Satomura S. AFP-L3: a new generation of tumor marker for hepatocellular carcinoma. Clin Chim Acta 2001;313(1-2):15-19
  • Ng E, Chong WW, Jin H, et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut 2009;58(10):1375-81
  • Markman B, Javier Ramos F, Capdevila J, Tabernero J. EGFR and KRAS in colorectal cancer. Adv Clin Chem 2010;51:71-119
  • Ahmed F, Vos P, iJames S, et al. Transcriptomic molecular markers for screening human colon cancer in stool and tissue. Cancer Genomics Proteomics 2007;4(1):1-20
  • Hansen H, Snyder JJ, Miller E, et al. Carcinoembryonic antigen (CEA) assay. A laboratory adjunct in the diagnosis and management of cancer. Hum Path 1974;5(2):139-47

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.