1,753
Views
126
CrossRef citations to date
0
Altmetric
Review

Nanotechnology for cancer diagnostics: promises and challenges

, &
Pages 307-318 | Published online: 09 Jan 2014

References

  • Edwards BK, Brown M, Wingo PA et al. Annual report to the nation on the status of cancer, 1975–2002, featuring population-based trends in cancer treatment. J. Natl Cancer Inst.97(19), 1407–1427 (2005).
  • Rosenthal A, Jacobs I. Ovarian cancer screening. Semin Oncol.25(3), 315–325 (1998).
  • Ferrari M. Cancer nanotechnology: opportunities and challenges. Nature Rev. Cancer5(3), 161–171 (2005).
  • Fortina P, Kricka LJ, Surrey S, Grodzinski P. Nanobiotechnology: the promise and reality of new approaches to molecular recognition. Trends Biotechnol.23(4), 168–173 (2005).
  • Whitesides GM. The ‘right’ size in nanobiotechnology. Nature Biotechnol.21(10), 1161–11655 (2003).
  • Wickline SA, Lanza GM. Molecular imaging, targeted therapeutics, and nanoscience. J. Cell. Biochem. Suppl.39, 90–97 (2002).
  • Morawski AM, Lanza GA, Wickline SA. Targeted contrast agents for magnetic resonance imaging and ultrasound. Curr. Opin. Biotechnol.16(1), 89–92 (2005).
  • Chan WC, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol.13, 40–46 (2002).
  • Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnol.22, 969–976 (2004).
  • Michalet X, Pinaud FF, Bentolila LA et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science307, 538–544 (2005).
  • Fritz J, Baller MK, Lang HP et al. Translating biomolecular recognition into nanomechanics. Science288, 316–318 (2000).
  • Saleh OA, Sohn LL. Direct detection of antibody–antigen binding using an on-chip artificial pore. Proc. Natl Acad. Sci. USA100(3), 820–824 (2003).
  • Cui Y, Wei Q, Park H, Lieber CM. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science293, 1289–12992 (2001).
  • Chen RJ, Bangsaruntip S, Drouvalakis KA et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl Acad. Sci. USA100(9), 4984–4989 (2003).
  • Kukowska-Latallo JF, Candido KA, Cao Z et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res.65(12), 5317–5324 (2005).
  • West JL, Halas NJ. Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Ann. Rev. Biomed. Eng.5, 285–292 (2003).
  • Walt DR. Techview: molecular biology. Bead based fiber optic arrays. Science287, 451–452 (2000).
  • Venditto VJ, Regino CAS, Brechbiel MW. PAMAM dendrimer based macromolecules as improved contrast agents. Mol. Pharm.2, 302–311 (2005).
  • Gabizon A, Martin F. Polyethylene glycol-coated (pegylated) liposomal doxorubicin: rationale for use in solid tumors. Drugs54(Suppl. 4), 15–21 (1997).
  • Tomalia DA, Baker H, Dewald J et al. A new class of polymers: starburst dendritic macromolecules. Polymer J.17, 117–132 (1985).
  • Tomalia DA. The dendritic state. Mat. Today8(3), 34–46 (2005).
  • Wilson SR. Nanomedicine: fullerene and carbon nanotube biology. In: Perspectives in Fullerene Nanotechnology. Osawa E (Ed.), Kluwer Academic Publishers, Dordrecht, Netherlands, 155–163 (2002).
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell100(1), 57–70 (2000).
  • Sitharaman B, Kissell KR, Hartman KB et al. Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem. Commun.3915–3917 (2005).
  • Kobayashi H, Kawamoto S, Sakai Y et al. Lymphatic drainage imaging of breast cancer in mice by micro-magnetic resonance lymphangiography using a nano-size paramagnetic contrast agent. J. Natl Cancer Inst.96(9), 703–708 (2004).
  • Harishinghani MG, Barentsz J, Hahn PF et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med.348, 2491–2499 (2003).
  • Wisner ER, Ferrara KW, Short RE, Ottoboni TB, Gabe JD, Patel D. Sentinel node detection using contrast enhanced power Doppler ultrasound lymphography. Invest. Radiol.38(6), 358–365 (2003).
  • Alivisatos P. Semiconductor clusters, nanocrystals, and quantum dots. Science271, 933–937 (1996).
  • Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science281(5385), 2013–2016 (1998).
  • Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol. Imaging2, 50–64 (2003).
  • Kim S, Lim YT, Soltesz EG et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nature Biotechnol.22(1), 93–97 (2004).
  • Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater.4, 435–446 (2005).
  • Wu X, Liu H, Liu J et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnol.21, 41–46 (2003).
  • Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell86, 353–364 (1996).
  • Winter PM, Caruthers SD, Kassner A et al. Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel α(nu)β(3)-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res.63, 5838–5843 (2003).
  • Anderson SA, Wickline SA, Kotyk JJ. Magnetic resonance contrast enhancement of neovasculature with α(nu)β(3) targeted nanoparticles. Magn. Reson. Med.44, 433–439 (2000).
  • Schmieder AH, Winter PM, Caruthers SD et al. Molecular MR imaging of melanoma angiogenesis with α(nu)β(3)-targeted paramagnetic nanoparticles. Magn. Reson. Med.53(3), 621–627 (2005).
  • Schellenberger EA, Reynolds F, Weissleder R, Josephson L. Surface-functionalized nanoparticle library yields probes for apoptotic cells. Chembiochem5(3), 275–279 (2004).
  • Gao X, Chan WC, Nie S. Quantum dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J. Biomed. Opt.7, 532–537 (2002).
  • Louie AY, Huber MM, Ahrens ET et al.In vivo visualization of gene expression using magnetic resonance imaging. Nature Biotechnol.18, 321–325 (2000).
  • Chang E, Miller JS, Sun J et al. Protease-activated quantum dot probes. Biochem. Biophys. Res. Commun.334, 1317–1321 (2005).
  • Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal. Chem.76(7), 1824–1831 (2004).
  • Wang YC, Stevens AL, Han J. Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal. Chem.77(14), 4293–4299 (2005).
  • Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D. Light-directed, spatially addressable parallel chemical synthesis. Science251(4995), 767–773 (1991).
  • Nuwaysir EF, Huang W, Albert TJ, Singh J, Nuwaysir K et al. Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. Genome Res.12, 1749–1755 (2002).
  • Li J, Ng TG, Cassell A et al. Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett.3, 597–602 (2003).
  • Lee KB, Lim JH, Mirkin CA. Protein nanostructures formed via direct-write dip-pen nanolithography. J. Am. Chem. Soc.125, 5588–5589 (2003).
  • Lee KB, Park SJ, Mirkin CA, Smith JC, Mrksich M. Protein nanoarrays generated by dip-pen nanolithography. Science295(5560), 1702–1705 (2002).
  • Arntz Y, Seelig JD, Lang HP et al. Label-free protein assay based on a nanomechanical cantilever array. J. Nanotechnol.14, 86–90 (2003).
  • McKendry R, Zhang J, Arntz Y et al. Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc. Natl Acad. Sci. USA99, 9783–9788 (2002).
  • Wu G, Datar RH, Hansen KM, Thundat T, Cote RJ, Majumdar A. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nature Biotechnol.19(9), 856–860 (2001).
  • Ilic B, Yang Y, Aubin K, Reichenbach R, Krylov S, Craighead HG. Enumeration of DNA molecules bound to a nanomechanical oscillator. Nano Lett.5(5), 925–929 (2005).
  • Jin S, Whang D, McAlpine MC, Friedman RS, Wu Y, Lieber CM. Scalable interconnection and integration of nanowire devices without registration. Nano Lett.4, 915–919 (2004).
  • Nicewarner-Pena SR, Freeman RG, Reiss BD et al. Submicrometer metallic barcodes. Science294, 137–141 (2001).
  • Dejneka MJ, Streltsov A, Pal S et al. Rare earth-doped glass microbarcodes. Proc. Natl Acad. Sci. USA100, 389–393 (2003).
  • Park SJ, Taton TA, Mirkin CA. Array-based electrical detection of DNA with nanoparticle probes. Science295, 1503–1506 (2002).
  • Hirsch LR, Jackson JB, Lee A, Halas NJ, West JL. A whole blood immunoassay using gold nanoshells. Anal. Chem.75(10), 2377–2381 (2003).
  • Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science301(5641), 1884–1886 (2003).
  • Nam JM, Stoeva SI, Mirkin CA. Bio-bar-code-based DNA detection with PCR-like sensitivity. J. Am. Chem. Soc.126(19), 5932–5933 (2004).
  • Sayes C, Fortner J, Lyon D et al. The differential cytotoxicity of water-soluble fullerenes. Nano Lett.4, 1881–1887 (2004).
  • Oberdorster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Eviron. Health Perspect.112, 1058–1062 (2004).
  • Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett.4,11–18 (2004).
  • Lovric J, Cho SJ, Winnik FM, Maysinger D. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem. Biol.12(11), 1227–1234 (2005).
  • Ferrari M, Downing G. Medical nanotechnology: shortening clinical trials and regulatory pathways? BioDrugs19(4), 203–210 (2005).
  • Buetow KH. Cyberinfrastructure: empowering a “third way” in biomedical research. Science308, 821–824 (2005).
  • Kobayashi H, Brechbiel MW. Dendrimer-based nanosized MRI contrast agents. Curr. Pharm. Biotechnol.5, 539–549 (2004).

Websites

  • Ries LAG, Eisner MP, Kosary CL et al. (Eds) SEER Cancer Statistics Review, 1975–2002, National Cancer Institute, MD, USA http://seer.cancer.gov/csr/1975_2002 (Viewed September 2005).
  • National Nanotechnology Initiative: What is Nanotechnology? www.nano.gov/html/facts/whatIsNano.html
  • Kang HK, Seo J, Di Carlo D, Choi Y-K, Lee LP. Planar nanogap capacitor arrays on quartz for optical and dielectric bioassays. 7th Int. Conf. On Miniaturized Chem. Biochem. Anal. Systems. CA, USA (2003) www.chem.ualberta.ca/~microtas/Volume1/173-473.pdf (Viewed September 2005).
  • The Royal Society & The Royal Academy of Engineering. Nanoscience and nanotechnologies: opportunities and uncertainties (2004) www.nanotec.org.uk/finalReport.htm (Viewed September 2005).
  • National Cancer Institute: Nanotechnology Characterization Lab http://NCL.cancer.gov
  • National Cancer Institute Alliance for Nanotechnology in Cancer http://nano.cancer.gov
  • American Cancer Society: Overview: Breast Cancer www.cancer.org/docroot/CRI/content/CRI_2_2_3X_After_the_tests_Staging_5.asp?site area=
  • American Cancer Society: Detailed Guide: Ovarian Cancer www.cancer.org/docroot/CRI/content/CRI_2_4_3X_How_is_ovarian_cancer_staged_33.asp?sitearea=CRI&viewmode=print&
  • American Cancer Society: Detailed Guide: Stomach Cancer www.cancer.org/docroot/cri/content/cri_2_4_3x_how_is_stomach_cancer_staged_40.asp?sitearea=cri
  • Detailed Guide: Lung Cancer – Non-small Cell www.cancer.org/docroot/CRI/content/CRI_2_4_3x_How_Is_Non-Small_Cell_ Lung_Cancer_Staged.asp?sitearea=

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.