113
Views
20
CrossRef citations to date
0
Altmetric
Review

Biomarkers in melanoma: predisposition, screening and diagnosis

, , , &
Pages 163-184 | Published online: 09 Jan 2014

References

  • Rigel DS, Carucci JA. Malignant melanoma: prevention, early detection and treatment in the 21st century. CA Cancer Clin. 50(4), 215–236; quiz 237–240 (2000).
  • Landis SH, Murray T, Bolden S, Wingo PA. Cancer statistics 1999. CA Cancer 1 Clin. 49(1), 8–31 (1999).
  • Diepgen TL, Mahler V The epidemiology of skin cancer. BE j Dermatol 146\(Suppl. 61), 1–6 (2002).
  • Pisani P, Parkin DM, Bray F, Ferlay J. Estimates of the worldwide mortality from 25 cancers in 1990. Int. J. Cancer83(1), 18–29 (1999).
  • Lipsker DM, Hedelin G, Heid E, Grosshans EM, Cribier BJ. Striking increase of thin melanomas contrasts with stable incidence of thick melanomas. Arch. Dennatol 135(12), 1451–1456 (1999).
  • MacLennan R, Green AC, McLeod GR, Martin NG. Increasing incidence of cutaneous melanoma in Queensland, Australia. J. Natl Cancer Inst. 84(18), 1427–1432 (1992).
  • Hiatt RA, Fireman B. The possible effect of increased surveillance on the incidence of malignant melanoma. Rev. Med. 15(6), 652–660 (1986).
  • Dennis LK. Analysis of the melanoma epidemic, both apparent and real: data from the 1973 through 1994 surveillance, epidemiology and end results program registry. Arch. Dermatol 135(3), 275–280 (1999).
  • Richard MA, Grob JJ, Avril MF eta]. Melanoma and tumor thickness: challenges of early diagnosis. Arch. Dermatol 135 (3), 269–274 (1999).
  • MacKie R, Bray C, Hole D etal. Incidence of and survival from malignant melanoma in Scotland: an epidemiological study. Lancet 360 (9333), 587 (2002).
  • •Demonstrates an increase in survival for younger individuals and overall decrease in mortality for women. These trends are attributed to both primary and secondary preventive efforts. iiCrowley NJ, Dodge R, Vollmer RT, Seigler HE Malignant melanoma in black Americans. A trend toward improved survival. Atrh. Sing 126(11), 1359–1364; discussion 1365 (1991).
  • Richard MA, Grob JJ, Avril MF eta]. Delays in diagnosis and melanoma prognosis (I): the role of patients. Int. J. Cancer89(3), 271–279 (2000).
  • •Attributes delays in diagnosis to lack of knowledge and stresses the importance of public education, particularly for high-risk groups, such as elderly men. Suggest some melanomas will still continue to escape these efforts due to rapid growth.
  • Richard MA, Grob JJ, Avril MF eta]. Delays in diagnosis and melanoma prognosis (II): the role of doctors. Int. J. Cancer89(3), 280–285 (2000).
  • •Dermatologists most accurate in melanoma detection. Suggest that systematic skin examination and improved physician training could improve melanoma detection.
  • Epstein DS, Lange JR, Gruber SB, Mond M, Koch SE. Is physician detection associated with thinner melanomas? JAIVIA 281(7), 640–643 (1999).
  • Gilchrest BA, Eller MS, Geller AC, Yaar M. The pathogenesis of melanoma induced by ultraviolet radiation. N bkzglj Med. 340(17), 1341–1348 (1999).
  • Autier P, Dore JE Influence of sun exposure during childhood and during adulthood on melanoma risk. Int. j Cancer 77,533–537 (1998).
  • •Study of the relative contributions of childhood and adult sun exposure finding that childhood sun exposure is a significant risk-factor for melanoma compared with adult sun exposure.
  • Walter SD, King ND, Marrett LD. Association of cutaneous malignant melanoma with intermittent exposure to ultraviolet radiation: results of case-control study in Ontario, Canada. Int. j Epidemiol 28, 418–427 (1999).
  • Whiteman DC, Whiteman CA, Green AC. Childhood sun exposure as a risk factor for melanoma: a systematic review of epidemiologic studies. Cancer Causes Control 12(1), 69–82 (2001).
  • ••Good overview of sun exposure andmelanoma risk. Exposure to high levels of sunlight in childhood is a strong determinant of melanoma risk but sun exposure in adulthood also plays a role.
  • Tucker MA, Halpern A, Holly EA eta]. Clinically recognized dysplastic nevi. A central risk factor for cutaneous melanoma. JAIVIA 277(18), 1439–1444 (1997).
  • Greene MET. The genetics of hereditary melanoma and nevi. 1998 update. Cancer 86(11 Suppl.), 2464–2477 (1999).
  • ••Excellent review on hereditary melanoma.
  • Berwick M, Halpern A. Melanoma epidemiology. CUI7: Opin. Oncol 9(2), 178–182 (1997).
  • Bataille V, Bishop JA, Sasieni P etal Risk of cutaneous melanoma in relation to the numbers, types and sites of naevi: a case-control study. Brj Cancer 73(12), 1605–1611 (1996).
  • Whiteman DC, Parsons PG, Green AC. p53 expression and risk factors for cutaneous melanoma: a case-control study. Int.j Cancer 77 (6), 843–848 (1998).
  • Ragnarsson-Olding BK, Karsberg S, Platz A, Ringborg UK. Mutations in the TP53 gene in human malignant melanomas derived from sun-exposed skin and unexposed mucosal membranes. Melanoma Res. 12(5), 453–463 (2002).
  • ••Similar frequency of p5..? C to T mutationsat dypyrimidine sites (signature mutation for UV light) in sun protected, mucosal sites indicating that other factors play a role in induction of mutations in melanoma.
  • Geller AC, Sober AJ, Zhang Z eta]. Strategies for improving melanoma education and screening for men age 50 years of age or older: findings from the American Academy of Dermatological National Skin Cancer Screening Program. Cancer95(7), 1554–1561 (2002).
  • •Demonstrated a higher predictive value for melanoma screening in men above 50 years of age with a history of changing mole or skin types land 11 compared with all others.
  • Gibbs P, Brady BM, Robinson WA. The genes and genetics of malignant melanoma. Cutan Med. Surg. 6(3), 229–235 (2002).
  • Zhu G, Duffy DL, Eldridge A et al A major quantitative-trait locus for mole density is linked to the familial melanoma gene CDKN2A: a maximum-likelihood combined linkage and association analysis in twins and their sibs. Am. j Hum. Genet. 65(2), 483–492 (1999).
  • Healy E, Flannagan N, Ray A etal Melanocortin-l-receptor gene and sun sensitivity in individuals without red hair. Lancet 355(9209), 1072–1073 (2000).
  • •Implicates MC1R in sun-sensitivity and discuss gene—environmental interaction.
  • McGregor B, Pfitzner J, Zhu G etal Genetic and environmental contributions to size, color, shape and other characteristics of melanocytic naevi in a sample of adolescent twins. Genet. Epidemiol 16(1), 40–53 (1999).
  • Halpern AC, Altman JE Genetic predisposition to skin cancer. CUI7: Opin. Oncol 11(2), 132–138 (1999).
  • Siskind V, Aitken J, Green A, Martin N. Sun exposure and interaction with family history in risk of melanoma, Queensland, Australia. hit.j Cancer 97 (1), 90–95 (2002).
  • •Demonstrates that sun exposure in childhood and in adulthood are important determinants of melanoma but not in those rare families with high melanoma susceptibility where genetic factors appear more important.
  • Goldstein AM, Fraser MC, Struewing JP etal Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4 mutations. N big/f Med. 333(15), 970–974 (1995).
  • Lynch HT, Brand RE, Hogg D et al Phenotypic variation in eight extended CDKN2A germline mutation familial atypical multiple mole melanoma-pancreatic carcinoma-prone families, the familial atypical mole melanoma-pancreatic carcinoma syndrome. Cancer 94(1), 84–96 (2002).
  • Borg A, Sandberg T, Nilsson K etal High frequency of multiple melanomas and breast and pancreas carcinomas in CDKN2A mutation-positive melanoma families. Natl Cancer Inst. 92 (15), 1260–1266 (2000).
  • Holland EA, Schmid H, Kefford RF, Mann GJ. CDKN2A (P16(INK4a)) and CDK4 mutation analysis in 131 Australian melanoma probands: effect of family history and multiple primary melanomas. Genes Chromosomes Cancer25 (4), 339–348 (1999).
  • Whelan AJ, Bartsch D, Goodfellow PJ. Brief report: a familial syndrome of pancreatic cancer and melanoma with a mutation in the CDKN2 tumor-suppressor gene. N big/f Med. 333(15), 975–977 (1995).
  • Bressac-de-Paillerets B, Avril ME, Chompret A, Demenais E Genetic and environmental factors in cutaneous malignant melanoma. Biochimie 84(1), 67–74 (2002).
  • Goldstein AM, Tucker MA. Genetic epidemiology of cutaneous melanoma: a global perspective. Arch. Dermatol 137(11), 1493–1496 (2001).
  • Sturm RA. Skin colour and skin cancer — MC1R, the genetic link. Melanoma Res. 12(5), 405–416 (2002).
  • ••Most recent review of the importance ofthe melanocortin-1 receptor gene to melanoma's pathogenesis. Suggest that genetic and chemical assessment of melanin synthesis rather than skin color will be the best indicator for skin cancer risk.
  • Castellano M, Parmiani G. Genes involved in melanoma: an overview of INK4a and other loci. Melanoma Res. 9(5), 421–432 (1999).
  • Davies H, Bignell GR, Cox C etal Mutations of the BRAF gene in human cancer. Nature 417(6892), 949–954 (2002).
  • Feng Y, Shi J, Goldstein AM, Tucker MA, Nelson MA. Analysis of mutations and identification of several polymorphisms in the putative promoter region of the P34CDC2-related CDC2Llgene located at 1P36 in melanoma cell lines and melanoma families. Int.j Cancer 99 (6), 834–838 (2002).
  • Liu L, Goldstein AM, Tucker MA etal Affected members of melanoma-prone families with linkage to 9p21 but lacking mutations in CDKN2A do not harbor mutations in the coding regions of either CDKN2B or pl9ARE Genes Chromosomes Cancer 19(1), 52–54 (1997).
  • Platz A, Hansson J, Mansson-Brahme E etal Screening of germline mutations in the CDKN24 and CDKN2B genes in Swedish families with hereditary cutaneous melanoma. Natl Cancer Inst. 89(10), 697–702 (1997).
  • Platz A, Hansson J, Ringborg U. Screening of germline mutations in the CDK4, CDK72C and TP53genes in familial melanoma: a clinic-based population study. hit.j Cancer78(1), 13–15 (1998).
  • Newton Bishop JA, Harland M, Bennett DC etal Mutation testing in melanoma families: INK4A, CDK4 and INK4D BE Cancer80(1–2), 295–300 (1999).
  • Shennan MG, Badin AC, Walsh S etal Lack of germline CDK6 mutations in familial melanoma. Oncogene 19(14), 1849–1852 (2000).
  • Kennedy C, Naipal A, Gruis NA etal. MICA gene polymorphism is not associated with an increased risk for skin cancer. .1. Invest. Dermatol 118(4), 686–691 (2002).
  • Kumar R, Smeds J, Berggren P etal. A single nucleotide polymorphism in the 3' untranslated region of the CDKN2A gene is common in sporadic primary melanomas but mutations in the CDKN2B, CDKN2C, CDK4 and p53 genes are rare. Int.j Cancer 95(6), 388–393 (2001).
  • Deichmann M, Mollenhauer J, Helmke B etal Analysis of losses of heterozygosity of the candidate tumour suppressor gene DMBT1 in melanoma resection specimens. Oncology 63 (2), 166–172 (2002) .
  • Boni R, Vortmeyer AO, Huang S, Burg G, Hofbauer G, Zhuang Z. Mutation analysis of the MEN1 tumour suppressor gene in malignant melanoma. Melanoma Res. 9(3), 249–252 (1999).
  • Guldberg P, thor Straten P, Birck A, Ahrenkiel V, Kirkin AF, Zeuthen J. Disruption of the MIVIACII PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res. 57(17), 3660–3663 (1997).
  • Ciotti P, Struewing JP, Mantelli M eta]. A single genetic origin for the G101W CDKN2A mutation in 20 melanoma-prone families. Ainj Hum. Genet. 67(2), 311–319 (2000).
  • •Demonstrates the presence of a founder mutation in a defined geographic area, which may provide an opportunity to study disease penetrance and the effect of environmental factors on the background of a common genetic susceptibility.
  • Pollock PM, Spurr N, Bishop T etal Haplotype analysis of two recurrent CDKN2A mutations in 10 melanoma families: evidence for common founders and independent mutations. Hum. Mutat. 11(6), 424–431 (1998).
  • Box NF, Duffy DL, Chen W et al MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations. Am.j Hum. Genet. 69(4), 765–773 (2001).
  • van der Velden PA, Sandkuijl LA, Bergman W etal Melanocortin-1 receptor variant R151C modifies melanoma risk in Dutch families with melanoma. Am. j Hum. Genet. 69(4), 774–779 (2001).
  • Aitken JF, Bailey-Wilson J, Green AC, MacLennan R, Martin NG. Segregation analysis of cutaneous melanoma in Queensland. Genet. Epiclemiol 15(4), 391–401 (1998).
  • •Highlights the genetic heterogeneity in melanoma inheritance and suggest that other familial factors, such as pigmentation, skin type and sun exposure habits, play an important role in the familial clustering of melanoma.
  • Bishop DT, Demenais F, Goldstein etal Geographical variation in the penetrance of CDKN2A mutations for melanoma. j Natl Cancer Inst. 94(12), 894–903 (2002).
  • ••Demonstrates that the penetrance varieswith melanoma population incidence rates, signifying that the same factors that affect population incidence of melanoma may also mediate CDKN2A penetrance.
  • Kefford RF, Newton Bishop JA, Bergman W, Tucker MA. Counseling and DNA testing for individuals perceived to be genetically predisposed to melanoma: a consensus statement of the Melanoma Genetics Consortium. j Clin. Oncol 17(10), 3245–3251 (1999).
  • Tucker MA, Fraser MC, Goldstein AM etal A natural history of melanomas and dysplastic nevi: an atlas of lesions in melanoma-prone families. Cancer94(12), 3192–3209 (2002).
  • ••Excellent documentation of the lives ofdysplastic nevi revealing that they are markers of risk for, not precursors of, melanoma.
  • Rebbeck TR, Kanetsky PA, Walker AH etal P gene as an inherited biomarker of human eye color. Cancer Epiclemiol Biomarkers Bev 11(8), 782–784 (2002).
  • Tomescu D, Kavanagh G, Ha T, Campbell H, Melton DW. Nucleotide excision repair gene XPD polymorphisms and genetic predisposition to melanoma. Carcinogenesis 22(3), 403–408 (2001).
  • Winsey SL, Haldar NA, Marsh HP etal A variant within the DNA repair gene XRCC3 is associated with the development of melanoma skin cancer. Cancer Res. 60(20), 5612–5616 (2000).
  • Shahbazi M, Pravica V, Nasreen N et al Association between functional polymorphism in EGF gene and malignant melanoma. Lancet 359(9304), 397–401 (2002).
  • Osborne JE, Hutchinson PE. Vitamin D and systemic cancer: is this relevant to malignant melanoma? BE j Dermatol 147(2), 197–213 (2002).
  • Hutchinson PE, Osborne JE, Lear JT etal Vitamin D receptor polymorphisms are associated with altered prognosis in patients with malignant melanoma. Clin. Cancer Res. 6(2), 498–504 (2000).
  • Lafuente A, Molina R, Palou J, Castel T, Moral A, Trias M. Phenotype of glutathione 5-transferase Mu (GSTM1) and susceptibility to malignant melanoma. MMM group. Multidisciplinary Malignant Melanoma Group. BE j Cancer 72 (2), 324–326 (1995).
  • Strange RC, Ellison T, Ichii-Jones F etal Cytochrome P450 CYP2D6 genotypes: association with hair colour, Breslow thickness and melanocyte stimulating hormone receptor alleles in patients with malignant melanoma. Pharmacogenetics 9(3), 269–726 (1999).
  • Edman RL, Klaus SN. Is routine screening for melanoma a benign practice? JAIVIA 284(7), 883–886 (2000).
  • Helfand M, Mahon SM, Eden KB, Frame PS, Orleans CT Screening for skin cancer. A117. I Prev. Med. 20(3 Suppl.), 47–58 (2001).
  • ••Excellent review of all published studies onskin cancer screening. Suggests that skin cancer screening, perhaps using a risk-assessment technique to identify high-risk patients who are seeing a physician for other reasons, merits additional study as a strategy to address the excess burden of disease in older adults.
  • Kittler H, Pehamberger H, Wolff K, Binder M. Diagnostic accuracy of dermoscopy. Lancet Oncol 3(3), 159–165 (2002).
  • •Good review of dermoscopy and suggest that it is a useful tool only in the hands of an experienced clinician.
  • Wolf IH, Smolle J, Soyer HP, Kerl H. Sensitivity in the clinical diagnosis of malignant melanoma. Melanoma Res. 8(5), 425–429 (1998).
  • Grin CM, Kopf AW, Welkovich B, Bart RS, Levenstein MJ. Accuracy in the clinical diagnosis of malignant melanoma. Arch. Dermatol 126(6), 763–766 (1990).
  • Chen SC, Bravata DM, Weil E, Olkin I. A comparison of dermatologists' and primary care physicians' accuracy in diagnosing melanoma: a systematic review. Arch. Dermatol 137(12), 1627–1634 (2001).
  • Koh HK, Norton LA, Geller AC et al Evaluation of the American Academy of Dermatology's National Skin Cancer Early Detection and Screening Program. Am. Acad. Dermatol 34(6), 971–978 (1996).
  • Oliveria S, Dusza S, Berwick M. Issues in the epidemiology of melanoma. Expert Rev Anticancer Ther. 1(3), 453–459 (2001).
  • Brenner S, Tamir E. Early detection of melanoma: the best strategy for a favorable prognosis. Clin. Dermatol 20(3), 203–211 (2002).
  • Landau M, Matz H, Tur E, Dvir M, Brenner S. Computerized system to enhance the clinical diagnosis of pigmented cutaneous malignancies. int. j Dermatol 38(6), 443–446 (1999).
  • Marchesini R, Bono A, Bartoli C, Lualdi M, Tomatis S, Cascinelli N. Optical imaging and automated melanoma detection: questions and answers. Melanoma Res. 12(3), 279–286 (2002).
  • •Most current review of technologic aids and their performance in the detection of melanoma.
  • Voigt H, Classen R. Computer vision and digital imaging technology in melanoma detection. Semin. Oncol 29(4), 308–327 (2002).
  • Andersen WK, Silvers DN. 'Melanoma? It can't be melanoma' A subset of melanomas that defies clinical recognition. JAMA 266(24), 3463–3465 (1991).
  • Whited JD, Grichnik JM. The rational clinical examination. Does this patient have a mole or a melanoma?JAMA 279(9), 696–701 (1998).
  • Grant-Kels JM, Bason ET, Grin CM. The misdiagnosis of malignant melanoma. J. Am. Acad. Dermatol 40(4), 539–548 (1999).
  • Osborne JE, Bourke JF, Graham-Brown RA, Hutchinson PE. False-negative clinical diagnoses of malignant melanoma. BE J. Dermatol 140(5), 902–908 (1999).
  • Bono A, Bartoli C, Moglia D eta]. Small melanomas: a clinical study on 270 consecutive cases of cutaneous melanoma. Melanoma Res. 9(6), 583–586 (1999).
  • Bono A, Maurichi A, Moglia D eta]. Clinical and dermatoscopic diagnosis of early amelanotic melanoma. Melanoma Res. 11(5), 491–494 (2001).
  • Argenziano G, Soyer HP, Chimenti S, Ruocco V. Impact of dermoscopy on the clinical management of pigmented skin lesions. Clin. Dermatol 20(3), 200–202 (2002).
  • •Suggests dermoscopy may play a more important role in the management (lesion selection for biopsy) of suspicious skin lesions.
  • Piepkorn M, Odland PB. Quality of care in the diagnosis of melanoma and related melanocytic lesions. Arch. Dermatol 133(11), 1393–1396 (1997).
  • Calonje E. ACP best practice no 162. The histological reporting of melanoma. Association of Clinical Pathologists. J. Clin. Pathol 53(8), 587–590 (2000).
  • McGinnis KS, Lessin SR, Elder DE etal Pathology review of cases presenting to a multidisciplinary pigmented lesion clinic. Arch. Dermatol 138(5), 617–621 (2002).
  • ••Reviews primary melanocytic lesions,within the context of a multidisciplinary pigmented lesion clinic, resulted in changes in diagnosis in a significant proportion of cases that impacted on clinical decision making, patient outcome and research data collection. Supports the practice of pathology review at tertiary medical centers.
  • Li LX, Crotty IKA, McCarthy SW Palmer AA, Kril JJ. A zonal comparison of MIB1-Ki67 immunoreactivity in benign and malignant melanocytic lesions. Am. J Dermatopathol 22(6), 489–495 (2000).
  • Bergman R, Malkin L, Sabo E, Kerner H. MIB-1 monoclonal antibody to determine proliferative activity of Ki-67 antigen as an adjunct to the histopathologic differential diagnosis of Spitz nevi. J. Am. Acad. Dermatol 44(3), 500–504 (2001).
  • Bastian BC. Molecular cytogenetics as a diagnostic tool for typing melanocytic tumors. Recent Results. Cancer Res. 160, 92–99 (2002).
  • Harvell JD, Bastian BC, LeBoit PE. Persistent (recurrent) Spitz nevi: a histopathologic, immunohistochemical and molecular pathologic study of 22 cases. Am. J. Sing. Pathol 26(5), 654–661 (2002).
  • Bittner M, Meltzer P, Chen Y etal Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406 (6795), 536–40 (2000).
  • Ruiter DJ, van Muijen GN. Markers of melanocytic tumour progression. J. Pathol 186(4), 340–342 (1998).
  • White WL. Immunomicroscopy in diagnostic dermatopathology: an update on cutaneous neoplasms. Adv. Dermatol 14, 359–396; discussion 397 (1999).
  • Mangini J, Li N, Bhawan J. Immunohistochemical markers of melanocytic lesions: a review of their diagnostic usefulness. Am. J. Dermatopathol 24(3), 270–281 (2002).
  • •Review of current and potential diagnostic markers of melanoma.
  • Heintz PW, White CR Jr. Diagnosis: atypical fibroxanthoma or not? Evaluating spindle cell malignancies on sun damaged skin: a practical approach. Semin. Cutan. Med. Sing. 18(1), 78–83 (1999). too Kanik AB, Yaar M, Bhawan J. p75 nerve growth factor receptor staining helps identify desmoplastic and neurotropic melanoma.j Cutan. Pathol 23(3), 205–210 (1996). tot Orchard GE. Comparison of immunohistochemical labelling of melanocyte differentiation antibodies melan-A, tyrosinase and HMB 45 with NKIC3 and S100 protein in the evaluation of benign naevi and malignant melanoma. Ifistochem. 32 (8), 475–481 (2000).
  • Miettinen M, Fernandez M, Franssila K, Gatalica Z, Lasota J, Sarlomo-Rikala M. Microphthalmia transcription factor in the immunohistochemical diagnosis of metastatic melanoma: comparison with four other melanoma markers. Am. J. Surg. Pathol 25(2), 205–211 (2001).
  • Basarab T, Picard JK, Simpson E, Russell-Jones R. Melanoma antigen-encoding gene expression in melanocytic naevi and cutaneous malignant melanomas. BE J. Dermatol 140(1), 106–108 (1999).
  • XU X, Chu AY, Pasha TL, Elder DE, Zhang PJ. Immunoprofile of MITF, tyrosinase, melan-A and MAGE-1 in HMB45-negative melanomas. Am. J. Surg. Pathol 26(1), 82–87 (2002).
  • Boyle JL, Haupt HM, Stem JB, Multhaupt HA. Tyrosinase expression in malignant melanoma, desmoplastic melanoma and peripheral nerve tumors. Arch. Pathol Lab. Med. 126(7), 816–822 (2002).
  • Huttenbach Y, Prieto VG, Reed JA. Desmoplastic and spindle cell melanomas express protein markers of the neural crest but not of later committed stages of Schwann cell differentiation. j Cutan. Pathol 29(9), 562–568 (2002).
  • White WL, Hitchcock MG. Dying dogma: the pathological diagnosis of epidermotropic metastatic malignant melanoma. Semin. Diagn. Pathol 15 (3), 176–188 (1998).
  • Zelger B, Sidoroff A. Antimetallothionein labeling. Am. J. Surg. Pathol 20(2), 253–257 (1996).
  • Sugita K, Yamamoto 0, Asahi M. Immunohistochemical analysis of metallothionein expression in malignant melanoma in Japanese patients. Am. J. Dermatopathol 23(1), 29–35 (2001).
  • Simonetti 0, Lucarini G, Brancorsini D et al Immunohistochemical expression of vascular endothelial growth factor, matrix metalloproteinase 2 and matrix metalloproteinase 9 in cutaneous melanocytic lesions. Cancer 95(9), 1963-1970 (2002).
  • •Demonstrates that malignant melanocytic tumors displayed strong vascular endothelial growth factor (VEGF) expression while nevi do not, highlighting a potential role for VEGF in identifying melanomas whose histologic features overlap with melanocytic nevi.
  • Bayer-Garner TB, Hough AJ Jr, Smoller BR. Vascular endothelial growth factor expression in malignant melanoma: prognostic versus diagnostic usefulness. Mod. Pathol 12(8), 770–774 (1999).
  • Reed JA, Albino AR Update on diagnositic and prognositic markers in cutaneous malignant melanoma. Dermatol Clin. 17(3), 631–643 (1999).
  • •Comprehensive review of molecular markers with emphasis on prognosis. iii Goding CR. Melanocyte development and malignant melanoma. Forum (Genova) 10(3), 176–187 (2000).
  • Mu XC, Tran TA, Ross JS, Carlson JA. Topoisomerase II-a expression in melanocytic nevi and malignant melanoma. Cutan. Pathol 27(5), 242–248 (2000).
  • Rieger E, Hofmann-Wellenhof R, Soyer HP etal Comparison of proliferative activity as assessed by proliferating cell nuclear antigen (PCNA) and Ki-67 monoclonal antibodies in melanocytic skin lesions. A quantitative immunohistochemical study. I Cutan. Pathol 20(3), 229–236 (1993).
  • Sparrow LE, English DR, Taran JM, Heenan PJ. Prognostic significance of MIB-1 proliferative activity in thin melanomas and immunohistochemical analysis of MIB-1 proliferative activity in melanocytic tumors. Am. Dermatopathol 20(1), 12–16 (1998).
  • Fogt F, Vortmeyer AO, Tahan SR. Nucleolar organizer regions (AgNOR) and Ki-67 immunoreactivity in cutaneous melanocytic lesions. Am .1. Dermatopathol 17(1), 12–17 (1995).
  • Kanoko M, Ueda M, Ichihashi M. PCNA expression and nucleolar organizer regions in malignant melanoma and nevus cell nevus. Kobej Med. Sc]. 40 (3–4), 107–123 (1994).
  • Hussein MR, Roggero E, Sudilovsky EC, Tuthill RJ, Wood GS, Sudilovsky 0. Alterations of mismatch repair protein expression in benign melanocytic nevi, melanocytic dysplastic nevi and cutaneous malignant melanomas. Am. J. Dermatopathol 23(4), 308–314 (2001).
  • Ruiter DJ, Brocker EB. Immunohistochemistry in the evaluation of melanocytic tumors. Semin. Diagn. Pathol 10(1), 76–91 (1993).
  • Cahill DP, Kinzler KW, Vogelstein B, Lengauer C. Genetic instability and darwinian selection in tumours. Trends Cell. Biol. 9(12), M57–60 (1999).
  • Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nature Rev Genet. 3(6), 415–428 (2002).
  • Kirkham N. Optimal handling and criteria for melanoma diagnosis. HistoPathology 37(5), 467–469 (2000).
  • McNutt NS, Urmacher C, Hakimian J, Hoss DM, Lugo J. Nevoid malignant melanoma: morphologic patterns and immunohistochemical reactivity. J. Cutan. Pathol 22(6), 502–517 (1995).
  • Crotty IKA, Scolyer RA, Li L, Palmer AA, Wang L, McCarthy SW Spitz naevus versus Spitzoid melanoma: when and how can they be distinguished? Pathology34(1), 6–12 (2002).
  • •Good review of the very difficult pathologic dilemma of differentiating a Spitz nevus (aka juvenile melanoma) from melanoma.
  • Duncan LM, Deeds J, Cronin FE eta]. Melastatin expression and prognosis in cutaneous malignant melanoma. J. Clin. Oncol 19(2), 568–576 (2001).
  • Deeds J, Cronin F, Duncan LM. Patterns of melastatin mRNA expression in melanocytic tumors. Hum. Pathol 31(11), 1346–1356 (2000).
  • Maitra A, Gazdar AF, Moore TO, Moore AY. Loss of heterozygosity analysis of cutaneous melanoma and benign melanocytic nevi: laser capture microdissection demonstrates clonal genetic changes in acquired nevocellular nevi. Hum. Pathol 33(2), 191–197 (2002).
  • Udart M, Utikal J, Krahn GM, Peter RU. Chromosome 7 aneusomy. A marker for metastatic melanoma? Expression of the epidermal growth factor receptor gene and chromosome 7 aneusomy in nevi, primary malignant melanomas and metastases. Neoplasia 3(3), 245–254 (2001).
  • Korabiowska M, Brinck U, Kotthaus I, Berger H, Droese M. Analysis of the DNA content in the progression of recurrent and metastatic melanomas. Anticancer Res. 20(4), 2791–2794 (2000).
  • Martin G, Halwani F, Shibata H, Meterissian S. Value of DNA ploidy and 5-phase fraction as prognostic factors in Stage III cutaneous melanoma. Can. J. Surg: 43(1), 29–34 (2000).
  • Albertson DG, Ylstra B, Segraves R etal Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nature Genet. 25(2), 144–146 (2000).
  • Bastian BC, LeBoit PE, Hamm H, Brocker EB, Pinkel D. Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res. 58 (10), 2170–2175 (1998).
  • Bastian BC, Kashani-Sabet M, Hamm H et al Gene amplifications characterize acral melanoma and permit the detection of occult tumor cells in the surrounding skin. Cancer Res. 60(7), 1968–1973 (2000).
  • •Reveals acral melanomas have unique chromosomal characteristics validating its histologic classification as a distinct entity with a disparate pathogenesis from conventional cutaneous melanoma and the histologically negative margins can still harbor residual tumors.
  • Bastian BC, Wesselmann U, Pinkel D, Leboit PE. Molecular cytogenetic analysis of Spitz nevi shows clear differences to melanoma. j Invest. Dermatol 113(6), 1065–1069 (1999).
  • •Spitz nevi and melanoma can be differentiated at the chromosomal level.
  • Bastian BC, LeBoit PE, Pinkel D. Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features. Am. j Athol 157(3), 967–972 (2000).
  • Bastian BC, Xiong J, Frieden IJ etal Genetic changes in neoplasms arising in congenital melanocytic nevi: differences between nodular proliferations and melanomas. Arn. Pathol 161(4), 1163–1169 (2002).
  • •Demonstrates how comparative genomic hybridization could be used to as an aid to reliably diagnosis melanoma in cases where pathologic findings overlap between benign and malignant proliferations.
  • Aitken JF, Elwood JM, Lowe JB, Firman DW, Balanda IQ, Ring IT A randomised trial of population screening for melanoma. j Med. Screen 9 (1), 33–37 (2002).
  • ••Ongoing prospective study of thescreening for melanoma in Queensland, Australia. May reveal evidence for benefits of prevention of and screening for melanoma
  • Evans RD, Kopf AW, Lew RA eta]. Risk factors for the development of malignant melanoma-I: review of case-control studies. Dermatol Sing. Oncol 14(4), 393–408 (1988).
  • Weinstock MA, Colditz GA, Willett WC etal Melanoma and the sun: the effect of swimsuits and a 'healthy' tan on the risk of nonfamilial malignant melanoma in women. Am. Epidemiol 134 (5), 462–470 (1991).
  • Bliss JM, Ford D, Swerdlow AJ etal Risk of cutaneous melanoma associated with pigmentation characteristics and freckling: systematic overview of 10 case-control studies. The International Melanoma Analysis Group (IMAGE). Int. .1. Cancer 62(4), 367–376 (1995).
  • Sahin S, Levin L, Kopf AW etal Risk of melanoma in medium-sized congenital melanocytic nevi: a follow-up study. Am. Acad. Dermatol 39 (3), 428–33 (1998).
  • Swerdlow AJ, English JS, Qiao Z. The risk of melanoma in patients with congenital nevi: a cohort study. j Am. Acad. Dermatol 32(4), 595–599 (1995).
  • Rhodes AR, Melski JW. Small congenital nevocellular nevi and the risk of cutaneous melanoma. j Pecliatr 100(2), 219–224 (1982).
  • Bittencourt FV, Marghoob AA, Kopf AW, Koenig KL, Bart RS. Large congenital melanocytic nevi and the risk for development of malignant melanoma and neurocutaneous melanocytosis. Pediatrics 106(4), 736–741 (2000).
  • Rhodes AR, Weinstock MA, Fitzpatrick TB, Mihm CM Jr, Sober AJ. Risk factors for cutaneous melanoma: a practical method of recognizing predisposed individuals. JA/V/A 258(21), 3146–3154 (1987).
  • Streutker CJ, McCready D, Jimbow K, From L. Malignant melanoma in a patient with oculocutaneous albinism. j Cutan. Med. Sing. 4(3), 149–152 (2000).
  • Weinstock MA. Human models of melanoma. Clin. Dermatol 10(1), 83–89 (1992).
  • Kraemer KH, Lee MM, Andrews AD, Lambert WC. The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer. The xeroderma pigmentosum paradigm. Arch. Dermatol 130(8), 1018–1021 (1994).
  • Tucker MA, Boice JD Jr, Hoffman DA. Second cancer following cutaneous melanoma and cancers of the brain, thyroid, connective tissue, bone and eye in Connecticut, 1935–82. Nail Cancer Inst. Monogr 68,161–189 (1985).
  • Ford D, Bliss JM, Swerdlow AJ etal. Risk of cutaneous melanoma associated with a family history of the disease. The International Melanoma Analysis Group (IMAGE). Int. Cancer62(4), 377–381 (1995).
  • Hemminki K, Lonnstedt I, Vaittinen P A population-based study of familial cutaneous melanoma. Melanoma Res. 11(2), 133–140 (2001).
  • MacKie RM, McHenry P, Hole D. Accelerated detection with prospective surveillance for cutaneous malignant melanoma in high-risk groups. Lancet 341(8861), 1618–1620 (1993).
  • Elwood JM, Jopson J. Melanoma and sun exposure: an overview of published studies. Int.j Cancer 73 (2), 198–203 (1997) .
  • •Good review of how sun exposure influences melanoma incidence.
  • Green A, Bain C, McLennan R, Siskind V. Risk factors for cutaneous melanoma in Queensland. Recent Results Cancer Res. 102, 76–97 (1986).
  • Milan T, Pukkala E, Verkasalo PK etal Subsequent primary cancers after basal-cell carcinoma: A nationwide study in Finland from 1953 to 1995. Int.j Cancer 87(2), 283–288 (2000).
  • Efird J, Friedman G, Habel L, Tekawa I, Nelson L Risk of subsequent cancer following invasive or in situsquamous cell skin cancer. Ann 43iderniol. 12(7), 469 (2002).
  • Stem RS. The risk of melanoma in association with long-term exposure to PUVA. jAm Acad. Dermatol 44(5), 755–761 (2001).
  • Lindelof B, Sigurgeirsson B, Gabel H, Stern RS. Incidence of skin cancer in 5356 patients following organ transplantation. Br. Dermatol 143(3), 513–519 (2000).
  • Jensen P, Hansen S, Moller B etal Skin cancer in kidney and heart transplant recipients and different long-term immunosuppressive therapy regimens. jAm Acad. Dermatol 40(2 Pt 1), 177–186 (1999).
  • Chen YT, Dubrow R, Zheng T, Barnhill RL, Fine J, Berwick M. Sunlamp use and the risk of cutaneous malignant melanoma: a population- based case-control study in Connecticut, USA. Int. j Epidemiol 27(5), 758–765 (1998).
  • Swerdlow AJ, Weinstock MA. Do tanning lamps cause melanoma? An epidemiologic assessment. jAm. Acad. Dermatol 38 (1), 89–98 (1998).
  • Austin DF, Reynolds P. Investigation of an excess of melanoma among employees of the Lawrence Livermore National Laboratory. Am. .1. Epidemiol 145(6), 524–531 (1997).
  • Schallreuter KU, Levenig C, Berger J. Vitiligo and cutaneous melanoma. A case study. Dermatologica 183(4), 239–245 (1991).
  • Bulliard JL, Cox B, Elwood JM. Latitude gradients in melanoma incidence and mortality in the non-Maori population of New Zealand. Cancer Causes Control5 (3), 234–240 (1994).
  • Weinstock MA, Colditz GA, Willett WC et al Nonfamilial cutaneous melanoma incidence in women associated with sun exposure before 20 years of age. Pediatrics 84(2), 199–204 (1989).
  • Mantelli M, Barile M, Ciotti P et al High prevalence of the G101W germline mutation in the CDKN2A (P166nk4aA gene in 62 Italian malignant melanoma families. Am.j Med. Genet. 107(3), 214–221 (2002).
  • Auroy S, Avril ME, Chompret A eta]. Sporadic multiple primary melanoma cases: CDKN2A germline mutations with a founder effect. Genes Chromosomes Cancer 32(3), 195–202 (2001).
  • Hashemi J, Platz A, Ueno T, Stierner U, Ringborg U, Hansson J. CDKN2A germ-line mutations in individuals with multiple cutaneous melanomas. Cancer Res. 60(24), 6864–6867 (2000).
  • Goldstein AM, Struewing JP, Chidambaram A, Fraser MC, Tucker MA. Genotype-phenotype relationships in US melanoma-prone families with CDKN2A and CDK4 mutations. j Nail Cancer Inst. 92(12), 1006–1010 (2000).
  • Tsao H, Zhang X, Kwitkiwski K, Finkelstein DM, Sober AJ, Haluska FG. Low prevalence of germline CDKN2A and CDK4 mutations in patients with early-onset melanoma. Arch. Dermatol 136(9), 1118–1122 (2000).
  • Ruiz A, Puig S, Malvehy J, Lazar° C eta]. CDKN2A mutations in Spanish cutaneous malignant melanoma families and patients with multiple melanomas and other Neoplasia. j Med. Genet 36 (6), 490–493 (1999).
  • Aitken J, Welch J, Duffy D etal CDKN2A variants in a population-based sample of Queensland families with melanoma. Nail Cancer Inst. 91(5), 446–452 (1999).
  • Ghiorzo P, Ciotti P, Mantelli M eta]. Characterization of ligurian melanoma families and risk of occurrence of other Neoplasia. Int.j Cancer83(4), 441–448 (1999).
  • MacKie RM, Andrew N, Lanyon WG, Connor JM. CDKN2A germline mutations in UK patients with familial melanoma and multiple primary melanomas. j Invest. Dermatol 111(2), 269–272 (1998).
  • Monzon J, Liu L, Brill H eta]. CDKN2A mutations in multiple primary melanomas. NEtgIj Med 338(13), 879–887 (1998).
  • Soufir N, Avril MF, Chompret A eta]. Prevalence of p 16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group. Hum. Mal Genet. 7(2), 209–216 (1998).
  • Fargnoli MC, Chimenti S, Keller G eta]. CDKN2a/p16INK4a mutations and lack of p19ARF involvement in familial melanoma kindreds. j Invest. Dermatol 111(6), 1202–1206 (1998).
  • Flores JF, Pollock PM, Walker GJ eta]. Analysis of the CDKN2A, CDKN2B and CDK4 genes in 48 Australian melanoma kindreds. Oncogene 15 (24), 2999–3005 (1997).
  • Sun S, Pollock PM, Liu L eta]. CDKN2A mutation in a non-FAMMM kindred with cancers at multiple sites results in a functionally abnormal protein. int. Cancer 73 (4), 531–531 (1997) .
  • Ciotti P, Strigini P, Bianchi-Scarra G. Familial melanoma and pancreatic cancer. Ligurian Skin Tumor Study Group. N Engl Med. 334(7), 469–470; discussion 471–472 (1996).
  • FitzGerald MG, Harkin DP, Silva-Arrieta S etal Prevalence of germ-line mutations in p16, p19ARF and CDK4 in familial melanoma: analysis of a clinic-based population. Proc. Nail Acad. Sci. USA 93(16), 8541–8545 (1996).
  • Borg A, Johannsson U, Johannsson 0 eta]. Novel germline p16 mutation in familial malignant melanoma in southern Sweden. Cancer Res. 56(11), 2497–2500 (1996).
  • Healy E, Sikkink S, Rees JL. Infrequent mutation of p16/A/K4in sporadic melanoma. Invest. Delmatol 107(3), 318–321 (1996).
  • Liu L, I ncsam NJ, Slingerland JM eta]. Germline p16INK4A mutation and protein dysfunction in a family with inherited melanoma. Oncogene11(2), 405–412 (1995).
  • Walker GJ, Hussussian CJ, Flores JF eta]. Mutations of the CDKN2Ip1 6INK4 gene in Australian melanoma kindreds. Hum. Mol Genet. 4(10), 1845–1852 (1995).
  • Gruis NA, van der Velden PA, Sandkuijl LA etal Homozygotes for CDKN2 (p16) germline mutation in Dutch familial melanoma kindreds. Nature Genet. 10(3), 351–353 (1995).
  • Hussussian CJ, Struewing JP, Goldstein AM etal Germline p16 mutations in familial melanoma. Nature Genet. 8(1), 15-21(1994).
  • Kamb A, Shattuck-Eidens D, Eeles R etal Analysis of the p/6gene (CDKN4 as a candidate for the chromosome 9p melanoma susceptibility locus. Nature Genet. 8(1), 23–26 (1994).
  • Goldstein AM, Chidambaram A, Halpern A etal Rarity of CDK4germline mutations in familial melanoma. Melanoma Res. 12(1), 51–55 (2002).
  • Kennedy C, ter Huurne J, Berkhout M eta]. Melanocortin-1 receptor (MC/1) gene variants are associated with an increased risk for cutaneous melanoma which is largely independent of skin type and hair color. .1. Invest. Dermatol 117(2), 294–300 (2001).
  • Palmer JS, Duffy DL, Box NF etal Melanocortin-1 receptor polymorphisms and risk of melanoma: is the association explained solely by pigmentation phenotype? Am. j Hum. Genet. 66 (1), 176–186 (2000).
  • Ichii-Jones F, Lear JT, Heagerty AH etal. Susceptibility to melanoma: influence of skin type and polymorphism in the melanocyte stimulating hormone receptor gene. .1. Invest. Dermatol 111(2), 218–221 (1998).
  • Valverde P, Healy E, Sikkink S etal The Asp84Glu variant of the melanocortin 1 receptor (MC1R) is associated with melanoma. Hum. Mal Genet. 5(10), 1663–1666 (1996).
  • Piccolo D, Chimenti S. Dermoscopic diagnosis by a trained clinician versus a clinician with minimal dermoscopy training versus computer-aided diagnosis of 341 pigmented skin lesions: a comparative study. Br. Dermatol 147(3), 481–486 (2002).
  • •Demonstrates that either a trained dermatologist or automated diagnosis system can improve the diagnostic accuracy of melanoma compared to an inexperienced clinician. Suggest that computer diagnosis might be a useful for the screening of melanoma in centers not experienced in derrnoscopy.
  • Moncrieff M, Cotton S, Claridge E, Hall P. Spectrophotometric intracutaneous analysis: a new technique for imaging pigmented skin lesions. BE j Dermatol 146(3), 448–457 (2002).
  • Busam KJ, Charles C, Lee G, Halpern AC. Morphologic features of melanocytes, pigmented keratinocytes and melanophages by in vivo confocal scanning laser microscopy. Mod. Pallid 14(9), 862–868 (2001).
  • Zembowicz A, McCusker M, Chiarelli C eta]. Morphological analysis of nevoid melanoma: a study of 20 cases with a review of the literature. Am. J. Dermatopathol 23(3), 167–175 (2001).
  • Quinn MJ, Crotty IKA, Thompson JF, Coates AS, O'Brien CJ, McCarthy WH. Desmoplastic and desmoplastic neurotropic melanoma: experience with 280 patients. Cancer83(6), 1128–1135 (1998).
  • Li LX, Crotty KA, Palmer AA eta]. Differentiating benign nevi from malignant melanoma using DNA microdensitometry and karyometry and maturation: a zonal comparison, correlation and multivariate analysis. Anal Quant. GYM]: Pistol. 24(4), 234–243 (2002).
  • •Demonstrates that cytometric analysis can accurately diagnosis melanoma (98% efficiency).
  • Tran TA, Ross JS, Carlson JA, Mihm MC Jr. Mitotic cyclins and cyclin-dependent kinases in melanocytic lesions. Hum. Pallid 29(10), 1085–1090 (1998).
  • Georgieva J, Sinha P, Schadendorf D. Expression of cyclins and cyclin dependent kinases in human benign and malignant melanocytic lesions. j Gun. Athol 54(3), 229–235 (2001).
  • Florenes VA, Faye RS, Maelandsmo GM, Nesland JM, Holm R. Levels of cyclin D1 and D3 in malignant melanoma: deregulated cyclin D3 expression is associated with poor clinical outcome in superficial melanoma. Gun. Cancer Res. 6(9), 3614–3620 (2000).
  • Flores JF, Walker GJ, Glendening JM et al Loss of the pl6INK4a and pl5INK4b genes, as well as neighboring 9p21 markers, in sporadic melanoma. Cancer Res. 56(21), 5023–5032 (1996).
  • Wagner SN, Wagner C, Briedigkeit L, Goos M. Homozygous deletion of the pl6INK4a and the pl5INK4b tumour suppressor genes in a subset of human sporadic cutaneous malignant melanoma. Br. Dermatol 138(1), 13–21 (1998).
  • Sparrow LE, Eldon MJ, English DR, Heenan PJ. p16 and p21WAF1 protein expression in melanocytic tumors by immunohistochemistry. Am. Dermatopathol 20(3), 255–261 (1998).
  • Trotter MJ, Tang L, Tron VA. Overexpression of the cyclin-dependent kinase inhibitor p21(VVAF1/CIP1) in human cutaneous malignant melanoma. Cutan. Pallid 24(5), 265–271 (1997).
  • Florenes VA, Maelandsmo GM, Kerbel RS, Slingerland JM, Nesland JM, Holm R. Protein expression of the cell-cycle inhibitor p271Kipl in malignant melanoma: inverse correlation with disease-free survival. Am. Pallid 153(1), 305–312 (1998).
  • Gelsleichter L, Gown AM, Zarbo RJ, Wang E, Coltrera MD. p53 and mdm-2 expression in malignant melanoma: an immunocytochemical study of expression of p53, mdm-2 and markers of cell proliferation in primary versus metastatic tumors. Mod Athol 8(5), 530–535 (1995).
  • Korabiowska M, Brinck U, Hoenig JF eta]. Significance of p53antigen in malignant melanomas and nevi of the head and neck area. Anticancer Res. 15(3), 885–889 (1995).
  • Korabiowska M, Betke H, Kellner S, Stachura J, Schauer A. Differential expression of growth arrest, DNA damage genes and tumour suppressor gene p53 in nevi and malignant melanomas. Anticancer Res. 17(5A), 3697–3700 (1997).
  • Bodey B, Kaiser HE, Goldfarb RII. Immunophenotypically varied cell subpopulations in primary and metastatic human melanomas. Monoclonal antibodies for diagnosis, detection of neoplastic progression and receptor directed immunotherapy. Anticancer Res. 16(1), 517–531 (1996).
  • Korabiowska M, Brinck U, Ruschenburg I, Schlott T, Droese M, Stachura J. Bc12 and Bax expression in nevi and melanomas and their relation to ploidy status and proliferation. Pol. j Pallid 50(1), 17–21 (1999).
  • Dome B, Somlai B, Timar J. The loss of NM23 protein in malignant melanoma predicts lymphatic spread without affecting survival. Anticancer Res. 20(5C), 3971–3974 (2000).
  • Shukuwa T, Katayama I, Koji T Fas-mediated apoptosis of melanoma cells and infiltrating lymphocytes in human malignant melanomas. Mod. Pallid 15(4), 387–396 (2002).
  • Miracco C, Santopietro R, Biagioli M etal Different patterns of cell proliferation and death and oncogene expression in cutaneous malignant melanoma. j Cutan. Athol 25(5), 244–251 (1998).
  • Kraehn GM, Utikal J, Udart M eta]. Extra c-myc Oncogene copies in high-risk cutaneous malignant melanoma and melanoma metastases. BE j Cancer 84(1), 72–79 (2001).
  • Luca MR, Bar-Eli M. Molecular changes in human melanoma metastasis. Hstol. Hstopathol 13(4), 1225–1231 (1998).
  • Whiteman DC, Zhou XP, Cummings MC, Pavey S, Hayward NK, Eng C. Nuclear PTEN expression and clinicopathologic features in a population-based series of primary cutaneous melanoma. int. Cancer 99(1), 63–67 (2002).
  • Poetsch M, Dittberner T, Woenckhaus C. PTEN/MMAC1 in malignant melanoma and its importance for tumor progression. Cancer Genet. Cytogenet. 125(1), 21–26 (2001).
  • Celebi JT, Shendrik I, Silvers DN, Peacocke M. Identification of PTEN mutations in metastatic melanoma specimens. J. Med. Genet. 37 (9), 653–657 (2000).
  • Santa Cruz DJ, Hamilton PD, Klos DJ, Fernandez-Pol JA. Differential expression of metallopanstimulin/S27 ribosomal protein in melanocytic lesions of the skin. J. Cutan. Radial 24(9), 533–542 (1997).
  • Shirasaki F, Takata M, Hatta N, Takehara K. Loss of expression of the metastasis suppressor gene KiSS1 during melanoma progression and its association with LOH of chromosome 6q16.3—q23. Cancer Res. 61(20), 7422–7425 (2001).
  • Miracco C, Pacenti L, Santopietro R, Laurini L, Biagioli M, Luzi P Evaluation of telomerase activity in cutaneous melanocytic proliferations. Hum. Pallid 31(9), 1018–1021 (2000).
  • Meije CB, Das PK, Jans MM et al. Multiple complementary transcripts of pCMal, a novel gene located at chromosome 11p15.1-2 and melanocytic cell transformation. Pathol 197(5), 668–676 (2002).
  • Korabiowska M, Brinck U, Dengler H, Stachura J, Schauer A, Droese M. Analysis of the DNA mismatch repair proteins expression in malignant melanomas. Anticancer Res. 20(6B), 4499–4505 (2000).
  • Sparrow LE, Heenan PJ. Differential expression of epidermal growth factor receptor in melanocytic tumours demonstrated by immunohistochemistry and mRNA in situ hybridization. Australas.j Dermatol. 40(1), 19–24 (1999).
  • Ohashi A, Funasaka Y, Ueda M, Ichihashi M. c-KIT receptor expression in cutaneous malignant melanoma and benign melanotic naevi. Melanoma Res. 6(1), 25–30 (1996).
  • Eliopoulos P, Mohammed MQ, Henry K, Retsas S. Overexpression of HER-2 in thick melanoma. Melanoma Res. 12 (2), 139–145 (2002).
  • Korabiowska M, Mirecka J, Brinck U, Hoefer K, Marx D, Schauer A. Differential expression of cerbB3 in nevi and malignant melanomas. AntiCancer Res. 16(1), 471–474 (1996).
  • Natali PG, Hamby CV, Felding- Habermann B et al Clinical significance of a(v)03 integrin and intercellular adhesion molecule-1 expression in cutaneous malignant melanoma lesions. Cancer Res. 57(8), 1554–1560 (1997).
  • Van Belle PA, Elenitsas R, Satyamoorthy K, Wolfe JT, Guerry Dt, Schuchter L et al Progression-related expression of beta3 integrin in melanomas and nevi. Hum. Pathol. 30(5), 562–567 (1999).
  • Nesbit M, Herlyn M. Adhesion receptors in human melanoma progression. Invasion Metastasis 14 (1-6), 131–146 (1994).
  • Demunter A, Libbrecht L, Degreef H, De Wolf-Peeters C, van den Oord JJ. Loss of membranous expression of beta-catenin is associated with tumor progression in cutaneous melanoma and rarely caused by exon 3 mutations. Mod. Pathol. 15(4), 454–461 (2002).
  • Schaider H, Soyer HP, Heider KH etal CD44 and variants in melanocytic skin neoplasms. j Cutan. Athol 25 (4), 199–203 (1998).
  • Harwood CA, Green MA, Cook MG. CD44 expression in melanocytic lesions: a marker of malignant progression? BE Dermatol 135(6), 876–882 (1996).
  • van Duinen CM, van den Broek LJ, Vermeer BJ, Fleuren GJ, Bruijn JA. The distribution of cellular adhesion molecules in pigmented skin lesions. Cancer 73(8), 2131–2139 (1994).
  • Denton KJ, Stretch JR, Gaiter KC, Harris AL. A study of adhesion molecules as markers of progression in malignant melanoma. Pathol 167(2), 187–191 (1992).
  • Silye R, Karayiannakis AJ, Syrigos KN etal E-cadherin/catenin complex in benign and malignant melanocytic lesions. j Pallid 186(4), 350–355 (1998).
  • Goncharuk VN, Ross JS, Carlson JA. Actin-binding protein fascin expression in skin Neoplasia. .1. Cutan. Pallid 29(7), 430–438 (2002).
  • Shih IM, Elder DE, Hsu MY, Herlyn M. Regulation of Mel-CAM/MUC18 expression on melanocytes of different stages of tumor progression by normal keratinocytes. Am j Athol 145(4), 837–845 (1994).
  • Moretti S, Pinzi C, Spallanzani A eta]. Immunohistochemical evidence of cytokine networks during progression of human melanocytic lesions. Int. j Cancer 84(2), 160–168 (1999).
  • •Demonstrates that melanoma cells utilize cascades of growth factors and cytokines in the progression from nevi to metastasis.
  • Busam KJ, Iversen K, Berwick M, Spagnoli GC, Old LJ, Jungbluth AA. Immunoreactivity with the antiMAGE antibody 57B in malignant melanoma: frequency of expression and correlation with prognostic parameters. Mod. Athol 13(4), 459–465 (2000).
  • Van den Oord JJ. Expression of CD26/ dipeptidyl-peptidase IV in benign and malignant pigment-cell lesions of the skin. Br. Detmatol 138(4), 615–621 (1998).
  • Reed JA, McNutt NS, Prieto VG, Albino AR Expression of transforming growth factor-0 2 in malignant melanoma correlates with the depth of tumor invasion. Implications for tumor progression. Am. Pallid 145(1), 97–104 (1994).
  • Reed JA, McNutt NS, Albino AP. Differential expression of basic fibroblast growth factor (bFGF) in melanocytic lesions demonstrated by in situ hybridization. Implications for tumor progression. Am. j Pallid 144(2), 329–336 (1994).
  • al-Alousi S, Carlson JA, Blessing K, Cook M, Karaoli T, Barnhill RL. Expression of basic fibroblast growth factor in desmoplastic melanoma. j Cutan. Athol 23(2), 118–125 (1996).
  • Halaban R, Kwon BS, Ghosh S, Delli Bovi P, Baird A. bFGF as an autocrine growth factor for human melanomas. Oncogene Res. 3(2), 177–186 (1988).
  • Delbaldo C, Masouye I, Saurat JH, Vassalli JD, Sappino AR Plasminogen activation in melanocytic Neoplasia. Cancer Res. 54(16), 4547–4552 (1994).
  • de Vries TJ, Quax PH, Denijn M eta]. Plasminogen activators, their inhibitors and urokinase receptor emerge in late stages of melanocytic tumor progression. Am. Pathol 144(1), 70–81 (1994).
  • Frohlich E, Schlagenhauff B, Mohrle M, Weber E, Klessen C, Rassner G. Activity, expression and transcription rate of the cathepsins B, D, H and L in cutaneous malignant melanoma. Cancer 91 (5), 972–982 (2001).
  • Bogdan I, Xin H, Burg G, Boni R. Heterogeneity of allelic deletions within melanoma metastases. Melanoma Res. 11(4), 349–354 (2001).
  • Healy E, Belgaid CE, Takata M eta]. Allelotypes of primary cutaneous melanoma and benign melanocytic nevi. Cancer Res. 56(3), 589–593 (1996).
  • Indsto JO, Cachia AR, Kefford RF, Mann GJ. X inactivation, DNA deletion and microsatellite instability in common acquired melanocytic nevi. Clin. Cancer Res. 7(12), 4054–4059 (2001).
  • •Melanocytic nevi are clonal but do not share common chromosomal aberrations.
  • Lee JD, Unger ER, Gittenger C, Lee DR, Hebert R, Maize JC. Interphase cytogenetic analysis of 1q12 satellite III DNA in melanocytic lesions: increased aneuploidy with malignant histology. Am. Dermatopathol 23(3), 176–180 (2001).
  • Balaban GB, Herlyn M, Clark WH Jr, Nowell PC. Karyotypic evolution in human malignant melanoma. Cancer Genet. Cytogenet. 19(1-2), 113–122 (1986).
  • Umebayashi Y, Otsuka E DNA-ploidy abnormalities are a reflection of the metastatic potential of malignant melanoma. Microfluorometric DNA analysis. Acta Derm. Venemol 77(2), 118–121 (1997).
  • Schmidt B, Weinberg DS, Hollister K, Barnhill RL. Analysis of melanocytic lesions by DNA image cytometry. Cancer 73(12), 2971–2977 (1994).
  • Karlsson M, Boeryd B, Carstensen J, Kagedal B, Wingren S. DNA ploidy and 5-phase fraction in primary melanomas and their regional metastases. Melanoma Res. 4(1), 47–51 (1994).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.