352
Views
7
CrossRef citations to date
0
Altmetric
Review

Predictive tissue biomarkers for bevacizumab-containing therapy in metastatic colorectal cancer: an update

, , , , , , , & show all

References

  • Hamilton SR, Bosman FT, Boffetta P, et al. Carcinoma of the colon and rectum. In: Bosman FT, Carneiro F, Hruban RH, Theise ND, editors. WHO Classification of Tumours of the Digestive System. International Agency for Research on Cancer (IARC), Lyon, France 2010;134-46
  • The Cancer Genome Atlas. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012;487(7407):330-7
  • Jimenez CR, Knol JC, Meijer GA, Fijneman RJ. Proteomics of colorectal cancer: overview of discovery studies and identification of commonly identified cancer-associated proteins and candidate CRC serum markers. J Proteomics 2010;73(10):1873-95
  • Ferrarotto R, Hoff PM. Antiangiogenic drugs for colorectal cancer: exploring new possibilities. Clin Colorectal Cancer 2013;12(1):1-7
  • Limaverde-Sousa G, Sternberg C, Ferreira CG. Antiangiogenesis beyond VEGF inhibition: a journey from antiangiogenic single-target to broad-spectrum agents. Cancer Treat Rev 2014;40(4):548-57
  • Ferrara N, Hillan KJ, Gerber H-P, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004;3(5):391-400
  • Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350(23):2335-42
  • Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 2008;8(8):579-91
  • Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 2008;8(8):592-603
  • Patten SG, Adamcic U, Lacombe K, et al. VEGFR2 heterogeneity and response to anti-angiogenic low dose metronomic cyclophosphamide treatment. BMC Cancer 2010;10(1):683
  • Furlan D, Carnevali IW, Bernasconi B, et al. Hierarchical clustering analysis of pathologic and molecular data identifies prognostically and biologically distinct groups of colorectal carcinomas. Mod Pathol 2011;24(1):126-37
  • Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer 2013;108(3):479-85
  • Loges S, Schmidt T, Carmeliet P. Mechanisms of resistance to anti-angiogenic therapy and development of third-generation anti-angiogenic drug candidates. Genes Cancer 2010;1(1):12-25
  • Alsina M, Ruiz-Echarri M, Capdevila J, et al. Biomarkers for Therapies Directed at Angiogenesis. Curr Colorectal Cancer Rep 2010;6(3):133-43
  • Jain RK, Duda DG, Willett CG, et al. Biomarkers of response and resistance to antiangiogenic therapy. Nat Rev Clin Oncol 2009;6(6):327-38
  • Gerger A, LaBonte M, Lenz H-J. Molecular predictors of response to antiangiogenesis therapies. Cancer J 2011;17(2):134-41
  • Murukesh N, Dive C, Jayson GC. Biomarkers of angiogenesis and their role in the development of VEGF inhibitors. Br J Cancer 2010;102(1):8-18
  • Otrock ZK, Hatoum HA, Musallam KM, et al. Is VEGF a predictive biomarker to anti-angiogenic therapy? Crit Rev Oncol Hematol 2011;79(2):103-11
  • Hein M, Graver S. Tumor cell response to bevacizumab single agent therapy in vitro. Cancer Cell Int 2013;13(1):94
  • Kara O, Duman BB, Kara B, et al. Analysis of PTEN, VEGF, HER2 and P53 Status in Determining Colorectal Cancer Benefit from Bevacizumab Therapy. Asian Pac J Cancer Prev 2012;13(12):6397-401
  • Varey a HR, Rennel ES, Qiu Y, et al. VEGF 165 b, an antiangiogenic VEGF-A isoform, binds and inhibits bevacizumab treatment in experimental colorectal carcinoma: balance of pro- and antiangiogenic VEGF-A isoforms has implications for therapy. Br J Cancer 2008;98(8):1366-79
  • Rennel ES, Varey a HR, Churchill a J, et al. VEGF(121)b, a new member of the VEGF(xxx)b family of VEGF-A splice isoforms, inhibits neovascularisation and tumour growth in vivo. Br J Cancer 2009;101(7):1183-93
  • Jubb AM, Hurwitz HI, Bai W, et al. Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer. J Clin Oncol 2006;24(2):217-27
  • Hong YS, Cho HJ, Kim SY, et al. Carbonic anhydrase 9 is a predictive marker of survival benefit from lower dose of bevacizumab in patients with previously treated metastatic colorectal cancer. BMC Cancer 2009;9:246
  • Foernzler D, Delmar P, Kockx MM, et al. Tumor tissue based biomarker analysis in NO16966: A randomized phase III study of first-line bevacizumab in combination with oxaliplatin-based chemotherapy in patients with mCRC. In: Gastrointestinal Cancers Symposium. ASCO Orlando; 2010
  • Pohl M, Werner N, Munding J, et al. Biomarkers of anti-angiogenic therapy in metastatic colorectal cancer (mCRC): original data and review of the literature. Z Gastroenterol 2011;49(10):1398-406
  • Watanabe T, Kobunai T, Yamamoto Y, et al. Gene expression of vascular endothelial growth factor A, thymidylate synthase, and tissue inhibitor of metalloproteinase 3 in prediction of response to bevacizumab treatment in colorectal cancer patients. Dis Colon Rectum 2011;54(8):1026-35
  • Bates DO, Catalano PJ, Symonds KE, et al. Association between VEGF splice isoforms and progression-free survival in metastatic colorectal cancer patients treated with bevacizumab. Clin Cancer Res 2012;18(22):6384-91
  • Bates DO, Mavrou A, Qiu Y, et al. Detection of VEGF-A(xxx)b isoforms in human tissues. PLoS One 2013;8(7):e68399
  • Weickhardt AJ, Williams D, Lee C, et al. Vascular endothelial growth factors (VEGF) and VEGF receptor expression as predictive biomarkers for benefit with bevacizumab in metastatic colorectal cancer (mCRC): Analysis of the phase III MAX study. In: Gastrointestinal (Colorectal) Cancer: Colorectal Cancer Symposium. ASCO Chicago; 2011
  • Duong T, Koopman P, Francois M. Tumor lymphangiogenesis as a potential therapeutic target. J Oncol 2012;2012(204946):1-23
  • Gomes FG, Nedel F, Alves AM, et al. Tumor angiogenesis and lymphangiogenesis: tumor/endothelial crosstalk and cellular/microenvironmental signaling mechanisms. Life Sci 2013;92(2):101-7
  • Lohela M, Bry M, Tammela T, Alitalo K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol 2009;21(2):154-65
  • Shibuya M. Vascular endothelial growth factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: a Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer 2011;2(12):1097-105
  • Tchaikovski V, Fellbrich G, Waltenberger J. The molecular basis of VEGFR-1 signal transduction pathways in primary human monocytes. Arterioscler Thromb Vasc Biol 2008;28(2):322-8
  • Schwartz JD, Rowinsky EK, Youssoufian H, et al. Vascular endothelial growth factor receptor-1 in human cancer: concise review and rationale for development of IMC-18F1 (Human antibody targeting vascular endothelial growth factor receptor-1). Cancer 2010;116(4 Suppl):1027-32
  • Yao J, Wu X, Zhuang G, et al. Expression of a functional VEGFR-1 in tumor cells is a major determinant of anti-PlGF antibodies efficacy. Proc Natl Acad Sci USA 2011;108(28):11590-5
  • Roybal JD, Zang Y, Ahn Y-H, et al. miR-200 Inhibits lung adenocarcinoma cell invasion and metastasis by targeting Flt1/VEGFR1. Mol Cancer Res 2011;9(1):25-35
  • Lambrechts D, Lenz H-J, de Haas S, et al. Markers of response for the antiangiogenic agent bevacizumab. J Clin Oncol 2013;31(9):1219-30
  • Smith NR, Baker D, James NH, et al. Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clin Cancer Res 2010;16(14):3548-61
  • Xu L, Duda DG, di Tomaso E, et al. Direct evidence that bevacizumab, an anti-VEGF antibody, up-regulates SDF1alpha, CXCR4, CXCL6, and neuropilin 1 in tumors from patients with rectal cancer. Cancer Res 2009;69(20):7905-10
  • Sitohy B, Nagy JA, Jaminet S-CS, Dvorak HF. Tumor-surrogate blood vessel subtypes exhibit differential susceptibility to anti-VEGF therapy. Cancer Res 2011;71(22):7021-8
  • Fakhrejahani E, Toi M. Tumor angiogenesis: pericytes and maturation are not to be ignored. J Oncol 2012;2012:261750-1-10
  • Helfrich I, Scheffrahn I, Bartling S, et al. Resistance to antiangiogenic therapy is directed by vascular phenotype, vessel stabilization, and maturation in malignant melanoma. J Exp Med 2010;207(3):491-503
  • Shojaei F, Ferrara N. Role of the microenvironment in tumor growth and in refractoriness/resistance to anti-angiogenic therapies. Drug Resist Updat 2008;11(6):219-30
  • Kärpänen T. Lymphatic vessels in health and disease: Role of the VEGF-C/VEGFR-3 pathway and the transcription factor FOXC2. PhD Thesis, University of Helsinki, Helsinki
  • Yildiz R, Coskun U, Baglan T, et al. The Relation between Endoglin (CD105), Thrombospondin-1 and VEGFR-3 and Treatment Results in Metastatic Colorectal Cancer Patients Treated with Bevacizumab Combination Therapy. In: Colorectal Cancer Symposium. ESMO Milan; 2010
  • Chaudhary B, Khaled YS, Ammori BJ, Elkord E. Neuropilin 1: function and therapeutic potential in cancer. Cancer Immunol Immunother 2014;63(2):81-99
  • Galdiero MR, Bonavita E, Barajon I, et al. Tumor associated macrophages and neutrophils in cancer. Immunobiology 2013;218(11):1402-10
  • Gaengel K, Genové G, Armulik A, Betsholtz C. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 2009;29(5):630-8
  • Zhang L, Nishihara H, Kano MR. Pericyte-coverage of human tumor vasculature and nanoparticle permeability. Biol Pharm Bull 2012;35(5):761-6
  • Franco M, Roswall P, Cortez E, et al. Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression. Blood 2011;118(10):2906-17
  • Goede V, Coutelle O, Neuneier J, et al. Identification of serum angiopoietin-2 as a biomarker for clinical outcome of colorectal cancer patients treated with bevacizumab-containing therapy. Br J Cancer 2010;103(9):1407-14
  • Noonan S, Martin P, Biniecka M, et al. Correlation of high levels of immature blood vessels in colorectal tumors with longer survival following bevacizumab treatment. In: Tumor Biology: Molecular Targets Symposium. ASCO Chicago; 2011
  • Smith NR, Baker D, Farren M, et al. Tumor stromal architecture can define the intrinsic tumor response to VEGF-targeted therapy. Clin Cancer Res 2013;19(24):6943-56
  • Qin D, Trenkwalder T, Lee S, et al. Early vessel destabilization mediated by Angiopoietin-2 and subsequent vessel maturation via Angiopoietin-1 induce functional neovasculature after ischemia. PLoS One 2013;8(4):e61831
  • Kienast Y, Klein C, Scheuer W, et al. Ang-2-VEGF-A CrossMab, a Novel Bispecific Human IgG1 Antibody Blocking VEGF-A and Ang-2 Functions Simultaneously, Mediates Potent Antitumor, Antiangiogenic, and Antimetastatic Efficacy. Clin Cancer Res 2013;19(24):6730-40
  • Willett CG, Boucher Y, Duda DG, et al. Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J Clin Oncol 2005;23(31):8136-9
  • Sundaram P, Hultine S, Smith LM, et al. p53-responsive miR-194 inhibits thrombospondin-1 and promotes angiogenesis in colon cancers. Cancer Res 2011;71(24):7490-501
  • Zhao H-Y, Ooyama A, Yamamoto M, et al. Molecular basis for the induction of an angiogenesis inhibitor, thrombospondin-1, by 5-fluorouracil. Cancer Res 2008;68(17):7035-41
  • Gil M, Seshadri M, Komorowski MP, et al. Targeting CXCL12/CXCR4 signaling with oncolytic virotherapy disrupts tumor vasculature and inhibits breast cancer metastases. Proc Natl Acad Sci USA 2013;110(14):E1291-300
  • Fox SB. Assessing tumor angiogenesis in histological samples. Methods Mol Biol 2009;467:55-78
  • De Bruyne S, Van Damme N, Smeets P, et al. Value of DCE-MRI and FDG-PET/CT in the prediction of response to preoperative chemotherapy with bevacizumab for colorectal liver metastases. Br J Cancer 2012;106(12):1926-33
  • Zhang L, Jiang W, Zhang Y, et al. Predictive values of intratumoral microvascular density (MVD) in the patients (pts) with advanced NSCLC and metastatic colorectal cancer (mCRC) receiving chemotherapy plus bevacizumab. In: Developmental Therapeutics: Molecular Therapeutics: Antiangiogenic or Antimetastatic Agents Symposium. ASCO Orlando; 2009
  • Hansen TF, Christensen RD, Andersen RF, et al. MicroRNA-126 and epidermal growth factor-like domain 7-an angiogenic couple of importance in metastatic colorectal cancer. Results from the Nordic ACT trial. Br J Cancer 2013;109(5):1243-51
  • Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011;473(7347):298-307
  • Barlow KD, Sanders AM, Soker S, et al. Pericytes on the tumor vasculature: Jekyll or Hyde? Cancer Microenviron 2013;6(1):1-17
  • Guijarro-Muñoz I, Sánchez A, Martínez-Martínez E, et al. Gene expression profiling identifies EPHB4 as a potential predictive biomarker in colorectal cancer patients treated with bevacizumab. Med Oncol 2013;30(2):572
  • McIntyre A, Patiar S, Wigfield S, et al. Carbonic anhydrase IX promotes tumor growth and necrosis in vivo and inhibition enhances anti-VEGF therapy. Clin Cancer Res 2012;18(11):3100-11
  • Rohrberg KS, Pappot H, Lassen U, et al. Biomarkers in tissue from patients with upper gastrointestinal cancers treated with erlotinib and bevacizumab. Cancer Biol Ther 2011;11(8):732-9
  • Li Q, Wang D, Li J, Chen P. Clinicopathological and prognostic significance of HER-2/neu and VEGF expression in colon carcinomas. BMC Cancer 2011;11(1):277
  • Pity IS, Arif SH, Hadji DA. Angiogenesis, p53 and Bcl 2 in Colorectal Carcinoma. Int J Adv Res Technol 2013;2(3):1-8
  • Ince WL, Jubb AM, Holden SN, et al. Association of k-ras, b-raf, and p53 status with the treatment effect of bevacizumab. J Natl Cancer Inst 2005;97(13):981-9
  • Selvakumaran M, Amaravadi RK, Vasilevskaya IA, O’Dwyer PJ. Autophagy inhibition sensitizes colon cancer cells to antiangiogenic and cytotoxic therapy. Clin Cancer Res 2013;19(11):2995-3007
  • Klionsky DJ, Abdalla FC, Abeliovich H, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012;8(4):445-544
  • Espina V, Mueller C, Edmiston K, et al. Tissue is alive: new technologies are needed to address the problems of protein biomarker pre-analytical variability. Proteomics Clin Appl 2009;3(8):874-82
  • Bai Y, Tolles J, Cheng H, et al. Quantitative assessment shows loss of antigenic epitopes as a function of pre-analytic variables. Lab Invest 2011;91(8):1253-61
  • Siddiqui S, Rimm DL. Pre-analytic variables and phospho-specific antibodies: the Achilles heel of immunohistochemistry. Breast Cancer Res 2010;12(6):113
  • Ghiringhelli F, Bichard D, Limat S, et al. Bevacizumab efficacy in metastatic colorectal cancer is dependent on primary tumor resection. Ann Surg Oncol 2014;21(5):1632-40
  • Croci DO, Cerliani JP, Dalotto-Moreno T, et al. Glycosylation-Dependent Lectin-Receptor Interactions Preserve Angiogenesis in Anti-VEGF Refractory Tumors. Cell 2014;156(4):744-58
  • Pang L, Xu J, Shu C, et al. Characterization and cancer cell targeted imaging properties of human antivascular endothelial growth factor monoclonal antibody conjugated CdTe/ZnS quantum dots. Luminescence 2014;29(8):1177-82
  • Dolloff NG, Ma X, Dicker DT, et al. Spectral imaging-based methods for quantifying autophagy and apoptosis. Cancer Biol Ther 2011;12(4):349-56

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.