287
Views
30
CrossRef citations to date
0
Altmetric
Review

Molecular profiling of cervical neoplasia

, &
Pages 217-229 | Published online: 09 Jan 2014

References

  • Bray F, Carstensen B, Moller H et al. Incidence trends of adenocarcinoma of the cervix in 13 European countries. Cancer Epidemiol. Biomarkers Prev. 14(9), 2191–2199 (2005).
  • Franco EL, Duarte-Franco E, Ferenczy A. Cervical cancer: epidemiology, prevention and the role of human papillomavirus infection. CMAJ 164(7), 1017–1025 (2001).
  • Murphy N, Ring M, Heffron CC et al. p16INK4A, CDC6, and MCM5: predictive biomarkers in cervical preinvasive neoplasia and cervical cancer. J. Clin. Pathol. 58(5), 525–534 (2005).
  • Murphy N, Ring M, Heffron CC et al. Quantitation of CDC6 and MCM5 mRNA in cervical intraepithelial neoplasia and invasive squamous cell carcinoma of the cervix. Mod. Pathol. 18(6), 844–849 (2005).
  • Huang Y, Sadee W. Drug sensitivity and resistance genes in cancer chemotherapy: a chemogenomics approach. Drug Discov. Today 8(8), 356–363 (2003).
  • Walboomers JM, Jacobs MV, Manos MM et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189(1), 12–19 (1999).
  • Scheurer ME, Tortolero-Luna G, Adler-Storthz K. Human papillomavirus infection: biology, epidemiology, and prevention. Int. J. Gynecol. Cancer 15(5), 727–746 (2005).
  • Andersson S, Safari H, Mints M et al. Type distribution, viral load and integration status of high-risk human papillomaviruses in pre-stages of cervical cancer (CIN). Br. J. Cancer 92(12), 2195–2200 (2005).
  • Zielinski GD, Snijders PJ, Rozendaal L et al. The presence of high-risk HPV combined with specific p53 and p16INK4a expression patterns points to high-risk HPV as the main causative agent for adenocarcinoma in situ and adenocarcinoma of the cervix. J. Pathol. 201(4), 535–543 (2003).
  • Cuschieri KS, Whitley MJ, Cubie HA. Human papillomavirus type specific DNA and RNA persistence – implications for cervical disease progression and monitoring. J. Med. Virol. 73(1), 65–70 (2004).
  • Molden T, Nygard JF, Kraus I et al. Predicting CIN2+ when detecting HPV mRNA and DNA by PreTect HPV-proofer and consensus PCR: a 2-year follow-up of women with ASCUS or LSIL Pap smear. Int. J. Cancer 114(6), 973–976 (2005).
  • Duensing S, Munger K. Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins. Int. J. Cancer 109(2), 157–162 (2004).
  • Duensing S, Munger K. Human papillomavirus type 16 E7 oncoprotein can induce abnormal centrosome duplication through a mechanism independent of inactivation of retinoblastoma protein family members. J. Virol. 77(22), 12331–12335 (2003).
  • Pihan GA, Wallace J, Zhou Y, Doxsey SJ. Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res. 63(6), 1398–1404 (2003).
  • Rao PH, Arias-Pulido H, Lu XY et al. Chromosomal amplifications, 3q gain and deletions of 2q33-q37 are the frequent genetic changes in cervical carcinoma. BMC Cancer 4, 5 (2004).
  • Debernardi S, Lillington D, Young BD. Understanding cancer at the chromosome level: 40 years of progress. Eur. J. Cancer 40(13), 1960–1967 (2004).
  • Pinkel D, Albertson DG. Comparative genomic hybridization. Annu. Rev. Genomics Hum. Genet. 6, 331–354 (2005).
  • Bignell GR, Huang J, Greshock J et al. High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Res. 14(2), 287–295 (2004).
  • Zhou X, Rao NP, Cole SW, Mok SC, Chen Z, Wong DT. Progress in concurrent analysis of loss of heterozygosity and comparative genomic hybridization utilizing high density single nucleotide polymorphism arrays. Cancer Genet. Cytogenet. 159(1), 53–57 (2005).
  • Yang YC, Shyong WY, Chang MS et al. Frequent gain of copy number on the long arm of chromosome 3 in human cervical adenocarcinoma. Cancer Genet. Cytogenet. 131(1), 48–53 (2001).
  • Huang FY, Kwok YK, Lau ET, Tang MH, Ng TY, Ngan HY. Genetic abnormalities and HPV status in cervical and vulvar squamous cell carcinomas. Cancer Genet. Cytogenet. 157(1), 42–48 (2005).
  • Umayahara K, Numa F, Suehiro Y et al. Comparative genomic hybridization detects genetic alterations during early stages of cervical cancer progression. Genes Chromosomes Cancer 33(1), 98–102 (2002).
  • Kirchhoff M, Rose H, Petersen BL et al. Comparative genomic hybridization reveals a recurrent pattern of chromosomal aberrations in severe dysplasia/carcinoma in situ of the cervix and in advanced-stage cervical carcinoma. Genes Chromosomes Cancer 24(2), 144–150 (1999).
  • Harris CP, Lu XY, Narayan G, Singh B, Murty VV, Rao PH. Comprehensive molecular cytogenetic characterization of cervical cancer cell lines. Genes Chromosomes Cancer 36(3), 233–241 (2003).
  • Zhang A, Maner S, Betz R et al. Genetic alterations in cervical carcinomas: frequent low-level amplifications of oncogenes are associated with human papillomavirus infection. Int. J. Cancer 101(5), 427–433 (2002).
  • Matthews CP, Shera KA, McDougall JK. Genomic changes and HPV type in cervical carcinoma. Proc. Soc. Exp. Biol. Med. 223(3), 316–321 (2000).
  • Hidalgo A, Schewe C, Petersen S et al. Human papilloma virus status and chromosomal imbalances in primary cervical carcinomas and tumour cell lines. Eur. J. Cancer 36(4), 542–548 (2000).
  • Hidalgo A, Baudis M, Petersen I et al. Microarray comparative genomic hybridization detection of chromosomal imbalances in uterine cervix carcinoma. BMC Cancer 5, 77 (2005).
  • Kirchhoff M, Rose H, Petersen BL et al. Comparative genomic hybridization reveals non-random chromosomal aberrations in early preinvasive cervical lesions. Cancer Genet. Cytogenet. 129(1), 47–51 (2001).
  • Hidalgo A, Monroy A, Arana RM, Taja L, Vazquez G, Salcedo M. Chromosomal imbalances in four new uterine cervix carcinoma derived cell lines. BMC Cancer 3, 8 (2003).
  • Arias-Pulido H, Narayan G, Vargas H, Mansukhani M, Murty VV. Mapping common deleted regions on 5p15 in cervical carcinoma and their occurrence in precancerous lesions. Mol. Cancer 1, 3 (2002).
  • Guo Z, Hu X, Afink G, Ponten F, Wilander E, Ponten J. Comparison of chromosome 3p deletions between cervical precancers synchronous with and without invasive cancer. Int. J. Cancer 86(4), 518–523 (2000).
  • Huang LW, Chao SL, Chen TJ. Reduced Fhit expression in cervical carcinoma: correlation with tumor progression and poor prognosis. Gynecol. Oncol. 90(2), 331–337 (2003).
  • Holschneider CH, Baldwin RL, Tumber K, Aoyama C, Karlan BY. The fragile histidine triad gene: a molecular link between cigarette smoking and cervical cancer. Clin. Cancer Res. 11(16), 5756–5763 (2005).
  • Grepmeier U, Dietmaier W, Merk J et al. Deletions at chromosome 2q and 12p are early and frequent molecular alterations in bronchial epithelium and NSCLC of long-term smokers. Int. J. Oncol. 27(2), 481–488 (2005).
  • Ma YY, Wei SJ, Lin YC et al. PIK3CA as an oncogene in cervical cancer. Oncogene 19(23), 2739–2744 (2000).
  • Goto T, Takano M, Sasa H, Tsuda H, Yamauchi K, Kikuchi Y. Clinical significance of immunocytochemistry for PIK3CA as a carcinogenesis-related marker on liquid-based cytology in cervical intraepithelial neoplasia. Oncol. Rep. 15(2), 387–391 (2006).
  • Abba MC, Laguens RM, Dulout FN, Golijow CD. The c-myc activation in cervical carcinomas and HPV 16 infections. Mutat. Res. 557(2), 151–158 (2004).
  • McMurray HR, McCance DJ. Human papillomavirus type 16 E6 activates TERT gene transcription through induction of c-Myc and release of USF-mediated repression. J. Virol. 77(18), 9852–9861 (2003).
  • Sagawa Y, Nishi H, Isaka K, Fujito A, Takayama M. The correlation of TERT expression with c-myc expression in cervical cancer. Cancer Lett. 168(1), 45–50 (2001).
  • Snijders PJ, van Duin M, Walboomers JM et al. Telomerase activity exclusively in cervical carcinomas and a subset of cervical intraepithelial neoplasia grade III lesions: strong association with elevated messenger RNA levels of its catalytic subunit and high-risk human papillomavirus DNA. Cancer Res. 58(17), 3812–3818 (1998).
  • Steenbergen RD, de Wilde J, Wilting SM, Brink AA, Snijders PJ, Meijer CJ. HPV-mediated transformation of the anogenital tract. J. Clin. Virol. 32(Suppl. 1), S25–S33 (2005).
  • Chavez-Blanco A, Perez-Sanchez V, Gonzalez-Fierro A et al. HER2 expression in cervical cancer as a potential therapeutic target. BMC Cancer 4, 59 (2004).
  • Altshuler D, Brooks LD, Chakravarti A et al. A haplotype map of the human genome. Nature 437(7063), 1299–1320 (2005).
  • Mei R, Galipeau PC, Prass C et al. Genome-wide detection of allelic imbalance using human SNPs and high-density DNA arrays. Genome Res. 10(8), 1126–1137 (2000).
  • Klein RJ, Zeiss C, Chew EY et al. Complement factor H polymorphism in age-related macular degeneration. Science 308(5720), 385–389 (2005).
  • Emahazion T, Feuk L, Jobs M et al. SNP association studies in Alzheimer’s disease highlight problems for complex disease analysis. Trends Genet. 17(7), 407–413 (2001).
  • Mitra S, Misra C, Singh RK, Panda CK, Roychoudhury S. Association of specific genotype and haplotype of p53 gene with cervical cancer in India. J. Clin. Pathol. 58(1), 26–31 (2005).
  • Ueda M, Hung YC, Terai Y et al. Glutathione-S-transferase and p53 polymorphisms in cervical carcinogenesis. Gynecol. Oncol. 96(3), 736–740 (2005).
  • Koushik A, Platt RW, Franco EL. p53 codon 72 polymorphism and cervical neoplasia: a meta-analysis review. Cancer Epidemiol. Biomarkers Prev. 13(1), 11–22 (2004).
  • Das H, Koizumi T, Sugimoto T et al. Quantitation of Fas and Fas ligand gene expression in human ovarian, cervical and endometrial carcinomas using real-time quantitative RT-PCR. Br. J. Cancer 82(10), 1682–1688 (2000).
  • Kanemitsu S, Ihara K, Saifddin A et al. A functional polymorphism in fas (CD95/APO-1) gene promoter associated with systemic lupus erythematosus. J. Rheumatol. 29(6), 1183–1188 (2002).
  • Ueda M, Hung YC, Terai Y et al. Fas gene promoter -670 polymorphism (A/G) is associated with cervical carcinogenesis. Gynecol. Oncol. 98(1), 129–133 (2005).
  • Lai HC, Sytwu HK, Sun CA et al. Single nucleotide polymorphism at Fas promoter is associated with cervical carcinogenesis. Int. J. Cancer 103(2), 221–225 (2003).
  • Lai HC, Lin WY, Lin YW et al. Genetic polymorphisms of Fas and FASL (CD95/CD95L) genes in cervical carcinogenesis: an analysis of haplotype and gene-gene interaction. Gynecol. Oncol. 99(1), 113–118 (2005).
  • Sun T, Zhou Y, Li H et al. FASL -844C polymorphism is associated with increased activation-induced T cell death and risk of cervical cancer. J. Exp. Med. 202(7), 967–974 (2005).
  • Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nature Rev. Cancer 2(3), 161–174 (2002).
  • Brummer O, Bohmer G, Hollwitz B, Flemming P, Petry KU, Kuhnle H. MMP-1 and MMP-2 in the cervix uteri in different steps of malignant transformation – an immunohistochemical study. Gynecol. Oncol. 84(2), 222–227 (2002).
  • Moser PL, Kieback DG, Hefler L, Tempfer C, Neunteufel W, Gitsch G. Immunohistochemical detection of matrix metalloproteinases (MMP) 1 and 2, and tissue inhibitor of metalloproteinase 2 (TIMP 2) in Stage IB cervical cancer. Anticancer Res. 19(5C), 4391–4393 (1999).
  • Lai HC, Chu CM, Lin YW et al. Matrix metalloproteinase 1 gene polymorphism as a prognostic predictor of invasive cervical cancer. Gynecol. Oncol. 96(2), 314–319 (2005).
  • Bequet-Romero M, Lopez-Ocejo O. Angiogenesis modulators expression in culture cell lines positives for HPV-16 oncoproteins. Biochem. Biophys. Res. Commun. 277(1), 55–61 (2000).
  • Tjiong MY, van der Vange N, ter Schegget JS, Burger MP, ten Kate FW, Out TA. Cytokines in cervicovaginal washing fluid from patients with cervical neoplasia. Cytokine 14(6), 357–360 (2001).
  • Kroeger KM, Steer JH, Joyce DA, Abraham LJ. Effects of stimulus and cell type on the expression of the -308 tumour necrosis factor promoter polymorphism. Cytokine 12(2), 110–119 (2000).
  • Duarte I, Santos A, Sousa H, Catarino R et al. G-308A TNF-α polymorphism is associated with an increased risk of invasive cervical cancer. Biochem. Biophys. Res. Commun. 34(2), 588–592 (2005).
  • Stanczuk GA, Sibanda EN, Tswana SA, Bergstrom S. Polymorphism at the -308-promoter position of the tumor necrosis factor-α (TNF-α) gene and cervical cancer. Int. J. Gynecol. Cancer 13(2), 148–153 (2003).
  • Gallagher G, Eskdale J, Oh HH, Richards SD, Campbell DA, Field M. Polymorphisms in the TNF gene cluster and MHC serotypes in the West of Scotland. Immunogenetics 45(3), 188–194 (1997).
  • Zoodsma M, Nolte IM, Schipper M et al. Analysis of the entire HLA region in susceptibility for cervical cancer: a comprehensive study. J. Med. Genet. 42(8), e49 (2005).
  • Deshpande A, Nolan JP, White PS et al. TNF-α promoter polymorphisms and susceptibility to human papillomavirus 16-associated cervical cancer. J. Infect. Dis. 191(6), 969–976 (2005).
  • Simoes RT, Goncalves MA, Donadi EA et al. Association of tumor necrosis factor α-2 and α-8 microsatellite alleles with human papillomavirus and squamous intraepithelial lesions among women in Brazil. J. Clin. Microbiol. 43(8), 3932–3937 (2005).
  • Ghaderi M, Nikitina L, Peacock CS et al. Tumor necrosis factor α-11 and DR15-DQ6 (B*0602) haplotype increase the risk for cervical intraepithelial neoplasia in human papillomavirus 16 seropositive women in Northern Sweden. Cancer Epidemiol. Biomarkers Prev. 9(10), 1067–1070 (2000).
  • Mi H, Lazareva-Ulitsky B, Loo R et al. The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res. 33(Database issue), D284–D288 (2005).
  • Solbach C, Roller M, Nicolettri M, Budischewski K, Knecht R, Kaufmann M. Cancer of the uterine cervix is susceptible to anti-EGF-R antibody EMD 55,900 therapy. Anticancer Res. 25(6B), 4261–4267 (2005).
  • Cheung KH, Hager J, Pan D et al. KARMA: a web server application for comparing and annotating heterogeneous microarray platforms. Nucleic Acids Res. 32(Web Server Issue), W441–W444 (2004).
  • de Ridder D, van der Linden CE, Schonewille T et al. Purity for clarity: the need for purification of tumor cells in DNA microarray studies. Leukemia 19(4), 618–627 (2005).
  • Lee ML, Kuo FC, Whitmore GA, Sklar J. Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations. Proc. Natl Acad. Sci. USA 97(18), 9834–9839 (2000).
  • Wang SS, Trunk M, Schiffman M et al. Validation of p16INK4a as a marker of oncogenic human papillomavirus infection in cervical biopsies from a population-based cohort in Costa Rica. Cancer Epidemiol. Biomarkers Prev. 13(8), 1355–1360 (2004).
  • Hudelist G, Czerwenka K, Singer C, Pischinger K, Kubista E, Manavi M. cDNA array analysis of cytobrush-collected normal and malignant cervical epithelial cells: a feasibility study. Cancer Genet. Cytogenet. 158(1), 35–42 (2005).
  • Santin AD, Zhan F, Bignotti E et al. Gene expression profiles of primary HPV16- and HPV18-infected early stage cervical cancers and normal cervical epithelium: identification of novel candidate molecular markers for cervical cancer diagnosis and therapy. Virology 331(2), 269–291 (2005).
  • Wong YF, Cheung TH, Tsao GS et al. Genome-wide gene expression profiling of cervical cancer in Hong Kong women by oligonucleotide microarray. Int. J. Cancer (2005) (In Press).
  • Klaes R, Friedrich T, Spitkovsky D et al. Overexpression of p16INK4A as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int. J. Cancer 92(2), 276–284 (2001).
  • Ferreux E, Lont AP, Horenblas S et al. Evidence for at least three alternative mechanisms targeting the p16INK4A/cyclin D/Rb pathway in penile carcinoma, one of which is mediated by high-risk human papillomavirus. J. Pathol. 201(1), 109–118 (2003).
  • Fregonesi PA, Teresa DB, Duarte RA, Neto CB, de Oliveira MR, Soares CP. p16INK4A immunohistochemical overexpression in premalignant and malignant oral lesions infected with human papillomavirus. J. Histochem. Cytochem. 51(10), 1291–1297 (2003).
  • Bose S, Evans H, Lantzy L, Scharre K, Youssef E. p16INK4A is a surrogate biomarker for a subset of human papilloma virus-associated dysplasias of the uterine cervix as determined on the Pap smear. Diagn. Cytopathol. 32(1), 21–24 (2005).
  • Milde-Langosch K, Riethdorf S, Kraus-Poppinghaus A, Riethdorf L, Loning T. Expression of cyclin-dependent kinase inhibitors p16MTS1, p21WAF1, and p27KIP1 in HPV-positive and HPV-negative cervical adenocarcinomas. Virchows Arch. 439(1), 55–61 (2001).
  • Negri G, Egarter-Vigl E, Kasal A, Romano F, Haitel A, Mian C. p16INK4a is a useful marker for the diagnosis of adenocarcinoma of the cervix uteri and its precursors: an immunohistochemical study with immunocytochemical correlations. Am. J. Surg. Pathol. 27(2), 187–193 (2003).
  • Agoff SN, Lin P, Morihara J, Mao C, Kiviat NB, Koutsky LA. p16INK4a expression correlates with degree of cervical neoplasia: a comparison with Ki-67 expression and detection of high-risk HPV types. Mod. Pathol. 16(7), 665–673 (2003).
  • Nieh S, Chen SF, Chu TY, Lai HC, Fu E. Expression of p16INK4A in Papanicolaou smears containing atypical squamous cells of undetermined significance from the uterine cervix. Gynecol. Oncol. 91(1), 201–208 (2003).
  • Negri G, Vittadello F, Romano F et al. p16INK4a expression and progression risk of low-grade intraepithelial neoplasia of the cervix uteri. Virchows Arch. 445(6), 616–620 (2004).
  • Lin Z, Gao M, Zhang X et al. The hypermethylation and protein expression of p16INK4A and DNA repair gene O6-methylguanine-DNA methyltransferase in various uterine cervical lesions. J. Cancer Res. Clin. Oncol. 131(6), 364–370 (2005).
  • Virmani AK, Muller C, Rathi A et al. Aberrant methylation during cervical carcinogenesis. Clin. Cancer Res. 7(3), 584–589 (2001).
  • Dong SM, Kim HS, Rha SH, Sidransky D. Promoter hypermethylation of multiple genes in carcinoma of the uterine cervix. Clin. Cancer Res. 7(7), 1982–1986 (2001).
  • Nuovo GJ, Plaia TW, Belinsky SA, Baylin SB, Herman JG. In situ detection of the hypermethylation-induced inactivation of the p16 gene as an early event in oncogenesis. Proc. Natl Acad. Sci. USA 96, 2754–2759 (1999).
  • Chen Y, Miller C, Mosher R et al. Identification of cervical cancer markers by cDNA and tissue microarrays. Cancer Res. 63(8), 1927–1935 (2003).
  • Sgarlato GD, Eastman CL, Sussman HH. Panel of genes transcriptionally up-regulated in squamous cell carcinoma of the cervix identified by representational difference analysis, confirmed by macroarray, and validated by real-time quantitative reverse transcription-PCR. Clin. Chem. 51(1), 27–34 (2005).
  • Lam EW, Morris JD, Davies R, Crook T, Watson RJ, Vousden KH. HPV16 E7 oncoprotein deregulates B-myb expression: correlation with targeting of p107/E2F complexes. EMBO J. 13(4), 871–878 (1994).
  • Thierry F, Benotmane MA, Demeret C, Mori M, Teissier S, Desaintes C. A genomic approach reveals a novel mitotic pathway in papillomavirus carcinogenesis. Cancer Res. 64(3), 895–903 (2004).
  • Horstmann S, Ferrari S, Klempnauer KH. Regulation of B-Myb activity by cyclin D1. Oncogene 19(2), 298–306 (2000).
  • Davidson B, Goldberg I, Lerner-Geva L et al. Expression of topoisomerase II and Ki-67 in cervical carcinoma – clinicopathological study using immunohistochemistry. APMIS 108(3), 209–215 (2000).
  • Sopov I, Sorensen T, Magbagbeolu M et al. Detection of cancer-related gene expression profiles in severe cervical neoplasia. Int. J. Cancer 112(1), 33–43 (2004).
  • Godlewska J, Luniewski W, Zagrodzki B et al. Biological evaluation of omega-(dialkylamino)alkyl derivatives of 6H-indolo[2,3-b]quinoline–novel cytotoxic DNA topoisomerase II inhibitors. Anticancer Res. 25(4), 2857–2868 (2005).
  • Rose PG, Blessing JA, Buller RE, Mannel RS, Webster KD. Prolonged oral etoposide in recurrent or advanced non-squamous cell carcinoma of the cervix: a Gynecologic Oncology Group study. Gynecol. Oncol. 89(2), 267–270 (2003).
  • Bell SP, Dutta A. DNA replication in eukaryotic cells. Annu. Rev. Biochem. 71, 333–374 (2002).
  • Lei M, Tye BK. Initiating DNA synthesis: from recruiting to activating the MCM complex. J. Cell Sci. 114(Pt 8), 1447–1454 (2001).
  • Saxena S, Dutta A. Geminin–Cdt1 balance is critical for genetic stability. Mutat. Res. 569(1–2), 111–121 (2005).
  • Ishimi Y, Okayasu I, Kato C. Enhanced expression of Mcm proteins in cancer cells derived from uterine cervix. Eur. J. Biochem. 270(6), 1089–1101 (2003).
  • Ha SA, Shin SM, Namkoong H et al. Cancer-associated expression of minichromosome maintenance 3 gene in several human cancers and its involvement in tumorigenesis. Clin. Cancer Res. 10(24), 8386–8395 (2004).
  • Harima Y, Togashi A, Horikoshi K et al. Prediction of outcome of advanced cervical cancer to thermoradiotherapy according to expression profiles of 35 genes selected by cDNA microarray analysis. Int. J. Radiat. Oncol. Biol. Phys. 60(1), 237–248 (2004).
  • Dai Y, Zhang X, Peng Y, Wang Z. The expression of cyclooxygenase-2, VEGF and PGs in CIN and cervical carcinoma. Gynecol. Oncol. 97(1), 96–103 (2005).
  • Vazquez-Ortiz G, Ciudad CJ, Pina P. Gene identification by cDNA arrays in HPV-positive cervical cancer. Arch. Med. Res. 36(5), 448–458 (2005).
  • Kanda K, Ueda M, Futakuchi H et al. Transcriptional expression of the genes implicated in angiogenesis and tumor invasion in cervical carcinomas. Gynecol. Oncol. 98(3), 453–461 (2005).
  • Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120(1), 21–24 (2005).
  • Cullen BR. Derivation and function of small interfering RNAs and microRNAs. Virus Res. 102, 3–9 (2004).
  • Lu J, Getz G, Miska EA et al. MicroRNA expression profiles classify human cancers. Nature 435(7043), 834–838 (2005).
  • Michael MZ, O’Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res. 1(12), 882–891 (2003).
  • Chen CZ, Lodish HF. MicroRNAs as regulators of mammalian hematopoiesis. Semin. Immunol. 17(2), 155–165 (2005).
  • O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043), 839–843 (2005).
  • Johnson SM, Grosshans H, Shingara J et al. Ras is regulated by the let-7 microRNA family.Cell 120(5), 635–647 (2005).
  • Wong YF, Cheung TH, Lo KW et al. Protein profiling of cervical cancer by protein-biochips: proteomic scoring to discriminate cervical cancer from normal cervix. Cancer Lett. 211(2), 227–234 (2004).
  • Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. Mass Spectrom Rev. 23(1), 34–44 (2004).
  • Lee KA, Shim JH, Kho CW et al. Protein profiling and identification of modulators regulated by the E7 oncogene in the C33A cell line by proteomics and genomics. Proteomics 4(3), 839–848 (2004).
  • Veenstra TD, Prieto DA, Conrads TP. Proteomic patterns for early cancer detection. Drug Discov. Today 9(20), 889–897 (2004).
  • Nanda K, McCrory DC, Myers ER et al. Accuracy of the Papanicolaou test in screening for and follow-up of cervical cytologic abnormalities: a systematic review. Ann. Intern. Med. 132(10), 810–819 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.