317
Views
14
CrossRef citations to date
0
Altmetric
Technology Report

Ligation–mediated rolling–circle amplification–based approaches to single nucleotide polymorphism detection

&
Pages 111-116 | Published online: 09 Jan 2014

References

  • Kirk BW, Feinsod M, Favis R et al.Nucleic Acids Res.30, 3295–3311 (2002).
  • Schweitzer B, Kingsmore S. Combining nucleic acid amplification and detection. Curr. Opin. Biotechnol.12, 21–27 (2001).
  • Shi MM. Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies. Clin. Chem.47, 64–172 (2001).
  • Chen X, Sullivan PF. Single nucleotide polymorphism genotyping: biochemistry, protocol, cost and throughout. Pharmacogenomics J.3, 77–97 (2003).
  • Lehman IR. DNA ligase: structure, mechanism, and function. Science186, 790–797 (1974).
  • Landegren U, Kaiser R, Sanders J, Hood L. A ligase-mediated gene detection technique. Science241, 1077–1080 (1988).
  • Wu DY, Wallace RB. The ligation amplification reaction (LAR)–amplification of specific DNA sequences using sequential rounds of template-dependent ligation. Genomics4, 560–569 (1989).
  • Luo JY, Bergstrom DE, Barany F. Improving the fidelity of Thermus thermophilus DNA ligase. Nucleic Acids Res.24, 3071–3078 (1996).
  • Barany F, Gelfand DH. Cloning, overexpression and nucleotide sequence of a thermostable DNA ligase-encoding gene. Gene109, 1–11 (1991).
  • Cao W. Recent developments in ligase-mediated amplification and detection. Trends Biotechnol.22, 38–45 (2004)
  • Cao W. High-fidelity thermostable DNA ligase as a tool for DNA amplification. In: DNA Amplification: Current Technologies and Applications. Demidov VV, Broude NE (Eds), Horizon Bioscience, Wymondham, UK, 35–58 (2004).
  • Barany F. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc. Natl Acad. Sci. USA88, 189–193 (1991).
  • Iannone MA, Taylor JD, Chen JW et al. Multiplexed single nucleotide polymorphism genotyping by oligonucleotide ligation and flow cytometry. Cytometry39, 131–140 (2000).
  • Fire A, Xu S-Q. Rolling replication of short DNA circles. Proc. Natl Acad. Sci. USA92, 4641–4645 (1995).
  • Liu DY, Daubendiek SL, Zillman MA, Ryan K, Kool ET. Rolling circle DNA synthesis: small curcular oligonucleotdies as efficient templates for DNA polymerases. J. Am. Chem. Soc.118, 1587–1594 (1996).
  • Demidov VV. Rolling-circle amplification in DNA diagnostics: the power of simplicity. Expert Rev. Mol. Diagn.2, 542–548 (2002).
  • Blanco L, Bernad A, Lázaro JM, Martín G, Garmendia C, Salas M. High efficent DNA synthesis by the phage Ø29 DNA polymerase. J. Biol. Chem.264, 8935–8940 (1989).
  • Blanco L, Salas M. Relating structure to function in Ø29 DNA polymerase. J. Biol. Chem.271, 8509–8512 (1996).
  • Banér J, Nilsson M, Mendel-Hartvig M, Landegren U. Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res.26, 5073–5078 (1998).
  • Lizardi PM, Huang XH, Zhu ZR, Bray-Ward P, Thomas DC, Ward DC. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nature Genet.19, 225–232 (1998).
  • Zhang DY, Brandwein M, Hsuih TCH, Li H. Amplification of target-specific, ligation-dependent circular probe. Gene211, 277–285 (1998).
  • Nilsson M, Barbany G, Antson DO et al. Enhanced detection and distinction of RNA by enzymatic probe ligation. Nature Biotechnol.18, 791–793 (2000).
  • Nilsson M, Antson DO, Barbany G, Landegren U. RNA-templated DNA ligation for transcript analysis. Nucleic Acids Res.29, 578–581 (2001).
  • Christian AT, Pattee MS, Attix CM, Reed BE, Sorensen KJ, Tucker JD. Detection of DNA point mutations and mRNA expression levels by rolling circle amplification in individual cells. Proc. Natl Acad. Sci. USA98, 14238–14243 (2001).
  • Schweitzer B, Wiltshire S, Lambert J et al. Immunoassays with rolling circle DNA amplification: a versatile platform for ultrasensitive antigen detection. Proc. Natl Acad. Sci. USA97, 10223–10119 (2000).
  • Schweitzer B, Roberts S, Grimwade B et al. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nature Biotechnol.20, 359–365 (2002).
  • Zhou H, Bouwman K, Schotanus M et al. Two-color, rolling-circle amplification on antibody microarrays for sensitive, multiplexed serum-protein measurements. Genome Biol.5, R28 (2004).
  • Nilsson M, Malmgren H, Samiotaki M, Kwiatkowski M, Chowdhary BP, Landegren U. Padlock Probes – circularizing oligonucleotides for localized DNA detection. Science265, 2085–2088 (1994).
  • Banér J, Nilsson M, Isaksson A, Mendel-Hartvig M, Antson DO, Landegren U. More keys to padlock probes: mechanisms for high-throughput nucleic acid analysis. Curr. Opin. Biotechnol.12, 11–15 (2001).
  • Zhang DY, Zhang WD, Li XP, Konomi Y. Detection of rare DNA targets by isothermal ramification amplification. Gene274, 209–216 (2001).
  • Qi X, Bakht S, Devos KM, Gale MD, Osbourn A. L-RCA (ligation-rolling circle amplification): a general method for genotyping of shingle nucleotide polymorphisms (SNPs).Nucleic Acids Res.29, E116 (2001).
  • Nilsson M, Gullberg M, Dahl F, Szuhai K, Raap AK. Real-time monitoring of rolling-circles amplification using a modified molecular beacon design. Nucleic Acids Res.30, E66 (2002).
  • Thomas DC, Nardone GA, Randall SK. Amplification of padlock probes for DNA diagnostics by cascade rolling circle amplification or the polymerase chain reaction. Arch. Pathol. Lab. Med.123, 1170–1176 (1999).
  • Pickering J, Bamford A, Godbole V et al. Integration of DNA ligation and rolling circle amplification for the homogeneous, end point detection of single nucleotide polymorphisms. Nucleic Acids Res.30, E60 (2002).
  • Faruqi AF, Hosono S, Driscoll MD et al. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification. BMC Genomics2, 4 (2001).
  • Alsmadi OA, Bornarth CJ, Song WM et al. High accuracy genotyping directly from genomic DNA using a rolling circle amplification based assay.BMC Genomics4, 21 (2003).
  • Fiandaca MJ, Hyldig-Nielsen JJ, Gildea BD, Coull JM. Self-reporting PNA/DNA primers for PCR analysis. Genome Res.11, 609–613 (2001).
  • Hatch A, Sano T, Misasi J, Smith CL. Rolling circle amplification of DNA immobilized on solid surfaces and its application to multiplex mutation detection. Genet. Anal.15, 35–40 (1999).
  • Nallur G, Luo CH, Fang LH et al. Signal amplification by rolling circle amplification on DNA microarrays. Nucleic Acids Res.29, E118 (2001).
  • Zhong XB, Lizardi PM, Huang XH, Bray-Ward PL, Ward DC. Visualization of oligonucleotide probes and point mutations in interphase nuclei and DNA fibers using rolling circle DNA amplification. Proc. Natl Acad. Sci. USA98, 3940–3945 (2001).
  • Qi X. Ligation-mediated rolling circle DNA amplification for non-gel detection of single nucleotide polymorphisms. In: DNA Amplification: Current Technologies and Applications. Demidov VV, Broude NE (Eds), Horizon Bioscience, Wymondham, UK, 213–225 (2004).
  • Hardenbol P, Banér J, Jain M et al. Multiplexed genotyping with sequence-tagged molecular inversion probes. Nature Biotechnol.21, 673–678 (2003).
  • Banér J, Isaksson A, Waldenström E, Jarvius J, Landegren U, Nilsson M. Parallel gene analysis with allele-specific padlock probes and tag microarrays. Nucleic Acids Res.31, E103 (2003).
  • Dahl F, Banér J, Gullberg M, Mendel-Hartvig M, Landegren U, Nilsson M. Circle-to-circle amplification for precise and sensitive DNA analysis. Proc. Natl Acad. Sci. USA101, 4548–4553 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.