195
Views
60
CrossRef citations to date
0
Altmetric
Review

Challenges of SNP genotyping and genetic variation: its future role in diagnosis and treatment of cancer

&
Pages 319-331 | Published online: 09 Jan 2014

References

  • Bodmer WF, Bailey CJ, Bodmer J et al. Localization of the gene for familial adenomatous polyposis on chromosome 52. Nature328, 614–616 (1987).
  • Cannon-Albright LA, Goldgar DE, Meyer LJ et al. Assignment of a locus for familial melanoma, MLM, to chromosome 9p13-p224. Science258, 1148–1152 (1992).
  • Wooster R, Neuhausen SL, Mangion J et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12–132. Science265, 2088–2090 (1994).
  • Ponder BA. Cancer genetics. Nature411, 336–341 (2001).
  • Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science273, 1516–1517 (1996).
  • Collins FS, Guyer MS, Charkravarti A. Variations on a theme: cataloging human DNA sequence variation. Science278, 1580–1581 (1997).
  • Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nature Genet.33(Suppl.), 228–237 (2003).
  • Reich DE, Lander ES. On the allelic spectrum of human disease. Trends Genet.17, 502–510 (2001).
  • Pritchard JK, Cox NJ. The allelic architecture of human disease genes: common disease-common variant...or not? Hum. Mol. Genet.11, 2417–2423 (2002).
  • Kruglyak L, Nickerson DA. Variation is the spice of life. Nature Genet.27, 234–236 (2001).
  • Hinds DA, Stuve LL, Nilsen GB et al. Whole-genome patterns of common DNA variation in three human populations. Science307, 1072–1079 (2005).
  • Conne B, Stutz A, Vassalli JD. The 3´ untranslated region of messenger RNA: a molecular ‘hotspot’ for pathology? Nature Med.6, 637–641 (2000).
  • Duan J, Wainwright MS, Comeron JM et al. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum. Mol. Genet.12, 205–216 (2003).
  • Hoogendoorn B, Coleman SL, Guy CA et al. Functional analysis of human promoter polymorphisms. Hum. Mol. Genet.12, 2249–2254 (2003).
  • Pagani F, Baralle FE. Genomic variants in exons and introns: identifying the splicing spoilers. Nature Rev. Genet.5, 389–396 (2004).
  • Siepel A, Bejerano G, Pedersen JS et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res.15, 1034–1050 (2005).
  • Grant SF, Reid DM, Blake G, Herd R, Fogelman I, Ralston SH. Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I α 1 gene. Nature Genet.14, 203–5 (1996).
  • Bond GL, Hu W, Bond EE et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell.119(5), 591–602 (2005).
  • Risch NJ. Searching for genetic determinants in the new millennium. Nature405, 847–856 (2000).
  • Sachidanandam R, Weissman D, Schmidt SC et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature409, 928–933 (2001).
  • Venter JC, Adams MD, Myers EW et al. The sequence of the human genome. Science291, 1304–1351 (2001).
  • Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES. High-resolution haplotype structure in the human genome. Nature Genet.29, 229–232 (2001).
  • Patil N, Berno AJ, Hinds DA et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science294, 1719–1723 (2001).
  • Gabriel SB, Schaffner SF, Nguyen H et al. The structure of haplotype blocks in the human genome. Science296, 2225–2229 (2002).
  • Johnson GCL. Haplotype tagging for the identification of common disease genes. Nature Genet.29, 233–237 (2001).
  • Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am. J. Hum. Genet.74, 106–120 (2004).
  • Ardlie KG, Kruglyak L, Seielstad M. Patterns of linkage disequilibrium in the human genome. Nature Rev. Genet.3, 299–309 (2002).
  • The International HapMapConsortium. The International HapMap Project. Nature426, 789–796 (2003).
  • Altshuler D, Brooks LD, Chakravarti A, Collins FS, Daly MJ, Donnelly P. A haplotype map of the human genome. Nature437, 1299–1320 (2005).
  • Excoffier L, Slatkin M. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol. Biol. Evol.12, 921–927 (1995).
  • Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet.68, 978–989 (2001).
  • Li N, Stephens M. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics165, 2213–2233 (2003).
  • Clayton D, McKeigue PM. Epidemiological methods for studying genes and environmental factors in complex diseases. Lancet358, 1356–1360 (2001).
  • Collins FS, Green ED, Guttmacher AE, Guyer MS. A vision for the future of genomics research. Nature422, 835–847 (2003).
  • Chapman JM, Cooper JD, Todd JA, Clayton DG. Detecting disease associations due to linkage disequilibrium using haplotype tags: a class of tests and the determinants of statistical power. Hum. Hered.56, 18–31 (2003).
  • Clark AG. The role of haplotypes in candidate gene studies. Genet. Epidemiol.27(4), 321–333 (2004).
  • Stephens JC, Schneider JA, Tanguay DA et al. Haplotype variation and linkage disequilibrium in 313 human genes. Science293, 489–493 (2001).
  • Crawford DC, Bhangale T, Li N et al. Evidence for substantial fine-scale variation in recombination rates across the human genome. Nature Genet.36, 700–706 (2004).
  • Schulze TG, Zhang K, Chen YS, Akula N, Sun F, McMahon FJ. Defining haplotype blocks and tag single-nucleotide polymorphisms in the human genome. Hum. Mol. Genet.13, 335–342 (2004).
  • Pritchard JK, Przeworski M. Linkage disequilibrium in humans: models and data. Am. J. Hum. Genet.69, 1–14 (2001).
  • Goldstein DB, Ahmadi KR, Weale ME, Wood NW. Genome scans and candidate gene approaches in the study of common diseases and variable drug responses. Trends Genet.19, 615–622 (2003).
  • Thompson D, Stram D, Goldgar D, Witte JS. Haplotype tagging single nucleotide polymorphisms and association studies. Hum. Hered.56, 48–55 (2003).
  • Edwards AO, Ritter R III, Abel KJ, Manning A, Panhuysen C, Farrer LA. Complement factor H polymorphism and age-related macular degeneration. Science308, 421–424 (2005).
  • Haines JL, Hauser MA, Schmidt S et al. Complement factor H variant increases the risk of age-related macular degeneration. Science308, 419–421 (2005).
  • Klein RJ, Zeiss C, Chew EY et al. Complement factor H polymorphism in age-related macular degeneration. Science308, 385–389 (2005).
  • Gonzalez-Neira A, Ke X, Lao O et al. The portability of tagSNPs across populations: a worldwide survey. Genome Res.16, 323–330 (2006).
  • Ribas G, Gonzalez-Neira A, Salas A et al. Evaluating HapMap SNP data transferability in a large-scale genotyping project involving 175 cancer-associated genes. Hum Genet.118, 669–679 (2006).
  • Gorroochurn P, Hodge SE, Heiman G, Greenberg DA. Effect of population stratification on case–control association studies. II. False-positive rates and their limiting behavior as number of subpopulations increases. Hum. Hered.58, 40–48 (2004).
  • Heiman GA, Hodge SE, Gorroochurn P, Zhang J, Greenberg DA. Effect of population stratification on case–control association studies. I. Elevation in false positive rates and comparison to confounding risk ratios (a simulation study). Hum. Hered.58, 30–39 (2004).
  • Tabor HK, Risch NJ, Myers RM. Opinion: candidate-gene approaches for studying complex genetic traits: practical considerations. Nature Rev. Genet.3, 391–397 (2002).
  • Neale BM, Sham PC. The future of association studies: gene-based analysis and replication. Am. J. Hum. Genet.75, 353–362 (2004).
  • Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K. A comprehensive review of genetic association studies. Genet. Med.4, 45–61 (2002).
  • Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nature Genet.33, 177–182 (2003).
  • de Bakker PI, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler D. Efficiency and power in genetic association studies. Nature Genet.37, 1217–1223 (2005).
  • Zondervan KT, Cardon LR, Kennedy SH. What makes a good case–control study? Design issues for complex traits such as endometriosis. Hum. Reprod.17, 1415–1423 (2002).
  • van den Oord EJ, Sullivan PF. False discoveries and models for gene discovery. Trends Genet.19, 537–542 (2003).
  • Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J. Natl Cancer Inst.96, 434–442 (2004).
  • Colhoun HM, McKeigue PM, Smith GD. Problems of reporting genetic associations with complex outcomes. Lancet361, 865–872 (2003).
  • Seaman SR, Muller-Myhsok B. Rapid simulation of P values for product methods and multiple-testing adjustment in association studies. Am. J. Hum. Genet.76, 399–408 (2005).
  • Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am. J. Hum. Genet.70, 425–434 (2002).
  • Page GP, George V, Go RC, Page PZ, Allison DB. “Are we there yet?”: Deciding when one has demonstrated specific genetic causation in complex diseases and quantitative traits. Am. J. Hum. Genet.73, 711–719 (2003).
  • Kraft P, Cox DG, Paynter RA, Hunter D, De Vivo I. Accounting for haplotype uncertainty in matched association studies: a comparison of simple and flexible techniques. Genet. Epidemiol.28(3), 261–272 (2005).
  • Marcus PM, Vineis P, Rothman N. NAT2 slow acetylation and bladder cancer risk: a meta-analysis of 22 case–control studies conducted in the general population. Pharmacogenetics10, 115–122 (2000).
  • Vineis P, Marinelli D, Autrup H et al. Current smoking, occupation, N-acetyltransferase-2 and bladder cancer: a pooled analysis of genotype-based studies. Cancer Epidemiol. Biomarkers Prev.10, 1249–1252 (2001).
  • Hein DW. Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis. Mutat. Res.506–507, 65–77 (2002).
  • Garcia-Closas M, Malats N, Silverman D et al. NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet366, 649–659 (2005).
  • Moore LE, Huang WY, Chatterjee N et al. GSTM1, GSTT1, and GSTP1 polymorphisms and risk of advanced colorectal adenoma. Cancer Epidemiol. Biomarkers Prev.14, 1823–1827 (2005).
  • Cascorbi I, Henning S, Brockmoller J et al. Substantially reduced risk of cancer of the aerodigestive tract in subjects with variant-463A of the myeloperoxidase gene. Cancer Res.60, 644–649 (2000).
  • Mitrunen K, Hirvonen A. Molecular epidemiology of sporadic breast cancer. The role of polymorphic genes involved in oestrogen biosynthesis and metabolism. Mutat. Res.544, 9–41 (2003).
  • The Breast and ProstateCancer Cohort Consortium. The National Cancer Institute Cohort Consortium on Breast and Prostate Cancers: A systematic search for low-penetrance breast and prostate cancer genes using a candidate gene approach. Nature Rev. Cancer5, 977–985 (2005).
  • Goode EL, Ulrich CM, Potter JD. Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol. Biomarkers Prev.11, 1513–1530 (2002).
  • Mohrenweiser HW, Wilson DM III, Jones IM. Challenges and complexities in estimating both the functional impact and the disease risk associated with the extensive genetic variation in human DNA repair genes. Mutat. Res.526, 93–125 (2003).
  • Houlston RS, Peto J. The search for low-penetrance cancer susceptibility alleles. Oncogene23, 6471–6476 (2004).
  • Vineis P, Veglia F, Benhamou S et al. CYP1A1 T3801 C polymorphism and lung cancer: a pooled analysis of 2451 cases and 3358 controls. Int. J. Cancer104, 650–657 (2003).
  • Rothman N, Skibola CF, Wang SS et al. Genetic variation in TNF and IL10 and risk of non-Hodgkin lymphoma: a report from the Interlymph Consortium. Lancet Oncol.7, 27–38 (2006).
  • Coussens LM, Werb Z. Inflammation and cancer. Nature420, 860–867 (2002).
  • Lin EY, Pollard JW. Role of infiltrated leucocytes in tumour growth and spread. Br. J. Cancer90, 2053–2058 (2004).
  • Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol.196, 254–265 (2002).
  • Shacter E, Weitzman SA. Chronic inflammation and cancer. Oncology (Williston Park)16, 217–26, 229 (2002).
  • Rebbeck TR, Jaffe JM, Walker AH, Wein AJ, Malkowicz SB. Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J. Natl Cancer Inst.90, 1225–1229 (1998).
  • McLeod HL, Papageorgio C, Watters JW. Using genetic variation to optimize cancer chemotherapy. Clin. Adv. Hematol. Oncol.1, 107–111 (2003).
  • Freimuth RR, Xiao M, Marsh S et al. Polymorphism discovery in 51 chemotherapy pathway genes. Hum. Mol. Genet.14(23), 3595–3603 (2005).
  • Deloukas P, Bentley D. The HapMap project and its application to genetic studies of drug response. Pharmacogenomics. J.4, 88–90 (2004).
  • Yamayoshi Y, Iida E, Tanigawara Y. Cancer pharmacogenomics: international trends. Int. J. Clin. Oncol.10, 5–13 (2005).
  • McLeod HL, Krynetski EY, Relling MV, Evans WE. Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia14, 567–572 (2000).
  • Relling MV, Hancock ML, Boyett JM, Pui CH, Evans WE. Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood93, 2817–2823 (1999).
  • Relling MV, Rubnitz JE, Rivera GK et al. High incidence of secondary brain tumours after radiotherapy and antimetabolites. Lancet354, 34–39 (1999).
  • Schmiegelow K, Bjork O, Glomstein A et al. Intensification of mercaptopurine/methotrexate maintenance chemotherapy may increase the risk of relapse for some children with acute lymphoblastic leukemia. J. Clin. Oncol.21, 1332–1339 (2003).
  • Chang TK, Yu L, Goldstein JA, Waxman DJ. Identification of the polymorphically expressed CYP2C19 and the wild-type CYP2C9-ILE359 allele as low-Km catalysts of cyclophosphamide and ifosfamide activation. Pharmacogenetics7, 211–221 (1997).
  • Toffoli G, Veronesi A, Boiocchi M, Crivellari D. MTHFR gene polymorphism and severe toxicity during adjuvant treatment of early breast cancer with cyclophosphamide, methotrexate, and fluorouracil (CMF). Ann. Oncol11, 373–374 (2000).
  • Kishi S, Griener J, Cheng C et al. Homocysteine, pharmacogenetics, and neurotoxicity in children with leukemia. J. Clin. Oncol.21, 3084–3091 (2003).
  • Innocenti F, Undevia SD, Iyer L et al. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J. Clin. Oncol.22, 1382–1388 (2004).
  • De Maio A, Torres MB, Reeves RH. Genetic determinants influencing the response to injury, inflammation, and sepsis. Shock23, 11–17 (2005).
  • Lehrnbecher T, Bernig T, Hanisch M et al. Common genetic variants in the interleukin-6 and chitotriosidase genes are associated with the risk for serious infection in children undergoing therapy for acute myeloid leukemia. Leukemia19, 1745–1750 (2005).
  • Kilpatrick DC, McLintock LA, Allan EK et al. No strong relationship between mannan binding lectin or plasma ficolins and chemotherapy-related infections. Clin. Exp. Immunol.134, 279–284 (2003).
  • Mullighan CG, Bardy PG. Mannose-binding lectin and infection following allogeneic hemopoietic stem cell transplantation. Leuk. Lymphoma45, 247–256 (2004).
  • Larsen F, Madsen HO, Sim RB, Koch C, Garred P. Disease-associated mutations in human mannose-binding lectin compromise oligomerisation and activity of the final protein. J. Biol. Chem.279(20), 21302–21311 (2004).
  • Takahashi K, Gordon J, Liu H et al. Lack of mannose-binding lectin-A enhances survival in a mouse model of acute septic peritonitis. Microbes. Infect.4, 773–784 (2002).
  • Bernig T, Taylor JG, Foster CB, Staats B, Yeager M, Chanock SJ. Sequence analysis of the mannose-binding lectin (MBL2) gene reveals a high degree of heterozygosity with evidence of selection. Genes Immun.5, 461–476 (2004).
  • Bernig T, Breunis W, Brouwer N et al. An analysis of genetic variation across the MBL2 locus in dutch caucasians indicates that 3´ haplotypes could modify circulating levels of MBL. Hum. Genet.118(3–4), 404–415 (2005).
  • Collins FS. Shattuck lecture – medical and societal consequences of the Human Genome Project. N. Engl. J. Med.341, 28–37 (1999).
  • Khoury MJ, Yang Q, Gwinn M, Little J, Dana FW. An epidemiologic assessment of genomic profiling for measuring susceptibility to common diseases and targeting interventions. Genet. Med.6, 38–47 (2004).
  • Merikangas KR, Risch N. Genomic priorities and public health. Science302, 599–601 (2003).
  • Khoury MJ, Davis R, Gwinn M, Lindegren ML, Yoon P. Do we need genomic research for the prevention of common diseases with environmental causes? Am. J. Epidemiol.161, 799–805 (2005).
  • Shen R, Fan JB, Campbell D et al. High-throughput SNP genotyping on universal bead arrays. Mutat. Res.573, 70–82 (2005).
  • Yeoh EJ, Ross ME, Shurtleff SA et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell1, 133–143 (2002).
  • Holleman A, Cheok MH, Den Boer ML et al. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N. Engl. J. Med.351, 533–542 (2004).
  • Edick MJ, Cheng C, Yang W et al. Lymphoid gene expression as a predictor of risk of secondary brain tumors. Genes Chromosomes Cancer42, 107–116 (2005).
  • French D, Wilkinson MR, Yang W et al. Global gene expression as a function of germline genetic variation. Hum. Mol. Genet.14, 1621–1629 (2005).

Websites

  • SeattleSNPs Variation Discovery Resource http://pga.gs.washington.edu
  • Cancer Genome Anatomy Project: SNP500Cancer project http://snp500cancer.nci.nih.gov
  • The International HapMap Project www.hapmap.org
  • National Institutes of Health and National Institute of General Medical Sciences Pharmacogenetics Research Network and Database www.pharmgkb.org
  • Human Cytochrome P450 (CYP) Allele Nomenclature Committee www.imm.ki.se/CYPalleles/default.htm

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.