81
Views
8
CrossRef citations to date
0
Altmetric
Review

Quantification of chemokines by real-time reverse transcriptase PCR: applications in type 1 diabetes

, &
Pages 51-64 | Published online: 09 Jan 2014

References

  • Baggiolini M. Chemokines and leukocyte traffic. Nature 392(6676), 565–568 (1998).
  • Ono SJ, Nakamura T, Miyazaki D, Ohbayashi M, Dawson M, Toda M. Chemokines: roles in leukocyte development, trafficking and effector function. J. Allergy Clin. Immunol. 111(6), 1185–1199 (2003).
  • Sallusto F, Mackay CR, Lanzavecchia A. The role of chemokine receptors in primary, effector and memory immune responses. Ann. Rev. Immunol. 18, 593–620 (2000).
  • Ebert LM, Schaerli P, Moser B. Chemokine-mediated control of T cell traffic in lymphoid and peripheral tissues. Mol. Immunol. 42(7), 799–809 (2005).
  • Rossi D, Zlotnik A. The biology of chemokines and their receptors. Ann. Rev. Immunol. 18, 217–242 (2000).
  • Bacon K, Baggiolini M, Broxmeyer H et al. Chemokine/chemokine receptor nomenclature. J. Interferon Cytokine Res. 22(10), 1067–1068 (2002).
  • Soriano SF, Serrano A, Hernanz-Falcon P et al. Chemokines integrate JAK/STAT and G-protein pathways during chemotaxis and calcium flux responses. Eur. J. Immunol. 33(5), 1328–1333 (2003).
  • Coelho AL, Hogaboam CM, Kunkel SL. Chemokines provide the sustained inflammatory bridge between innate and acquired immunity. Cytokine Growth Factor Rev. 16(6), 553–560 (2005).
  • Eizirik DL, Mandrup-Poulsen T. A choice of death – the signal transduction of immune-mediated β-cell apoptosis. Diabetologia 44, 2115–2133 (2001).
  • Mathis D, Vence L, Benoist C. β-cell death during progression to diabetes. Nature 414, 792–798 (2001).
  • Cardozo AK, Kruhoffer M, Leeman R, Orntoft T, Eizirik DL. Identification of novel cytokine-induced genes in pancreatic β-cells by high-density oligonucleotide arrays. Diabetes 50(5), 909–920 (2001).
  • Chen MC, Proost P, Gysemans C, Mathieu C, Eizirik DL. Monocyte chemoattractant protein-1 is expressed in pancreatic islets from prediabetic NOD mice and in interleukin-1 β-exposed human and rat islet cells. Diabetologia 44(3), 325–332 (2001).
  • Chen MC, Schuit F, Eizirik DL. Identification of IL-1β-induced messenger RNAs in rat pancreatic β cells by differential display of messenger RNA. Diabetologia 42(10), 1199–1203 (1999).
  • Cardozo AK, Heimberg H, Heremans Y et al. A comprehensive analysis of cytokine-induced and nuclear factor-κB-dependent genes in primary rat pancreatic β-cells. J. Biol. Chem. 276(52), 48879–48886 (2001).
  • Kutlu B, Darville MI, Cardozo AK, Eizirik DL. Molecular regulation of monocyte chemoattractant protein-1 expression in pancreatic β-cells. Diabetes 52(2), 348–355 (2003).
  • Frigerio S, Junt T, Lu B et al. β cells are responsible for CXCR3-mediated T-cell infiltration in insulitis. Nature Med. 8(12), 1414–1420 (2002).
  • Arimilli S, Ferlin W, Solvason N, Deshpande S, Howard M, Mocci S. Chemokines in autoimmune diseases. Immunol. Rev. 177, 43–51 (2000).
  • Cameron MJ, Arreaza GA, Grattan M et al. Differential expression of CC chemokines and the CCR5 receptor in the pancreas is associated with progression to type I diabetes. J. Immunol. 165(2), 1102–1110 (2000).
  • Gysemans CA, Cardozo AK, Callewaert H et al. 1,25-dihydroxyvitamin D3 modulates expression of chemokines and cytokines in pancreatic islets: implications for prevention of diabetes in nonobese diabetic mice. Endocrinology 146(4), 1956–1964 (2005).
  • Bertuzzi F, Marzorati S, Maffi P et al. Tissue factor and CCL2/monocyte chemoattractant protein-1 released by human islets affect islet engraftment in type 1 diabetic recipients. J. Clin. Endocrinol. Metab. 89(11), 5724–5728 (2004).
  • Atkinson MA, Leiter EH. The NOD mouse model of type 1 diabetes mellitus: as good as it gets? Nature Med. 5, 601–604 (1999).
  • Bradley LM, Asensio VC, Schioetz LK et al. Islet-specific Th1, but not Th2, cells secrete multiple chemokines and promote rapid induction of autoimmune Diabetes J. Immunol. 162(5), 2511–2520 (1999).
  • Kim SH, Cleary MM, Fox HS, Chantry D, Sarvetnick N. CCR4-bearing T cells participate in autoimmune diabetes. J. Clin. Invest. 110(11), 1675–1686 (2002).
  • Savinov AY, Wong FS, Stonebraker AC, Chervonsky AV. Presentation of antigen by endothelial cells and chemoattraction are required for homing of insulin-specific CD8+ T cells. J. Exp. Med. 197(5), 643–656 (2003).
  • Szanya V, Ermann J, Taylor C, Holness C, Fathman CG. The subpopulation of CD4+CD25+ splenocytes that delays adoptive transfer of diabetes expresses L-selectin and high levels of CCR7. J. Immunol. 169(5), 2461–2465 (2002).
  • Grattan M, Mi QS, Meagher C, Delovitch TL. Congenic mapping of the diabetogenic locus Idd4 to a 5.2-cM region of chromosome 11 in NOD mice: identification of two potential candidate subloci. Diabetes 51(1), 215–223 (2002).
  • Ohashi PS, Oehen S, Buerki K et al. Ablation of ‘tolerance’ and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65(2), 305–317 (1991).
  • Giarratana N, Penna G, Amuchastegui S, Mariani R, Daniel KC, Adorini L. A vitamin D analog downregulates pro-inflammatory chemokine production by pancreatic islets inhibiting T cell recruitment and type 1 diabetes development. J. Immunol. 173(4), 2280–2287 (2004).
  • Cardozo AK, Proost P, Gysemans C, Chen MC, Mathieu C, Eizirik DL. IL-1β and IFN-γ induce the expression of diverse chemokines and IL-15 in human and rat pancreatic islet cells, and in islets from pre-diabetic NOD mice. Diabetologia 46(2), 255–266 (2003).
  • Schroppel B, Zhang N, Chen P, Chen D, Bromberg JS, Murphy B. Role of donor-derived monocyte chemoattractant protein-1 in murine islet transplantation. J. Am. Soc. Nephrol. 16(2), 444–451 (2005).
  • Grewal IS, Rutledge BJ, Fiorillo JA et al. Transgenic monocyte chemoattractant protein-1 (MCP-1) in pancreatic islets produces monocyte-rich insulitis without diabetes: abrogation by a second transgene expressing systemic MCP-1. J. Immunol. 159(1), 401–408 (1997).
  • Morimoto J, Yoneyama H, Shimada A et al. CXC chemokine ligand 10 neutralization suppresses the occurrence of diabetes in nonobese diabetic mice through enhanced β cell proliferation without affecting insulitis. J. Immunol. 173(11), 7017–7024 (2004).
  • Christen U, Von Herrath MG. IP-10 and type 1 diabetes: a question of time and location. Autoimmunity 37(5), 273–282 (2004).
  • Rhode A, Pauza ME, Barral AM et al. Islet-specific expression of CXCL10 causes spontaneous islet infiltration and accelerates diabetes development. J. Immunol. 175(6), 3516–3524 (2005).
  • Baker MS, Chen X, Rotramel AR et al. Genetic deletion of chemokine receptor CXCR3 or antibody blockade of its ligand IP-10 modulates posttransplantation graft-site lymphocytic infiltrates and prolongs functional graft survival in pancreatic islet allograft recipients. Surgery 134(2), 126–133 (2003).
  • Baker MS, Chen X, Rotramel AR, Nelson JJ, Kaufman DB. Interferon regulatory factor-1 downregulates cytokine-induced IP-10 expression in pancreatic islets. Surgery 34(2), 134–141 (2003).
  • Shimada A, Morimoto J, Kodama K et al. Elevated serum IP-10 levels observed in type 1 Diabetes. Diabetes Care24(3), 510–515 (2001).
  • Nicoletti F, Conget I, Di Mauro M et al. Serum concentrations of the interferon-γ-inducible chemokine IP-10/CXCL10 are augmented in both newly diagnosed type I diabetes mellitus patients and subjects at risk of developing the disease. Diabetologia 45(8), 1107–1110 (2002).
  • Lohmann T, Laue S, Nietzschmann U et al. Reduced expression of Th1-associated chemokine receptors on peripheral blood lymphocytes at diagnosis of type 1 diabetes Diabetes 51(8), 2474–2480 (2002).
  • Nomura S, Shouzu A, Omoto S, Nishikawa M, Fukuhara S. Significance of chemokines and activated platelets in patients with diabetes. Clin. Exp. Immunol. 121(3), 437–443 (2000).
  • Dubois-Laforgue D, Hendel H, Caillat-Zucman S et al. A common stromal cell-derived factor-1 chemokine gene variant is associated with the early onset of type 1 diabetes. Diabetes 50(5), 1211–1213 (2001).
  • Ide A, Kawasaki E, Abiru N et al. Stromal cell-derived factor-1 chemokine gene variant is associated with type 1 diabetes age at onset in Japanese population. Hum. Immunol. 64(10), 973–978 (2003).
  • Buhler MM, Craig M, Donaghue KC et al. CCR5 genotyping in an Australian and New Zealand type 1 diabetes cohort. Autoimmunity 35(7), 457–461 (2002).
  • Szalai C, Csaszar A, Czinner A et al. Chemokine receptor CCR2 an CCR5 polymorphisms in children with insulin-dependent diabetes mellitus. Pediatr. Res. 46(1), 82–84 (1999).
  • Yang B, Houlberg K, Millward A, Demaine A. Polymorphisms of chemokine and chemokine receptor genes in type 1 diabetes mellitus and its complications. Cytokine 26(3), 114–121 (2004).
  • Matos M, Park R, Mathis D, Benoist C. Progression to islet destruction in a cyclophosphamide-induced transgenic model: a microarray overview. Diabetes 53(9), 2310–2321 (2004).
  • Bouma G, Coppens JM, Lam-Tse WK et al. An increased MRP8/14 expression and adhesion, but a decreased migration towards pro-inflammatory chemokines of type 1 diabetes monocytes. Clin. Exp. Immunol.141(3), 509–517 (2005).
  • Bouma G, Coppens JM, Mourits S et al. Evidence for an enhanced adhesion of DC to fibronectin and a role of CCL19 and CCL21 in the accumulation of DC around the pre-diabetic islets in NOD mice. Eur. J. Immunol.35(8), 2386–2396 (2005).
  • Christen U, McGavern DB, Luster AD, von Herrath MG, Oldstone MB. Among CXCR3 chemokines, IFN-γ-inducible protein of 10 kDa (CXC chemokine ligand (CXCL) 10) but not monokine induced by IFN-γ (CXCL9) imprints a pattern for the subsequent development of autoimmune disease. J. Immunol. 171(12), 6838–6845 (2003).
  • Ejrnaes M, Videbaek N, Christen U, Cooke A, Michelsen BK, von Herrath M. Different diabetogenic potential of autoaggressive CD8+ clones associated with IFN-γ-inducible protein 10 (CXC chemokine ligand 10) production but not cytokine expression, cytolytic activity, or homing characteristics. J. Immunol. 174(5), 2746–2755 (2005).
  • Kayali AG, Van Gunst K, Campbell IL et al. The stromal cell-derived factor-1α/CXCR4 ligand-receptor axis is critical for progenitor survival and migration in the pancreas. J. Cell Biol. 163(4), 859–869 (2003).
  • Mahajan SD, Schwartz SA, Nair MP. Immunological assays fo chemokine detection in in vitro culture of CNS cells. Biol. Proced. Online 5, 90–102 (2003).
  • Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res. 6(10), 986–994 (1996).
  • Higuchi R, Dollinger G, Walsh PS, Griffith R. Simultaneous amplification and detection of specific DNA sequences. Biotechnology 10, 413–417 (1992).
  • Overbergh L, Giulietti A, Valckx D, Decallonne R, Bouillon R, Mathieu C. The use of real-time reverse transcriptase PCR for the quantification of cytokine gene expression. J. Biomol. Tech.14(1), 33–43 (2003).
  • Silva TA, Garlet GP, Lara VS, Martins W Jr, Silva JS, Cunha FQ. Differential expression of chemokines and chemokine receptors in inflammatory periapical diseases. Oral Microbiol. Immunol. 20, 310–316 (2005).
  • Carvalho-Gaspar M, Billing JS, Spriewald BM, Wood KJ. Chemokine gene expression during allograft rejection: comparison of two quantitative PCR techniques. J. Immunol. Methods 301, 41–52 (2005).
  • Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain reaction product by utilizing the 5´–3´ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl Acad. Sci. USA 88(16), 7276–7280 (1991).
  • Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22, 130–131, 134–138 (1997).
  • Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, Mathieu C. An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 25(4), 386–401 (2001).
  • Kutyavin IV, Afonina IA, Mills A et al. 3´ minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res. 28(2), 655–661 (2000).
  • Belousov YS, Welch RA, Sanders S et al. Single nucleotide polymorphism genotyping by two-colour melting curve analysis using the MGB Eclipse Probe System in challenging sequence environment. Hum. Genomics. 1, 209–217 (2004).
  • Bernard PS, Wittwer CT. Homogeneous amplification and variant detection by fluorescent hybridization probes. Clin. Chem. 46(2), 147–148 (2000).
  • Tyagi S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnol. 14(3), 303–308 (1996).
  • Letertre C, Perelle S, Dilasser F, Arar K, Fach P. Evaluation of the performance of LNA and MGB probes in 5´-nuclease PCR assays. Mol. Cell Probes 17(6), 307–311 (2003).
  • Svanvik N, Stahlberg A, Sehlstedt U, Sjoback R, Kubista M. Detection of PCR products in real time using light-up probes. Anal. Biochem. 287(1), 179–182 (2000).
  • Whitcombe D, Theaker J, Guy SP, Brown T, Little S. Detection of PCR products using self-probing amplicons and fluorescence. Nature Biotechnol. 17, 804–807 (1999).
  • Ririe KM, Rasmussen RP, Wittwer CT. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal. Biochem. 245(2), 154–160 (1997).
  • Rozen S, Skaletsky H. PrimeR3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386 (2000).
  • Breslauer KJ, Frank R, Blocker H, Marky LA. Predicting DNA duplex stability from the base sequence. Proc. Natl Acad. Sci. USA 83(11), 3746–3750 (1986).
  • Bustin SA, Nolan T. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J. Biomol. Tech.15, 155–166 (2004).
  • Huggett J, Dheda K, Bustin S, Zumla A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 6, 279–284 (2005).
  • van der Velden VH, Boeckx N, van Wering ER, van Dongen JJ. Detection of minimal residual disease in acute leukemia. J. Biol. Regul. Homeost. Agents 18, 146–154 (2004).
  • Stahlberg A, Hakansson J, Xian X, Semb H, Kubista M. Properties of the reverse transcription reaction in mRNA quantification. Clin. Chem. 50(3), 509–515 (2004).
  • Stahlberg A, Kubista M, Pfaffl M. Comparison of reverse transcriptases in gene expression analysis. Clin. Chem. 50(9), 1678–1680 (2004).
  • Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25(2), 169–193 (2000).
  • Vandesompele J, De Preter K, Pattyn F et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3(7), RESEARCH0034 (2002).
  • Szabo A, Perou CM, Karaca M, Perreard L, Quackenbush JF, Bernard PS. Statistical modeling for selecting housekeeper genes. Genome Biol. 5(8), R59 (2004).
  • Akilesh S, Shaffer DJ, Roopenian D. Customized molecular phenotyping by quantitative gene expression and pattern recognition analysis. Genome Res. 13(7), 1719–1727 (2003).
  • Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29(9), e45 (2001).

Websites

  • Primer3 http://frodo.wi.mit.edu/cgi-bin/primer3/ primer3.cgi/primer3_www.cgi
  • National Center for Biotechnology Information www.ncbi.nlm.nih.gov

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.