54
Views
8
CrossRef citations to date
0
Altmetric
Review

Array-based methods for diagnosis and prevention of transplant rejection

&
Pages 165-178 | Published online: 09 Jan 2014

References

  • Liotta L, Petricoin E. Molecular profiling of human cancer. Nature Rev. Genet. 1(1), 48–56 (2000).
  • Stuart RO, Wachsman W, Berry CC et al. In silico dissection of cell-type-associated patterns of gene expression in prostate cancer. Proc. Natl Acad. Sci. USA 101(2), 615–620 (2004).
  • Mansson A, Sundberg M, Balaz M et al. In vitro sliding of actin filaments labelled with single quantum dots. Biochem. Biophys. Res. Commun. 314(2), 529–534 (2004).
  • Schultz S, Smith DR, Mock JJ, Schultz DA. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl Acad. Sci. USA 97(3), 996–1001 (2000).
  • Barrett JC, Kawasaki ES. Microarrays: the use of oligonucleotides and cDNA for the analysis of gene expression. Drug Discov. Today 8(3), 134–141 (2003).
  • Leung YF, Cavalieri D. Fundamentals of cDNA microarray data analysis. Trends Genet. 19(11), 649–659 (2003).
  • Li C, Wong WH. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl Acad. Sci USA 98(1), 31–36 (2001).
  • Irizarry RA, Hobbs B, Collin F et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2), 249–264 (2003).
  • Shannon W, Culverhouse R, Duncan J. Analyzing microarray data using cluster analysis. Pharmacogenomics 4(1), 41–52 (2003).
  • Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95(25), 14863–14868 (1998).
  • Alter O, Brown PO, Botstein D. Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl Acad. Sci. USA 97(18), 10101–10106 (2000).
  • Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM. Systematic determination of genetic network architecture. Nature Genet. 22(3), 281–285 (1999).
  • Quackenbush J. Computational analysis of microarray data. Nature Rev. Genet. 2(6), 418–427 (2001).
  • Ringner M, Peterson C, Khan J. Analyzing array data using supervised methods. Pharmacogenomics 3(3), 403–415 (2002).
  • Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. Technical Report 576 (2000).
  • Brown MP, Grundy WN, Lin D et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl Acad. Sci. USA 97(1), 262–267 (2000).
  • Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natl Acad. Sci USA 99(10), 6567–6572 (2002).
  • Khan J, Wei JS, Ringner M et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Med. 7(6), 673–679 (2001).
  • Li C, Hung Wong W. Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol. 2(8), RESEARCH0032 (2001).
  • Murphy D. Gene expression studies using microarrays: principles, problems, and prospects. Adv. Physiol. Educ. 26(1–4), 256–270 (2002).
  • Baldi P, Long AD. A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17(6), 509–519 (2001).
  • Kerr MK, Martin M, Churchill GA. Analysis of variance for gene expression microarray data. J. Comput. Biol. 7(6), 819–837 (2000).
  • Wu TD. Analysing gene expression data from DNA microarrays to identify candidate genes. J. Pathol. 195(1), 53–65 (2001).
  • Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98(9), 5116–5121 (2001).
  • Dobbin K, Simon R. Sample size determination in microarray experiments for class comparison and prognostic classification. Biostatistics 6(1), 27–38 (2005).
  • Li SS, Bigler J, Lampe JW, Potter JD, Feng Z. FDR – controlling testing procedures and sample size determination for microarrays. Stat. Med. 24(15), 2267–2280 (2005).
  • Zhang SD, Gant TW. Effect of pooling samples on the efficiency of comparative studies using microarrays. Bioinformatics 21(24), 4378–4383 (2005).
  • Akalin E, Hendrix RC, Polavarapu RG et al. Gene expression analysis in human renal allograft biopsy samples using high-density oligoarray technology. Transplantation 72(5), 948–953 (2001).
  • Sarwal M, Chua MS, Kambham N et al. Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling. N. Engl. J. Med. 349(2), 125–138 (2003).
  • Scherer A, Krause A, Walker JR et al. Early prognosis of the development of renal chronic allograft rejection by gene expression profiling of human protocol biopsies. Transplantation 75(8), 1323–1330 (2003).
  • Flechner SM, Kurian SM, Solez K et al. De novo kidney transplantation without use of calcineurin inhibitors preserves renal structure and function at two years. Am. J. Transplant. 4(11), 1776–1785 (2004).
  • Flechner SM, Kurian SM, Head SR et al. Kidney transplant rejection and tissue injury by gene profiling of biopsies and peripheral blood lymphocytes. Am. J. Transplant. 4(9), 1475–1489 (2004).
  • Stegall M, Park W, Kim D, Kremers W. Gene expression during acute allograft rejection: novel statistical analysis of microarray data. Am. J. Transplant. 2(10), 913–925 (2002).
  • Gimino VJ, Lande JD, Berryman TR, King RA, Hertz MI. Gene expression profiling of bronchoalveolar lavage cells in acute lung rejection. Am. J. Respir. Crit. Care Med. 168(10), 1237–1242 (2003).
  • Deng MC, Eisen HJ, Mehra MR et al. Non-invasive discrimination of rejection in cardiac allograft recipients using gene expression profiling. Am. J. Transplant. 6(1), 150–160 (2006).
  • Bernstein D, Mital S, Addonizio L et al. Gene expression profiling of cardiac allograft recipients with mild acute cellular rejections. J. Heart Lung Transplant. 24(2S), 70 (2005).
  • Horwitz PA, Tsai EJ, Putt ME et al. Detection of cardiac allograft rejection and response to immunosuppressive therapy with peripheral blood gene expression. Circulation 110(25), 3815–3821 (2004).
  • Inohara N, Koseki T, Hu Y, Chen S, Nunez G. CLARP, a death effector domain-containing protein interacts with caspase-8 and regulates apoptosis. Proc. Natl Acad. Sci. USA 94(20), 10717–10722 (1997).
  • Hancock WW. Chemokine receptor-dependent alloresponses. Immunol. Rev. 196, 37–50 (2003).
  • Yun JJ, Whiting D, Fischbein MP et al. Combined blockade of the chemokine receptors CCR1 and CCR5 attenuates chronic rejection. Circulation 109(7), 932–937 (2004).
  • Tatapudi RR, Muthukumar T, Dadhania D et al. Noninvasive detection of renal allograft inflammation by measurements of mRNA for IP-10 and CXCR3 in urine. Kidney Int. 65(6), 2390–2397 (2004).
  • Hu H, Aizenstein BD, Puchalski A et al. Elevation of CXCR3-binding chemokines in urine indicates acute renal-allograft dysfunction. Am. J. Transplant. 4(3), 432–437 (2004).
  • Hoffmann SC, Hale DA, Kleiner DE et al. Functionally significant renal allograft rejection is defined by transcriptional criteria. Am. J. Transplant. 5(3), 573–581 (2005).
  • Belperio JA, Burdick MD, Keane MP et al. The role of the CC chemokine, RANTES, in acute lung allograft rejection. J. Immunol. 165(1), 461–472 (2000).
  • Goddard S, Williams A, Morland C et al. Differential expression of chemokines and chemokine receptors shapes the inflammatory response in rejecting human liver transplants. Transplantation 72(12), 1957–1967 (2001).
  • Melter M, Exeni A, Reinders ME et al. Expression of the chemokine receptor CXCR3 and its ligand IP-10 during human cardiac allograft rejection. Circulation 104(21), 2558–2564 (2001).
  • Fahmy NM, Yamani MH, Starling RC et al. Chemokine and receptor-gene expression during early and late acute rejection episodes in human cardiac allografts. Transplantation 75(12), 2044–2047 (2003).
  • Akalin E, Dikman S, Murphy B, Bromberg JS, Hancock WW. Glomerular infiltration by CXCR3+ ICOS+ activated T cells in chronic allograft nephropathy with transplant glomerulopathy. Am. J. Transplant. 3(9), 1116–1120 (2003).
  • Zhao DX, Hu Y, Miller GG et al. Differential expression of the IFN-γ-inducible CXCR3-binding chemokines, IFN-inducible protein 10, monokine induced by IFN, and IFN-inducible T cell α chemoattractant in human cardiac allografts: association with cardiac allograft vasculopathy and acute rejection. J. Immunol. 169(3), 1556–1560 (2002).
  • Yun JJ, Fischbein MP, Laks H et al. Rantes production during development of cardiac allograft vasculopathy. Transplantation 71(11), 1649–1656 (2001).
  • Schoels M, Dengler TJ, Richter R, Meuer SC, Giese T. Detection of cardiac allograft rejection by real-time PCR analysis of circulating mononuclear cells. Clin. Transplant. 18(5), 513–517 (2004).
  • Hancock WW, Lu B, Gao W et al. Requirement of the chemokine receptor CXCR3 for acute allograft rejection. J. Exp. Med. 192(10), 1515–1520 (2000).
  • Gao W, Faia KL, Csizmadia V et al. Beneficial effects of targeting CCR5 in allograft recipients. Transplantation 72(7), 1199–1205 (2001).
  • Haskell CA, Hancock WW, Salant DJ et al. Targeted deletion of CX3CR1 reveals a role for fractalkine in cardiac allograft rejection. J. Clin. Invest. 108(5), 679–688 (2001).
  • Fischereder M, Luckow B, Hocher B et al. CC chemokine receptor 5 and renal-transplant survival. Lancet 357(9270), 1758–1761 (2001).
  • Matsui Y, Saiura A, Sugawara Y et al. Identification of gene expression profile in tolerizing murine cardiac allograft by costimulatory blockade. Physiol. Genomics 15(3), 199–208 (2003).
  • Chandraker A, Huurman V, Hallett K et al. CTLA-4 is important in maintaining long-term survival of cardiac allografts. Transplantation 79(8), 897–903 (2005).
  • Glysing-Jensen T, Raisanen-Sokolowski A, Sayegh MH, Russell ME. Chronic blockade of CD28-B7-mediated T-cell costimulation by CTLA4Ig reduces intimal thickening in MHC class I and II incompatible mouse heart allografts. Transplantation 64(12), 1641–1645 (1997).
  • Ozkaynak E, Wang L, Goodearl A et al. Programmed death-1 targeting can promote allograft survival. J. Immunol. 169(11), 6546–6553 (2002).
  • Gao W, Demirci G, Strom TB, Li XC. Stimulating PD-1-negative signals concurrent with blocking CD154 co-stimulation induces long-term islet allograft survival. Transplantation 76(6), 994–999 (2003).
  • Lee I, Wang L, Wells AD et al. Blocking the monocyte chemoattractant protein-1/CCR2 chemokine pathway induces permanent survival of islet allografts through a programmed death-1 ligand-1-dependent mechanism. J. Immunol. 171(12), 6929–6935 (2003).
  • Walsh PT, Strom TB, Turka LA. Routes to transplant tolerance versus rejection; the role of cytokines. Immunity 20(2), 121–131 (2004).
  • Hoffmann SC, Pearl JP, Blair PJ, Kirk AD. Immune profiling: molecular monitoring in renal transplantation. Front. Biosci. 8, e444–e462 (2003).
  • Mehta R, Shah G, Adler W, Kittur D. Soluble interleukin 2 receptor (sIL-2R) levels in renal transplant recipients. Clin. Transplant. 18(Suppl. 12), 67–71 (2004).
  • Lun A, Cho MY, Muller C et al. Diagnostic value of peripheral blood T-cell activation and soluble IL-2 receptor for acute rejection in liver transplantation. Clin. Chim. Acta 320(1–2), 69–78 (2002).
  • Beniaminovitz A, Itescu S, Lietz K et al. Prevention of rejection in cardiac transplantation by blockade of the interleukin-2 receptor with a monoclonal antibody. N. Engl. J. Med. 342(9), 613–619 (2000).
  • Hershberger RE, Starling RC, Eisen HJ et al. Daclizumab to prevent rejection after cardiac transplantation. N. Engl. J. Med. 352(26), 2705–2713 (2005).
  • Rosenberg PB, Vriesendorp AE, Drazner MH et al. Induction therapy with basiliximab allows delayed initiation of cyclosporine and preserves renal function after cardiac transplantation. J. Heart Lung Transplant. 24(9), 1327–1331 (2005).
  • Kramer BK, Kruger B, Mack M et al. Steroid withdrawal or steroid avoidance in renal transplant recipients: focus on tacrolimus-based immunosuppressive regimens. Transplant. Proc. 37(4), 1789–1791 (2005).
  • Li B, Hartono C, Ding R et al. Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine. N. Engl. J. Med. 344(13), 947–954 (2001).
  • Desvaux D, Schwarzinger M, Pastural M et al. Molecular diagnosis of renal-allograft rejection: correlation with histopathologic evaluation and antirejection-therapy resistance. Transplantation 78(5), 647–653 (2004).
  • Dugre FJ, Gaudreau S, Belles-Isles M, Houde I, Roy R. Cytokine and cytotoxic molecule gene expression determined in peripheral blood mononuclear cells in the diagnosis of acute renal rejection. Transplantation 70(7), 1074–1080 (2000).
  • Noti JD. Expression and function of the leukocyte integrins in organ transplant rejection. Curr. Med. Chem. 11(4), 477–490 (2004).
  • Parks WC, Wilson CL, Lopez-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nature Rev. Immunol. 4(8), 617–629 (2004).
  • Bond M, Fabunmi RP, Baker AH, Newby AC. Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-κB. FEBS Lett. 435(1), 29–34 (1998).
  • Salo T, Lyons JG, Rahemtulla F, Birkedal-Hansen H, Larjava H. Transforming growth factor-β1 up-regulates type IV collagenase expression in cultured human keratinocytes. J. Biol. Chem. 266(18), 11436–11441 (1991).
  • Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur. J. Cell Biol. 74(2), 111–122 (1997).
  • Yamani MH, Starling RC, Young JB et al. Acute vascular rejection is associated with up-regulation of vitronectin receptor (αvβ3), increased expression of tissue factor, and activation of the extracellular matrix metalloproteinase induction system. J. Heart Lung Transplant. 21(9), 983–989 (2002).
  • Rodrigo E, Lopez-Hoyos M, Escallada R et al. Circulating levels of matrix metalloproteinases MMP-3 and MMP-2 in renal transplant recipients with chronic transplant nephropathy. Nephrol. Dial. Transplant. 15(12), 2041–2045 (2000).
  • Rodrigo E, Lopez Hoyos M, Escallada R et al. Changes in serum concentrations of matrix metalloproteinases in kidney transplantation. Transplant. Proc. 32(3), 517–518 (2000).
  • Hubner RH, Meffert S, Mundt U et al. Matrix metalloproteinase-9 in bronchiolitis obliterans syndrome after lung transplantation. Eur. Respir. J. 25(3), 494–501 (2005).
  • Campbell LG, Ramachandran S, Liu W et al. Different roles for matrix metalloproteinase-2 and matrix metalloproteinase-9 in the pathogenesis of cardiac allograft rejection. Am. J. Transplant. 5(3), 517–528 (2005).
  • Kuyvenhoven JP, Verspaget HW, Gao Q et al. Assessment of serum matrix metalloproteinases MMP-2 and MMP-9 after human liver transplantation: increased serum MMP-9 level in acute rejection. Transplantation 77(11), 1646–1652 (2004).
  • Lutz J, Yao Y, Song E et al. Inhibition of matrix metalloproteinases during chronic allograft nephropathy in rats. Transplantation 79(6), 655–661 (2005).
  • Luckow B, Joergensen J, Chilla S et al. Reduced intragraft mRNA expression of matrix metalloproteinases Mmp3, Mmp12, Mmp13 and Adam8, and diminished transplant arteriosclerosis in Ccr5-deficient mice. Eur. Respir. J. 34(9), 2568–2578 (2004).
  • Strehlau J, Pavlakis M, Lipman M et al. Quantitative detection of immune activation transcripts as a diagnostic tool in kidney transplantation. Proc. Natl Acad. Sci. USA 94(2), 695–700 (1997).
  • Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nature Rev. Immunol. 5(5), 375–386 (2005).
  • Nguyen KB, Watford WT, Salomon R et al. Critical role for STAT4 activation by type 1 interferons in the interferon-γ response to viral infection. Science 297(5589), 2063–2066 (2002).
  • Carter LL, Murphy KM. Lineage-specific requirement for signal transducer and activator of transcription (Stat)4 in interferon γ production from CD4+ versus CD8+ T cells. J. Exp. Med. 189(8), 1355–1360 (1999).
  • Takeda K, Tanaka T, Shi W et al. Essential role of Stat6 in IL-4 signalling. Nature 380(6575), 627–630 (1996).
  • Thierfelder WE, van Deursen JM, Yamamoto K et al. Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 382(6587), 171–174 (1996).
  • Tan PK, Downey TJ, Spitznagel EL Jr et al. Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res. 31(19), 5676–5684 (2003).
  • Shi L, Tong W, Fang H et al. Cross-platform comparability of microarray technology: intra-platform consistency and appropriate data analysis procedures are essential. BMC Bioinformatics 6(Suppl. 2), S12 (2005).
  • Larkin JE, Frank BC, Gavras H, Sultana R, Quackenbush J. Independence and reproducibility across microarray platforms. Nature Methods 2(5), 337–344 (2005).
  • Bammler T, Beyer RP, Bhattacharya S et al. Standardizing global gene expression analysis between laboratories and across platforms. Nature Methods 2(5), 351–356 (2005).
  • Inkinen K, Lahesmaa R, Brandt A et al. DNA microarray-based gene expression profiles of cytomegalovirus infection and acute rejection in liver transplants. Transplant. Proc. 37(2), 1227–1229 (2005).
  • Sreekumar R, Rasmussen DL, Wiesner RH, Charlton MR. Differential allograft gene expression in acute cellular rejection and recurrence of hepatitis C after liver transplantation. Liver Transpl. 8(9), 814–821 (2002).
  • Berg T, Wu T, Levay-Young B et al. Comparison of tolerated and rejected islet grafts: a gene expression study. Cell Transplant. 13(6), 619–629 (2004).
  • Erickson LM, Pan F, Ebbs A, Kobayashi M, Jiang H. Microarray-based gene expression profiles of allograft rejection and immunosuppression in the rat heart transplantation model. Transplantation 76(3), 582–588 (2003).
  • Metcalfe SM, De S Muthukumarana PA. Transplantation tolerance: gene expression profiles comparing allotolerance vs. allorejection. Int. Immunopharmacol. 5(1), 33–39 (2005).
  • Donauer J, Rumberger B, Klein M et al. Expression profiling on chronically rejected transplant kidneys. Transplantation 76(3), 539–547 (2003).
  • Zhang HQ, Lu H, Enosawa S et al. Comprehensive examination of gene expression associated with long-term stable graft acceptance by renal transplant recipients. Clin. Transplant. 18(1), 70–78 (2004).

Websites

  • PAM: Prediction Analysis for Microarrays www-stat.stanford.edu/~tibs/PAM
  • SAM: Significance Analysis of Microarrays www-stat.stanford.edu/%7Etibs/SAM/ index.html
  • FDA: MicroArray Quality Control Project http://edkb.fda.gov/MAQC
  • ArrayExpress at the EBI www.ebi.ac.uk/arrayexpress
  • NCBI: Gene Expression Omnibus www.ncbi.nlm.nih.gov/geo

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.