34
Views
11
CrossRef citations to date
0
Altmetric
Review

Dominant spinocerebellar ataxias: a molecular approach to classification, diagnosis, pathogenesis and the future

Pages 715-732 | Published online: 09 Jan 2014

References

  • Woodworth JA, Beckett RS, Netsky MG. A composite of hereditary ataxias. Arch. Int. Med. 104,594–606 (1959).
  • Marie P. Sur l'heredo-ataxie cerebelleuse. Sem. Med. Atis)13,444–447 (1893).
  • Harding AE. Classification of the hereditary ataxias and paraplegias. Lancet 1, 1151–1155 (1983). A simple classification scheme that is often cited and remains of clinical relevance.
  • O'Hearn E, Molliver M. Organizational principles and microcircuitry of the cerebellum. Int. Rev. PTchiatry13, 232–246 (2001).
  • •Excellent review of the organization of the cerebellum.
  • van de Warrenburg BR Autosomal dominant cerebellar ataxias in The Netherlands: a national inventory. Ned. Tydschr Geneeskd 145,962–967 (2001).
  • Brignolio F, Leone M, Tribolo A etal Prevalence of hereditary ataxias and paraplegias in the province of Torino, Italy. Ital. Neural Sci. 7,431–435 (1986).
  • Leone M, Bottacchi E, D'Alessandro G, Kustermann S. Hereditary ataxias and paraplegias in Valle d'Aosta, Italy: a study of prevalence and disability. Acta Neural. Scand. 91,183-187 (1995).
  • Polo JM, Calleja J, Combarros 0, Berciano J. Hereditary ataxias and paraplegias in Cantabria, Spain. An epidemiological and clinical study. Brain 114 (Pt 2), 855–866 (1991).
  • Silva MC, Coutinho P, Pinheiro CD, Neves JM, Serrano P Hereditary ataxias and spastic paraplegias: methodological aspects of a prevalence study in Portugal. J. Orin. Epidemial 50,1377–1384 (1997).
  • Harper PS. Huntington's disease. WB Saunders, London (1996).
  • Giunti P, Sweeney MG, Spadaro M eta]. The trinucleotide repeat expansion on chromosome 6p (SCA1) in autosomal dominant cerebellar ataxias. Brain 117 (Pt 4), 645–649 (1994).
  • Ranum LPW, Chung M-Y, Banfi S etal Molecular and clinical correlations in spinocerebellar ataxia Type 1: evidence for familial effects on the age at onset. Am. J. Hum. Genet. 55,244-252 (1994).
  • Goldfarb LG, Chumakov MP Petrov PA, Fedorova NI, Gajdusek DC. Olivopontocerebellar atrophy in a large Iakut kinship in eastern Siberia. Neurology39,1527–1530 (1989).
  • Nino HE, Noreen HJ, Dubey DP etal A family with hereditary ataxia: 1-ILA typing. Neurology30, 12–20 (1980).
  • Genis D, Matilla T, Volpini V etal Clinical, neuropathologic and genetic studies of a large spinocerebellar ataxia Type 1 (SCA1) kindred: (CAG)n expansion and early premonitory signs and symptoms. Neurology 45, 24–30 (1995).
  • Subramony SH, Vig PJS. Genetic instabilities and hereditary neurological diseases. Wells RD, Warren ST (Eds), Academic Press, San Diego, CA, USA, 231–240 (1998).
  • Robitaille Y, Schut L, Kish SJ. Structural and immunocytochemical features of olivopontocerebellar atrophy caused by the spinocerebellar ataxia Type 1 (SCA-1) mutation define a unique phenotype. Acta Neuropathol 90,572–581 (1995).
  • Yakura H, Wakisaka A, Fujimoto S, Itakura K. Letter: hereditary ataxia and HL-A. N. Engl Med 291,154–155 (1974).
  • Rich SS, Wilkie P, Schut L, Vance G, Orr HT Spinocerebellar ataxia: localization of an autosomal dominant locus between two markers on human chromosome 6. Am. Hum. Genet. 41,524-531 (1987).
  • Orr HT, Chung MY, Banfi S et al Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia Type 1. Nature Genet. 4,221–226 (1993).
  • ••The first report describing the geneticetiology of a dominant spinocerebellar ataxia (SCA).
  • Quan F, Janas J, Popovich BW. A novel CAG repeat configuration in the SCAI gene: implications for the molecular diagnostics of spinocerebellar ataxia Type 1. Hum. Mal Genet. 4,2411-2413 (1995).
  • Futamura N, Matsumura R, Murata K, Suzumura A, Takayanagi T An apparently sporadic case with spinocerebellar ataxia Type 1 (SCA1). Rinsho Shinkeigaku 37, 708–710 (1997).
  • Goldfarb LG, Vasconcelos 0, Platonov FAetal Unstable triplet repeat and phenotypic variability of spinocerebellar ataxia Type 1. Ann. Neuml 39,500–506 (1996).
  • Geschwind DH, Perlman S, Figueroa CP, Treiman LJ, Pulst SM. The prevalence and wide clinical spectrum of the spinocerebellar ataxia Type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia. Am. J. Hum. Genet. 60, 842–850 (1997).
  • Cancel G, Dun A, Didierjean 0 etal Molecular and clinical correlations in spinocerebellar ataxia 2: a study of 32 families. Hum. Mal Genet. 6,709-715 (1997).
  • Zhou YX, Wang GX, Tang BS etal Spinocerebellar ataxia Type 2 in China: molecular analysis and genotype-phenotype correlation in nine families. Neumlogy51,595–598 (1998).
  • Orozco G, Estrada R, Perry TL et al Dominantly inherited olivopontocerebellar atrophy from eastern Cuba. Clinical, neuropathological and biochemical findings. J. Neural. Li. 93,37–50 (1989).
  • Estrada R, Galarraga J, Orozco G, Nodarse A, Auburger G. Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathol 97,306–310 (1999).
  • Gispert S, Twells R, Orozco G etal Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA2) to chromosome 12q23-24.1. Natum Genet. 4,295-299 (1993).
  • PluSt SM, Nechiporuk A, Starkman S. Anticipation in spinocerebellar ataxia Type 2. Nature Genet. 5,8-10 (1993).
  • PluSt S-M, Nechiporuk A, Nechiporuk Tetal Moderate expansion of a normal biallelic trinucleotide repeat in spinocerebellar ataxia Type 2. Nature Genet. 14,209–276 (1996).
  • Sanpei K, Takano H, Igarashi S etal Identification of the spinocerebellar ataxia Type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT Natum Genet. 14,227–284 (1996).
  • Imbert G, Saudou F, Yvert G etal Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Natum Genet. 14,295–296 (1996).
  • ••The three simultaneous reports of thediscovery of the cause of SCA2.
  • Riess 0, Laccone FA, Gispert S etal SCA2 trinucleotide expansion in German SCA patients. Neurogenetics 1,59–64 (1997).
  • Fernandez M, McClain ME, Martinez RA etal Late-onset SCA2: 33 CAG repeats are sufficient to cause disease. Neurology 55, 569–572 (2000).
  • Matsumura R, Futamura N. Late-onset SCA2: 33 CAG repeats are sufficient to cause disease. Neurology57,566(2001).
  • Hussey J, Lockhart PJ, Seltzer W eta]. Accurate determination of ataxin-2 polyglutamine expansion in patients with intermediate-range repeats. Genet. Test. 6, 217–220 (2002).
  • Nakano KIK, Dawson DM, Spence A. Machado disease: a hereditary ataxia in Portuguese emigrants to Massachusetts. Neurology22, 49–55 (1972).
  • Rosenberg RN, Nyhan WL, Bay C. Autosomal dominant striatonigral degeneration: a clinical, pathological and biochemical study of a new genetic disorder. Trans. Am Neural. Assoc. 101, 78–80 (1976).
  • Woods BT, Schaumburg I11 I. Nigro-spino-dentatal degeneration with nuclear ophthalmoplegia. A unique and partially treatable clinico-pathological entity. I Neural. Sci. 17,149-166 (1972).
  • Romanul PC, Fowler HL, Radvany J, Feldman RG, Feingold M. Azorean disease of the nervous system. N Engl. I Med. 296, 1505–1508 (1977).
  • Coutinho P, Andrade C. Autosomal dominant degeneration in Portuguese families of the Azores Islands: a new genetic disorder involving cerebellar, pyramidal, extrapyramidal and spinal cord motor functions. Neurology28, 703–709 (1978).
  • Sequeiros J, Coutinho P. Advances inNeurology, volume 61. Harding AE, Deufel T (Eds), Ravens Press, New York, USA, 139–153 (1993).
  • Paulson HL. Analysis of Triplet Repeat Disorders: Rubinsztein DC, Hayden MR (Eds), Bios, Oxford, UK, 129–144 (1998).
  • Matilla T, McCall A, Subramony SH, Zoghbi HY. Molecular and clinical correlations in spinocerebellar ataxia Type 3 and Machado—Joseph disease. Ann. Neural. 38,68-72 (1995).
  • Takiyama Y, Oyanagi S, Kawashima S eta]. A clinical and pathologic study of a large Japanese family with Machado—Joseph disease tightly linked to the DNA markers on chromosome 14q. Neurology44, 1302–1308 (1994).
  • Higgins JJ, Nee LE, Vasconcelos 0 etal Mutations in American families with spinocerebellar ataxia (SCA) Type 3: SCA3 is allelic to Machado—Joseph disease. Neurology46, 208–213 (1996).
  • Kawaguchi Y, Okamoto T, Taniwaki Metal CAG expansions in a novel gene for Machado—Joseph disease at chromosome 14q32.1. Natum Genet. 8,221-228 (1994).
  • •Discovery of the genetic etiology of SCA3.
  • Cancel G, Abbas N, Stevanin G etal Marked phenotypic heterogeneity associated with expansion of a CAG repeat sequence at the spinocerebellar ataxia 3/Machado—Joseph disease locus. Am.j Hum. Genet. 57,809-816 (1995).
  • Schols L, Vieira-Saecker AM, Schols S etal Trinucleotide expansion within the MJD1 gene presents clinically as spinocerebellar ataxia and occurs most frequently in German SCA patients. Hum. Mal Genet. 4, 1001–1005 (1995).
  • van Alfen N, Sinke RJ, Zwarts MJ etal Intermediate CAG repeat lengths (53,54) for MJD/SCA3 are associated with an abnormal phenotype. Ann. Neural. 49, 805–807 (2001).
  • Enevoldson TP, Sanders MD, Harding AE. Autosomal dominant cerebellar ataxia with pigmentary macular dystrophy. A clinical and genetic study of eight families. Brain 117 (Pt 3), 445–460 (1994).
  • Johansson J, Forsgren L, Sandgren 0 etal Expanded CAG repeats in Swedish spinocerebellar ataxia Type 7 (SCA7) patients: effect of CAG repeat length on the clinical manifestation. Hum. Mal. Genet. 7, 171–176 (1998).
  • David G, Durr A, Stevanin G etal Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). Hum. Mal Genet. 7,165-170(1998).
  • Benton CS, de Silva R, Rutledge SL eta]. Molecular and clinical studies in SCA-7 define a broad clinical spectrum and the infantile phenotype. Neurology51, 1081–1086 (1998).
  • Martin JJ, Van Regemorter N, Krols Letal On an autosomal dominant form of retinal—cerebellar degeneration: an autopsy study of five patients in one family. Acta Neuropathol 88,277–286(1994).
  • David G, Abbas N, Stevanin G etal Cloning of the SCA 7gene reveals a highly unstable CAG repeat expansion. Nature Genet. 17,65–70 (1997).
  • •Discovery of the genetic etiology of SCA7.
  • Del-Favero J, Krols L, Michalik A eta]. Molecular genetic analysis of autosomal dominant cerebellar ataxia with retinal degeneration (ADCA Type II) caused by CAG triplet repeat expansion. Hum. Mal Genet. 7,177–186 (1998).
  • Koob MD, Benzow IKA, Bird TD etal Rapid cloning of expanded trinucleotide repeat sequences from genomic DNA. Nature Genet. 18,72–75 (1998).
  • •Second report of etiology of SCA7 using a novel method for mutation discovery since applied to other CAG repeat expansion disorders.
  • Nardacchione A, Orsi L, Brusco A etal Definition of the smallest pathological CAG expansion in SCA7. Clin. Genet. 56, 232–234 (1999).
  • Stevanin G, Giunti P, Belal GD etalDe nova expansion of intermediate alleles in spinocerebellar ataxia 7. Hum. Mal Genet.7,1809-1813 (1998).
  • Koide R, Kobayashi S, Shimohata T etal A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum. Mal Genet. 8,2047–2053 (1999).
  • •Initial report of the genetic etiology of what would become classified as SCA17.
  • Nakamura K, Jeong SY, Uchihara T etal SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum. Mal Genet. 10,1441-1448 (2001).
  • Zuhlke C, Hellenbroich Y, Dalski A etal Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia. Eta: J. Hum. Genet. 9,160-164 (2001).
  • Fujigasaki H, Martin JJ, De Deyn PP etal CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia. Brain 124, 1939–1947 (2001).
  • ••Confirmation of discovery of geneticetiology of SCA17.
  • Silveira I, Miranda C, Guimaraes L etal Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG)n allele at the SCA17 locus. Atli. Neural 59, 623–629 (2002).
  • Zuhlke C, Gehlken U, Hellenbroich Y, Schwinger E, Burk K. Phenotypical variability of expanded alleles in the TATA-binding protein gene. Reduced penetrance in SCA17?1 Neural. 250,161-163 (2003).
  • Ikeuchi T, Koide R, Tanaka H etal Dentatorubral-pallidoluysian atrophy: clinical features are closely related to unstable expansions of trinucleotide (CAG) repeat. Ann. Neural. 37,769–775 (1995).
  • Ross CA, Margolis RL, Rosenblatt A etal Huntington's disease and the related disorder, dentatorubral-pallidoluysian atrophy (DRPLA). Medicine 76,305–338 (1997).
  • Naito H, Oyanagi S. Familial myoclonus epilepsy and choreoathetosis: hereditary dentatorubral-pallidoluysian atrophy. Neurology32,798–807 (1982).
  • Goto I, Tobimatsu S, Ohta M eta]. Dentatorubral-pallidoluysian degeneration: clinical, neuro-opthalmologic, biochemical and pathologic studies on autosomal dominant form. Neurology32,1395–1399 (1982).
  • Iizuka R, Hirayama K, Maehara K. Dentato-rubro-pallido-luysian atrophy: a clinco-pathological study. I Neural Neurosurg. Psych. 47,1288-1298 (1984).
  • Becher MW Rubinsztein DC, Leggo J eta Dentatorubral and pallidoluysian atrophy (DRPLA): clinical and neuropathological findings in genetically confirmed North American and European pedigrees. May Disoml 12,519–530 (1997).
  • •Most complete summary of non-Japanese cases of dentatorubral and pallidoluysian atrophy (DRPLA).
  • Li SH, McInnis MG, Margolis RL, Antonarakis SE, Ross CA. Novel triplet repeat containing genes in human brain: cloning, expression and length polymorphisms. Genomics 16,572–579 (1993).
  • Koide R, Ikeuchi T, Onorodera 0 et al. Unstable expansion of CAG repeat in herediatry dentatorubral pallidoluysian atrophy (DRPLA). Natum Genet. 6,9-12 (1994).
  • Nagafuchi S, Yanagisawa H, Soto K eta]. Dentatorubral and pallidoluysian atrophy is caused by an expansion of an unstable CAG trinucleotide repeat on chromosome 12p. Natum Genet. 6,14-18 (1994).
  • ••Candidate gene strategy used simultaneously by two groups to identify the cause of DRPLA.
  • Kurohara K, Kuroda Y, Maruyama H eta]. Homozygosity for an allele carrying intermediate CAG repeats in the dentatorubral-pallidoluysian atrophy (DRPLA)gene results in spastic paraplegia. Neurology48, 1087–1090 (1997).
  • Bates G. Huntingtin aggregation and toxicity in Huntington's disease. Lancet361,1642–1644 (2003).
  • Rudnicki DD, Margolis RL. Repeat expansion and autosomal dominant neurodegenerative disorders: consensus and controversy. Exp. Rev Mal Med. (2003) (In Press).
  • Sugars KL, Rubinsztein DC. Transcriptional abnormalities in Huntington's disease. Bends Genet. 19, 233–238 (2003).
  • Paulson H. Polyglutamine neurodegeneration: minding your P's and Qs. Nattily Med. 9,825–826 (2003).
  • Chan HY, Bonini NM. Drosophila models of polyglutamine diseases. Meth. Mal Biol. 217,241–251 (2003).
  • Ross CA. Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington's disease and related disorders. Neuron 35,819–822 (2002).
  • Tsuji S. Molecular mechanisms of neurodegeneration in dentatorubral-pallidoluysian atrophy (DRPLA). Rinsho Shinkeigaku 41,1064–1066 (2001).
  • Orr HT Beyond the Qs in the polyglutamine diseases. Genes Dev 15, 925–932 (2001).
  • Aiyar J, Nguyen AN, Chandy KG, Grissmer S. The P-region and S6 of Kv3.1 contribute to the formation of the ion conduction pathway. Biophys.1. 67, 2261–2264 (1994).
  • Trottier Y, Lutz Y, Stevanin G etal Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature 378, 403–406 (1995).
  • Zuccato C, Ciammola A, Rigamonti D etal Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Science 293,493–498 (2001).
  • •Evidence for toxicity from loss of function in a polyglutamine disease.
  • Chen S, Berthelier V, Hamilton JB, O'Nuallain B, Wetzel R. Amyloid-like features of polyglutamine aggregates and their assembly kinetics. Biochemistry 41, 7391–7399 (2002).
  • Poirier MA, Li H, Macosko J etal Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization. .1. Biol. Chem. 277,41032-41037 (2002).
  • Yamamoto A, Lucas JJ, Hen R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Ce11101, 57–66 (2000).
  • ••Remarkable finding that neuropathologyand motor dysfunction in a transgenic mouse model of Huntington's disease (HD) is reversed when production of the mutant protein is shut down.
  • Klement IA, Skinner PJ, Kaytor MD etal Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. C1195, 41–53 (1998).
  • Saudou F, Finkbeiner S, Devys D, Greenberg ME. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Ce1195,55–66 (1998).
  • •Provocative and controversial finding that inclusions may not be directly toxic.
  • Kazantsev A, Walker HA, Slepko N et al A bivalent huntingtin binding peptide suppresses polyglutamine aggregation and pathogenesis in Drosophila. Nature Genet. 30,367–376 (2002).
  • Nucifora FC Jr, Sasaki M, Peters ME etal Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291,2423–2428 (2001).
  • •Evidence that proteins with polyglutamine expansions may interfere with transcriptional processes.
  • Bence NF, Sampat RM, Kopito RR. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555 (2001).
  • •Initial evidence for the involvement of proteasomes in polyglutamine disease pathogenesis.
  • Matilla A, Gorbea C, Einum DD eta]. Association of ataxin-7 with the proteasome subunit S4 of the 19S regulatory complex. Hum. Mal Genet. 10,2821-2831 (2001).
  • Waelter S, Boeddrich A, Lurz R etal Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Ma Biol. Ce1112, 1393–1407 (2001).
  • Cummings CJ, Sun Y, Opal P etal Overexpression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum. Mal Genet. 10,1511-1518 (2001). too Wyttenbach A, Sauvageot 0, Carmichael J eta]. Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum. Mal Genet. 11,1137-1151 (2002).
  • Warrick JM, Chan HY, Gray-Board GL etal Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nature Genet. 23,425–428 (1999).
  • •Early evidence supporting a modulating role of the heat shock proteins in polyglutamine pathogenesis.
  • Wellington CL, Ellerby LM, Gutekunst CA eta]. Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington's disease. I Neurosci. 22, 7862–7872 (2002).
  • •Evidence for the role of proteolysis in the pathogenesis of polyglutamine diseases.
  • Steffan JS, Bodai L, Pallos J et al Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413,739–743 (2001).
  • Yamada M, Tsuji S, Takahashi H. Involvement of lysosomes in the pathogenesis of CAG repeat diseases. Ann. Neural. 52,498–503 (2002).
  • •Implication of lysosomal pathway in polyglutamine pathogenesis.
  • Sawa A, Wiegand GW, Cooper J eta]. Increased apoptosis of Huntington's disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nature Merl 5,1194–1198 (1999).
  • •Mitochondrial dysfunction in polyglutamine pathogenesis.
  • Kalchman MA, Koide FIB, McCutcheon K et al HIP1, a human homolog of S cerevisiae Sla2P, interacts with membrane-associated huntingtin in the brain. Nature Genet. 16(1), 44–53 (1997).
  • Burke JR, Enghild JJ, Martin ME et al Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nature Merl 347,350 (1996).
  • Matilla A, Koshy B, Cummings CJ eta]. The cerebellar leucine rich acidic nuclear protein (LANP) interacts with ataxin-1. Nature 389,974–978 (1997).
  • Chen HK, Fernandez-Funez P, Acevedo SF et al Interaction of Akt-phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia Type 1. Ce11113, 457–468 (2003). Ho La Spada AR, Fu YH, Sopher BL eta]. Polyglutamine-expanded ataxin-7 antagonizes CRX function and induces cone-rod dystrophy in a mouse model of SCA7. Neuron 31,913-927 (2001). ill Hand PJ, Gardner RJ, Knight MA, Forrest SM, Storey E. Clinical features of a large Australian pedigree with episodic ataxia Type 1. May. Disoirl 16,938–939 (2001).
  • Zuberi SM, Eunson LH, Spauschus A eta]. A novel mutation in the human voltage-gated potassium channel gene (Kv1.1) associates with episodic ataxia Type 1 and sometimes with partial epilepsy. Brain 122 (Pt 5), 817–825 (1999).
  • Browne DL, Gancher ST, Nutt JG eta]. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1 Nature Genet. 8,136-140 (1994).
  • •Discovery of the genetic cause of episodic ataxia Type 1.
  • Eunson LH, Rea R, Zuberi SM etal Clinical, genetic and expression studies of mutations in the potassium channel gene KCNA 1 reveal new phenotypic variability. Ann. Neural. 48,647-656 (2000).
  • Maylie B, Bissonnette E, Virk M, Adelman JP, Maylie JG. Episodic ataxia Type 1 mutations in the human Kv1.1 potassium channel alter hKvbeta 1-induced N-type inactivation. J: Neurosci. 22, 4786–4793 (2002).
  • Ishikawa K, Tanaka H, Saito M eta]. Japanese families with autosomal dominant pure cerebellar ataxia map to chromosome 19p13.1-p13.2 and are strongly associated with mild CAG expansions in the spinocerebellar ataxia Type 6 gene in chromosome 19p13.1.Arnj Hum. Genet. 61,336-346 (1997).
  • Matsuyama Z, Kawakami H, Maruyama H etal Molecular features of the CAG repeats of spinocerebellar ataxia 6 (SCA6). Hum. Mal Genet. 6,1283-1287 (1997).
  • Jodice C, Mantuano E, Veneziano L eta]. Episodic ataxia Type 2 (EA2) and spinocerebellar ataxia Type 6 (SCA6) due to CAG repeat expansion in the CACNA1A gene on chromosome 19p. Hum. Mal. Genet. 6,1973-1978 (1997).
  • •Demonstration that episodic ataxia Type 2 and SCA6 are overlapping syndromes.
  • Sinke RJ, Ippel EF, Diepstraten CM eta]. Clinical and molecular correlations in spinocerebellar ataxia Type 6: a study of 24 Dutch families. Arch. Neural. 58, 1839–1844 (2001).
  • Schols L, Kruger R, Amoiridis G eta]. Spinocerebellar ataxia Type 6: genotype and phenotype in German kindreds. j Neural. Neurosurg. PTchiatry64, 67-73(1998).
  • Zhuchenko 0, Bailey J, Bonnen P et al Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alphalA-voltage-dependent calcium channel. Nature Genet. 15,62–69 (1997).
  • ••Discovery of the genetic etiology of SCA6.
  • Ikeuchi T, Takano H, Koide R etal Spinocerebellar ataxia Type 6: CAG repeat expansion in alphalA voltage-dependent calcium channel gene and clinical variations in Japanese population. Ann. Neural 42, 879–884 (1997).
  • Gomez CM, Thompson RM, Gammack JT et al Spinocerebellar ataxia Type 6: gaze-evoked and vertical nystagmus, Purkinje cell degeneration and variable age of onset. Ann. Neural. 42, 933–950 (1997).
  • Takahashi H, Ikeuchi T, Honma Y, Hayashi S, Tsuji S. Autosomal dominant cerebellar ataxia (SCA6): clinical, genetic and neuropathological study in a family. Acta Neuropathol 95,333-337(1998).
  • Ishikawa K, Watanabe M, Yoshizawa K etal Clinical, neuropathological and molecular study in two families with spinocerebellar ataxia Type 6 (SCA6). J Neural Neumsurg. fiychiatry67, 86–89 (1999).
  • Yabe I, Sasaki H, Matsuura T eta]. SCA6 mutation analysis in a large cohort of the Japanese patients with late-onset pure cerebellar ataxia. J Neuml Sci. 156,89-95 (1998).
  • Ishikawa K, Owada K, Ishida K etal Cytoplasmic and nuclear polyglutamine aggregates in SCA6 Purkinje cells. Neurology56, 1753–1756 (2001).
  • •Protein aggregation in an ataxia not due to a very long polyglutamine expansion.
  • Piedras-Renteria ES, Watase K, Harata N etal Increased expression of alphalA Ca2+ channel currents arising from expanded trinucleotide repeats in spinocerebellar ataxia Type 6.j Neurosci 21,9185–9193 (2001).
  • Restituito S, Thompson RM, Eliet J etal The polyglutamine expansion in spinocerebellar ataxia Type 6 causes a beta subunit-specific enhanced activation of P/Q-type calcium channels in Xenopus oocytes. I Neurosci. 20,6394–6403 (2000).
  • Matsuyama Z, Wakamori M, Mori Y etal Direct alteration of the P/Q-type Ca2+ channel property by polyglutamine expansion in spinocerebellar ataxia 6.Neurosci. 19, RC14 (1999).
  • Gancher ST, Nutt JG. Autosomal dominant episodic ataxia: a heterogeneous syndrome. May. Disoirl 1,239–253 (1986).
  • Baloh RVV, Winder A. Acetazolamide-responsive vestibulocerebellar syndrome: clinical and oculographic features. Neurology41, 429–433 (1991).
  • Bain PG, O'Brien MD, Keevil SF, Porter DA. Familial periodic cerebellar ataxia: a problem of cerebellar intracellular pH homeostasis. Ann. Neural. 31,147–154 (1992).
  • Terwindt GM, Ophoff RA, Haan J, Frants RR, Ferrari MD. Familial hemiplegic migraine: a clinical comparison of families linked and unlinked to chromosome 19.DMGRG. Cephalalgia16, 153–155 (1996).
  • Ophoff RA, Terwindt GM, Vergouwe MN etal Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Ce1187, 543–552 (1996). ?Discovery of the genetic etiology of familial hemiplegic migraine and episodic ataxia Type 2.
  • Geschwind DH, Perlman S, Figueroa IKP etal Spinocerebellar ataxia Type 6. Frequency of the mutation and genotype—phenotype correlations. Neurology49, 1247–1251 (1997).
  • Yue Q, Jen JC, Nelson SF, Baloh RVV. Progressive ataxia due to a missense mutation in a calcium channel gene. 4117. Hum. Genet. 61, 1078–1087 (1997).
  • Day RV, Schut LJ, Moseley ML, Durand AC, Ranum LP Spinocerebellar ataxia Type 8: clinical features in a large family. Neurology55, 649–657 (2000).
  • Juvonen V, Hietala M, Paivarinta M eta]. Clinical and genetic findings in Finnish ataxia patients with the spinocerebellar ataxia 8 repeat expansion. Ann. Neural. 48, 354–361 (2000).
  • Koob MD, Moseley ML, Schut LJ etal An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nature Genet. 21, 379–384 (1999).
  • ••The discovery of the cause of SCA8.
  • Vincent JB, Neves-Pereira ML, Paterson AD etal An unstable trinucleotide repeat region on chromosome 13 implicated in spinocerebellar ataxia: a common expansion locus. Am. J. Hum. Genet. 66, 819–829 (2000).
  • Worth PF, Houlden H, Giunti P, Davis MB, Wood NW Large, expanded repeats in SCA8 are not confined to patients with cerebellar ataxia. Nature Genet. 24, 214–215 (2000).
  • Stevanin G, Herman A, Durr A etal Are (CTG)n expansions at the SCA8 locus rare polymorphisms? Nature Genet. 24, 213 (2000).
  • Sobrido MJ, Cholfin JA, Perlman S, Pulst SM, Geschwind DH. SCA8 repeat expansions in ataxia: a controversial association. Neurology57, 1310–1312 (2001).
  • •Discussion of the controversy concerning SCA8.
  • Cellini E, Nacmias B, Forleo P etal Genetic and clinical analysis of spinocerebellar ataxia Type 8 repeat expansion in Italy. Arch. Neural. 58, 1856–1859 (2001).
  • Ikeda Y, Shizuka-Ikeda M, Watanabe M etal Asymptomatic CTG expansion at the SCA8 locus is associated with cerebellar atrophy on MRI. I Neural. Sci. 182, 76–79 (2000).
  • Nemes JP, Benzow IKA, Moseley ML, Ranum LP, Koob MD. The SCA8 transcript is an antisense RNA to a brain-specific transcript encoding a novel actin-binding protein (KLHL1). Hum. Mal Genet. 9, 1543–1551 (2000).
  • Benzow KA, Koob MD. The KLHL1-antisense transcript (KLHL1AS) is evolutionarily conserved. Mamm. Genome 13, 134–141 (2002).
  • Matsuura T, Yamagata T, Burgess DL et al Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia Type 10. Nature Genet. 26, 191–194 (2000).
  • ••Discovery of the genetic etiology ofSCA10, the first pentameric repeat expansion.
  • Rasmussen A, Matsuura T, Ruano L eta]. Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia Type 10. Ann. Neural 50, 234–239 (2001).
  • O'Hearn E, Holmes SE, Calvert PC, Ross CA, Margolis RL. SCA-12: tremor with cerebellar and cortical atrophy is associated with a CAG repeat expansion. Neurology56, 299–303 (2001).
  • Fujigasaki H, Verma IC, Camuzat A etal SCA12 is a rare locus for autosomal dominant cerebellar ataxia: a study of an Indian family. Ann. Neural. 49, 117–121 (2001).
  • Srivastava AK, Choudhry S, Gopinath MS etal Molecular and clinical correlation in five Indian families with spinocerebellar ataxia 12. Ann. Neural. 50, 796–800 (2001).
  • Margolis RL, O'Hearn E, Rosenblatt A etal A disorder similar to Huntington's disease is associated with a novel CAG repeat expansion. Ann. Neural. 50, 373–380 (2001).
  • Holmes SE, O'Hearn E, Rosenblatt A eta]. A repeat expansion in the gene encoding junctophilin-3 is associated with Huntington 's disease-like 2. Nature Genet. 29(4), 377–378 (2001).
  • •The genetic etiology of a repeat expansion disease similar to HD.
  • Holmes SE, O'Hearn E, Ross CA, Margolis RL. SCA12: an unusual mutation leads to an unusual spinocerebellar ataxia. Brain Res. Bull. 56, 397–403 (2001).
  • •Summary of the discovery of the genetic etiology of SCA12 and subsequent investigations.
  • Yamashita I, Sasaki H, Yabe I eta]. A novel locus for dominant cerebellar ataxia (SCA14) maps to a 10.2-cM interval flanked by D195206 and D195605 on chromosome 19q13.4-qter. Ann. Neural. 48, 156–163 (2000).
  • Chen DH, Brkanac Z, Verlinde CL et al Missense mutations in the regulatory domain of PKC gamma: a new mechanism for dominant nonepisodic cerebellar ataxia. Am.j Hum. Genet. 72, 839–849 (2003).
  • ••Discovery of the genetic etiology ofSCA14, a point mutation implicating protein phosphorylation in the pathogenesis of cerebellar degeneration.
  • Van Swieten JC, Brusse E, De Graaf BM et al A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebral ataxia. Am. J. Hum. Genet. 72, 191–199 (2003).
  • ••The discovery of the genetic etiologyof fibroblast growth factor 14- associated SCA.
  • Pandolfo M, Koenig M. Genetic Instabilities and Heraiitary Neurological Diseases. Wells RD, Warren ST (Eds), Academic Press, San Diego, CA, USA, 373–400 (1998).
  • Berry-Kravis E, Lewin F, Wuu J eta]. Tremor and ataxia in fragile X premutation carriers: blinded videotape study. Ann. Neural 53, 616–623 (2003).
  • •Confirmation that the fragile X premutation can result in an SCA-like phenotype.
  • Leehey MA, Munhoz RP, Lang AE eta]. The fragile X premutation presenting as essential tremor. Arch. Neural 60, 117–121 (2003).
  • •Initial description of fragile X permutation-associated ataxia.
  • Schots L, Szymanski S, Peters S etal Genetic background of apparently idiopathic sporadic cerebellar ataxia. Hum. Genet. 107, 132–137 (2000).
  • •Seemingly sporadic cases of SCA may have an identifiable genetic cause.
  • Abele M, Burk K, Schols L etal The aetiology of sporadic adult-onset ataxia. Brain 125, 961–968 (2002).
  • Soong BW, Lu YC, Choo KB, Lee HY. Frequency analysis of autosomal dominant cerebellar ataxias in Taiwanese patients and clinical and molecular characterization of spinocerebellar ataxia Type 6. Arch. Neural 58, 1105–1109 (2001).
  • Gellera C, Meoni C, Castellotti B etal Errors in Huntington 's disease diagnostic test caused by trinucleotide deletion in the IT15 gene. Am. J. Hum. Genet. 59, 475–477 (1996).
  • Margolis RL, Stine OC, Callahan C etal Two novel single-base-pair substitutions adjacent to the CAG repeat in the Huntington's disease gene al* implications for diagnostic testing. Am J: Hum. Genet. 64, 323–326 (1999).
  • Yu S, Fimmel A, Fung D, Trent RJ. Polymorphisms in the CAG repeat: a source of error in Huntington's disease DNA testing. Clin. Genet. 58, 469–472 (2000).
  • Cannella M, Simonelli M, D'Alessio C et al Presymptomatic tests in Huntington's disease and dominant ataxias. Neural. Sc]. 22, 55–56 (2001).
  • Burson CM, Markey KR. Genetic counseling issues in predictive genetic testing for familial adult-onset neurologic diseases. Semin. Pediatr Neural. 8, 177–186 (2001).
  • •Review of issues in predictive (presymptomatic) genetic testing.
  • Benjamin CM, Adam S, Wiggins S eta]. Proceed with care: direct predictive testing for Huntington's disease. Am. J: Hum. Genet. 55, 606–617 (1994).
  • Sequeiros J, Maciel P, Taborda F et al Prenatal diagnosis of Machado—Joseph disease by direct mutation analysis. Prenat. Diagn. 18, 611–617 (1998).
  • Lashwood A, Hinter E Clinical and counselling implications of preimplantation genetic diagnosis for Huntington's disease in the UK. Hum. Perth. 4, 235–238 (2001).
  • •Discussion of issues of preimplantation testing in HD that is pertinent to the SCAs.
  • The Huntington's Disease Study Group. A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington's disease. Neurology57, 397–404 (2001).
  • •The largest and most sophisticated clinical treatment trial of any dominant movement disorder.
  • Hauser RA, Furtado S, Cimino CR eta]. Bilateral human fetal striatal transplantation in Huntington's disease. Neurology58, 687–695 (2002).
  • •Promising concept of fetal tissue transplantation in neurodegenerative diseases; results were not very encouraging.
  • Ranen NG, Peyser CE, Coyle J etal A controlled trial of idebenone in Huntington's disease. May Disold.11, 549–554 (1996).
  • Perlman SL. Cerebellar Ataxia. CUI7: Treat. Options Neural 2,215–224 (2000).
  • •Systematic review of treatment of the SCAs.
  • Yabe I, Sasaki H, Yamashita I, Takei A, Tashiro K. Clinical trial of acetazolamide in SCA6, with assessment using the Ataxia Rating Scale and body stabilometry. Acta Neural. Scand. 104, 44–47 (2001).
  • Mori M, Adachi Y, Mori N etal Double-blind crossover study of branched-chain amino acid therapy in patients with spinocerebellar degeneration. J. Neural. Sc]. 195, 149–152 (2002).
  • Shiga Y, Tsuda T, Itoyama Y etal Transcranial magnetic stimulation alleviates truncal ataxia in spinocerebellar degeneration. J: Neural. Neurosurg: PTchiatry72, 124–126 (2002).
  • •Intriguing nonpharrnacological approach to cerebellar ataxia.
  • Dorschner MO, Barden D, Stephens K. Diagnosis of five spinocerebellar ataxia disorders by multiplex amplification and capillary electrophoresis. J: Mal Diagn. 4, 108–113 (2002).
  • •Example of methodological improvements possible in SCA diagnosis.
  • Margolis RL. The spinocerebellar ataxias: order emerges from chaos. CUI7: Neural. Neurosd Rep. 2, 447–456 (2002).
  • Filla A, Mariotti C, Caruso G etal Relative frequencies of CAG expansions in spinocerebellar ataxia and dentatorubropallidoluysian atrophy in 116 Italian families. Eur. Neural. 44, 31–36 (2000).
  • Schots L, Amoiridis G, Buttner T eta]. Autosomal dominant cerebellar ataxia: phenotypic differences in genetically defined subtypes? Ann. Neural. 42, 924–932 (1997).
  • Storey E, du SD, Shaw JH etal Frequency of spinocerebellar ataxia types 1, 2, 3, 6 and 7 in Australian patients with spinocerebellar ataxia. Am. J: Med. Genet. 95, 351–357 (2000).
  • Pujana MA, Corral J, Gratacos M etal Spinocerebellar ataxias in Spanish patients: genetic analysis of familial and sporadic cases. The Ataxia Study Group. Hum. Genet. 104, 516–522 (1999).
  • Moseley ML, Benzow KA, Schut LJ etal Incidence of dominant spinocerebellar and Friedreich triplet repeats among 361 ataxia families. Neurology51, 1666–1671 (1998).
  • Takano H, Cancel G, Ikeuchi T eta]. Close associations between prevalences of dominantly inherited spinocerebellar ataxias with CAG-repeat expansions and frequencies of large normal CAG alleles in Japanese and Caucasian populations. Am.j Hum. Genet. 63, 1060–1066 (1998).
  • Tang B, Liu C, Shen L eta]. Frequency of SCA1, SCA2, SCANMJD, SCA6, SCA7 and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds. Arch. Neural. 57, 540–544 (2000).
  • Kim JY, Park SS, Joo SI, Kim JM, Jeon BS. Molecular analysis of spinocerebellar ataxias in Koreans: frequencies and reference ranges of SCA1, SCA2, SCA3, SCA6 and SCA7. Mal. c1112, 336–341 (2001).
  • Matsumura R, Futamura N, Ando N, Ueno S. Frequency of spinocerebellar ataxia mutations in the Kinki district of Japan. Acta Neural. Land. 107, 38–41 (2003).
  • Flanigan K, Gardner K, Alderson K etal Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1. Am.j Hum. Genet. 59, 392–399 (1996).
  • Takashima M, Ishikawa K, Nagaoka U, Shoji S, Mizusawa H. A linkage disequilibrium at the candidate gene locus for 16q-linked autosomal dominant cerebellar ataxia Type III in Japan. J: Hum. Genet. 46, 167–171 (2001).
  • Nagaoka U, Takashima M, Ishikawa K etal A gene on SCA4 locus causes dominantly inherited pure cerebellar ataxia. Neurology54, 1971–1975 (2000).
  • Ranum LP, Schut LJ, Lundgren JK, Orr HT, Livingston DM. Spinocerebellar ataxia Type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nature Genet. 8, 280–284 (1994).
  • Stevanin G, Herman A, Brice A, Durr A. Clinical and MRI findings in spinocerebellar ataxia Type 5. Neurology53, 1355–1357 (1999).
  • Worth PF, Giunti P, Gardner-Thorpe C etal Autosomal dominant cerebellar ataxia Type III: linkage in a large British family to a 7.6-cM region on chromosome 15q14-21.3. Am.j Hum. Genet. 65, 420–426 (1999).
  • Herman-Bert A, Stevanin G, Netter JC etal Mapping of spinocerebellar ataxia 13 to chromosome 19q13.3-q13.4 in a family with autosomal dominant cerebellar ataxia and mental retardation. Am. J: Hum. Genet. 67, 229–235 (2000).
  • Storey E, Gardner RJ, Knight MA etal A new autosomal dominant pure cerebellar ataxia. Neurology57, 1913–1915 (2001).
  • Knight MA, Kennerson M, Nicholson GA etal A new spinocerebellar ataxia SCA 15. AIR Hum. Genet. S69, 509 (2001).
  • Miyoshi Y, Yamada T, Tanimura M etal A novel autosomal dominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1-24.1. Neurology 57, 96–100 (2001).
  • Brkanac Z, Fernandez M, Matsushita M eta]. Autosomal dominant sensory/motor neuropathy with ataxia (SMNA): linkage to chromosome 7q22-q32. Am.j Merl Genet. 114,450-457 (2002).
  • Schelhaas HJ, Ippel PF, Hageman G eta]. Clinical and genetic analysis of a four-generation family with a distinct autosomal dominant cerebellar ataxia. j Neural. 248, 113–120 (2001).
  • Devos D, Schraen-Maschke S, Vuillaume I etal Clinical features and genetic analysis of a new form of spinocerebellar ataxia. Neurology56, 234–238 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.